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ABSTRACT

We address the problem of trajectory prediction in machine vision applications using variants
of Elman’s partially recurrent networks. We use dynamic context to constrain the repres-
entation learnt by a network and explore the characteristics of various input representations.
Network stability and generalisation from training on complex 2D trajectories are tested. We
train such networks to encode knowledge about “trajectories” in dynamic face recognition
using an extended “temporal signature” eigenface representation of face image sequences.
Eigenvector decomposition on each time step of a motion sequence allows for natural variations
in view and scale. This application makes use of on-line head detection and face tracking
from image sequences and achieves a high success rate when tested on sequences of known
and unknown individuals with large viewpoint differences.

1. Introduction

Trajectory prediction is an important capability for
many computer vision applications, e.g. visual sur-
veillance [3] or biomedical sequence understanding
[11]. Multi-layer perceptrons with supervised learn-
ing are very popular for applications which can
use static representations, but time is important
in many domains, e.g. vision, speech and motor
control. Dynamic neural networks can be construc-
ted by adding recurrent connections to form a con-
textual memory for prediction in time [2, 8. In
learning to predict a trajectory with a recurrent net,
it is important to have the input representation re-
flect the geometric and topological features of that
trajectory. This partly determines the effectiveness
of learning and the network’s ability to generalise
and predict. Techniques for learning finite state
machines using partially recurrent networks were
explored by Elman and Cleeremans [1, 2] and it
was shown that such vector coding of trajectories
allows generalisation across a range of positions,
sizes and speeds in picking up the essential state
changes [5, 12]. A topological invariant represent-
ation of a shape can be measured by chord length
distribution along the boundary of a shape [15]. We
use an error measure in restoring such a topological
distribution to estimate the effectiveness of repres-
entation schemes in trajectory prediction. One of
the main problems in face recognition is dimension-
ality reduction to remove redundant information in
the original images. A well known example is the
“eigenface” approach [16] which is widely acknow-
ledged for its potential in practical applications.
However, the need for representations at a range of
scales and orientations causes extra complexity and
updating the representations with new data can be
a problem [9, 10, 13]. Here we address the prob-
lem of scale and orientation by exploiting motion
trajectory knowledge to form extended “temporal
signature” eigenfaces for face recognition. This en-
codes the natural variations in orientation and scale

[4]. In what follows, we first present, in section
2, the architecture of augmented Elman recurrent
neural networks and in section 3, we explore the
use of context exponential memory and the effect
of having different data representation in predicting
complex trajectories. Then, in section 4, we study
recurrent network based knowledge representation
in predicting spatio-temporal trajectories of moving
faces before we conclude in section 5.

2. Elman Recurrent Neural Networks

Recurrent neural networks have both feedforward
and feedback connections. Here we consider only
partially recurrent networks in which the majority
of connections are feedforward and adaptable with
a few selected fixed feedback connections to a set
of “context” units. Several architectures have been
suggested [2, 6, 8] which have in common this use of
a set of context units to receive the feedback signals
and act as memory for the recent past required in
dynamic tasks.
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Fig. 1: The basic Elman network and a modified network
with exponential memory.

Elman [2] suggested the simple architecture that
we have modified for the trajectory prediction tasks
here (see Fig. 1). We can see that the network
consists of (1) four sets of units: the input, hidden,
output and context units, (2) a set of feedforward



connections and (3) a set of fixed feedback connec-
tions from the hidden to the context units. The
context units hold a copy of the activations of the
hidden units from the previous time step and thus
help to remember the past internal state. At the
same time, the hidden units “encode” input pat-
terns so that the layer interconnections build an
internal representation of the relationship between
successive inputs in a time series.
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Fig. 2: Complex trajectories with generalised “8” shape
(top row). Predictions of these trajectories by a network
without (middle row) and with (bottom row) exponential
memory.

The extra connections in recurrent networks
develop internal representations that are sensitive
to temporal context i.e. they provide a dynamic
memory. However, due to the increased number
of weights and more complex dynamics, there is
generally a problem with the stability of networks of
this kind. For complex trajectories where the next
input depends not only on the previous time step
but also ones earlier in the series, an augmented
context layer can be used. This may explicitly save
internal states in further layers or (see the right
hand side of Fig. 1), use an exponential memory
decay where each context unit saves a bit of the past
internal state using an additive function. Thus, the
main component of the context unit activation is
from the previous time t—1 as usual but a secondary
component is due to t — 2, a third due to t — 3 and
so on until the effect is negligible (depending on the
decay constant). The exponential encoding of the
hidden unit activation is formulated according to
the equation c(t) = (1 — a) h(t) + ac(t—1), where
the decay constant « lies in the interval [1, —1], h(¢)

represents the vector of the hidden units activation
values at time ¢ and, ¢(t) represents the context
vector at time t.

3. Prediction of Complex Trajectories

Based on Elman’s partially recurrent architecture
[2], variations were compared for predicting simple
circular trajectories [5, 12]. The top row in Fig. 2
shows a couple of examples of complex trajectories
we used here. The main difference between these
and the circular trajectories is that the curvature
of the trajectories is not constant but instead var-
ies along their length. Predicting such trajectories
from given starting points depends on the spatio-
temporal position of those points on the traject-
ory. Hand drawing the trajectories introduced noise
and shape variation that resulted in the creation
of a more realistic, and statistically sound, data
set. Each trajectory was drawn inside a grid in
a clockwise order starting from a similar relative
position but could be centered around any position
inside the grid and vary in orientation and size. The
generation order of each point of the trajectories
was recorded to create the set of time sequences
required for the experiments. Sampling produced a
set of trajectories of length 16. From a set of 100
trajectories, 70 were used to train the networks and
the remaining 30 were used for testing the general-
isation ability of the networks. The objective of our
experiment is to determine the appropriate repres-
entation and possible spatio-temporal invariant of
the trajectories.

First, we train an Elman network (2 input, 8
context, 8 hidden, 2 output) with the coordinate
(x,y) representation of trajectories. The network
was trained by back-propagation with the learning
rate of 0.2 and the momentum of 0.5. No conven-
tional error limit was set but instead, the training
was terminated according to the network’s ability
to restore the topological shape of the trajectories
(since they are closed). The network converged in
1500 epochs, but achieved the best generalisation
after 600 - 1000 epochs. The results given by the
middle row of Fig. 2 show that the network was
able to predict the evolution of the trajectories in-
dependent of their position and scale using a single
starting position. However, it gives poor perform-
ance where a trajectory has high curvature. Now,
a network with exponential memory was trained
with exponential parameter « = 0.5. The net-
work converged faster and its generalisation abil-
ity was increased. Results given by the bottom
row in Fig. 2 show that the network also improves
its prediction at locations of high curvature along
trajectories compared with those predicted by the
network without the exponential memory.

In the next experiment, curvature was directly
used to represent trajectories. The angle between
three consecutive sample points on the trajectory
was computed and normalised between [0.1, 0.9].
The one-step-ahead prediction of the trajectories
is being performed after two consecutive starting
points were given. An Elman network (1 input, 6
hidden, 6 context and 1 output) with exponential
parameter a = 0.5 gave the best results. The net-
work was trained with the learning rate of 0.1 and
momentum of 0.5. The network did not converge
but the error was momentarily low. The results are



Fig. 3: The input (solid contours) and predicted (dot-
ted contours) trajectories represented by coordinate (left
column), continuous (middle column) and quantised
(right column) curvature.

given by the middle column of Fig. 3. The network
was able to give most of its predictions within 45
degrees of accuracy. However, in some cases the
prediction varied between 135 to 270 degrees.

In our last experiment, we represented the
curvature along a trajectory as a finite state ma-
chine coded with vectors 0 to 7 in a binary
format. The states correspond to locations of sharp
curvature change. The symbols correspond to a set
of allowed curvature changes between two success-
ive sample points on a trajectory. The advantage
of this representation is that it is independent of
the position and scale of the trajectory. An Elman
network architecture with 3 input, 10 context, 10
hidden and 3 output units was trained with learning
rate of 0.001, momentum of 0.5 and exponential
parameter « set to 0.3. After a training session of
140000 epochs the network was able to give a good
qualitative prediction of the evolution of the tra-
jectory. The results are given by the right column
of Fig. 3. In most cases when the network failed to
predict the next curvature measurement it did so
by 45 to 90 degrees. However, the network was able
to recover the next curvature measure and adapt to
the different shapes of each trajectory. The advant-
ages of such representation becomes more apparent
when trajectories of different lengths are used.
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Fig. 4: A face space can be divided into many sub-spaces
according to either viewpoint, or face class (faces of
different people) or time.

4. Prediction in Face Sequences

In the second part of this work, we exploit Elman
networks’ capacity for predicting spatio-temporal
trajectories in a rather more difficult context, regis-
tering and recognising dynamic faces. It is import-
ant to notice however that the notion of “spatio-
temporal trajectories” here is somehow different
from what we have used so far. It is more implicit
and implies rather the spatio-temporal contextual
constraint under which a dynamic face can move.
This is illustrated in Fig. 5.

Fig. 5: Effective face recognition should be carried out
within a given context because environmental layout and
physical freedom in human head movement mot only
limit but also correlate changes in face images of a mov-
ing face.

Past studies on applying neural networks to re-
cognise face images [7] have shown to be compu-
tationally impractical. This is largely due to direct
use of images as network input patterns which resul-
ted in huge networks that are difficult to train. Ei-
genface representation vastly reduces the dimension
of input patterns. With eigenface approach, a face
image is represented by a weighted linear sum of a
set of orthogonal eigenfaces. These eigenfaces are
grey-level scaled eigenvectors which are the prin-
cipal components of a given face image set, the “face
space” (illustrated in Fig. 4). An eigenface charac-
terises one distinctive global probabilistic variation
in the given face image set. In general, for a set
of face images that have an unified size N = mxn
and (m,n) are the width and height of an image,
a N-dimensional face space can be defined where
face images are points in this hyperspace. Let a set
of face images be I'1,I's, ..., 'y, then an average
image can be computed as:

1

U=
Mi

I; (1)

and a new set ®1,P,,..., P, is given by ®; =
T'; — . This simply translates the original face
images by W in the face space '. Then the principal

1For calculating eigenvectors, ®; are computationally
more stable since their values are much smaller compared
with those of T';.



Fig. 6: Fuace detection and segmentation on a camera
input sequence.

components of the new face space given by ®; are
the eigenvectors of the following covariance matrix:
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where A = [®;P3...P)] and C are N x N
matrices.

For a typical image size 2, computing the N ei-
genvectors of C is computationally hard. However,
since the number of the face images in the set is
much smaller than the dimension of the face space
(M < N), there only exists M — 1 nontrivial ei-
genvectors with the remaining ones associated with
negative or zero eigenvalues. Now, if we consider V;
to be the eigenvectors of matrix AT A whilst ATA
is only a M x M matrix, i.e. (ATA)V; = \,V;
where )\; are the eigenvalues, then A(ATA)V,; =
A()\lVl) and (AAT)(AVl) = )\Z(AVl) where AVI
are the eigenvectors of C = AAT. Therefore, the
eigenvectors of C are given by:

M .
= Z’U}Z@k

. k=1

where (i = 1,...,M —1) and v}, is the kth element
of V,;. The eigenfaces are just the grey-level scaled
and shifted eigenvectors which fall into the band of
pixel values.

For a given set of eigenfaces Uy, a face image I
can be projected onto the eigenfaces by:

_Ufr-w

k=1,...
Ak ’

7M/ (2)

Wk

where W is the average face image given by Eq. (1),
Ar are the eigenvalues and M’ < M — 1 3,
Now, we have a weight distribution vector 2 =
[w1 wa ... war], known as the pattern vector of T.
A face image can therefore be represented by its
pattern vector and the first M’ eigenfaces of the face
space. If we regard the eigenfaces as the basis of the

2For an image size of 256 x 256, the dimension of the face
space N is 65536.
3With M’ < M — 1, the representation is approximate.
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Fig. 7: Temporal face subspaces are associated with im-
age frames of specific time indices in face sequences.
Note, M is the number of frames in a face sequence.

face space, then wy € (—1,0) U (0,1). Now, for all
the face images in the given set that belong to the
same face class, one computes an average pattern

vector Q. This can be regarded as the “signature”
of that face class. For a new face image, one calcu-
lates the Euclidian distance € between its pattern

vector and the € of a known face classe =|| Q—Q ||.
Then, this face image can be identified with the
known face class if € falls within a given threshold.

Computationally, however, this approach is
scale and viewpoint dependent. Current eigenface
based face recognition models are limited to register
only single face images all taken from a very sim-
ilar viewpoint, most commonly, the frontal view.
This substantially limits a model’s robustness and
effectiveness [14]. A common approach to overcome
the scale dependency problem is to normalise (i.e.
unifying size) face images. With our system, we
first detect and track a moving head from an on-
line camera input before segmenting and normal-
ising the face images using our on-line face detection
system [4] (see Fig. 6). This process also improves
the accuracy in encoding the face images. If large
areas in the images that are used to form a face
space contain “significant” background rather than
face information, the extracted eigenfaces would
“say” more about the statistical properties of the
background than that of the faces.

The focus of this work is about encoding view-
invariant face features and recognising face images
from large viewpoint differences. Temporal inform-
ation in time sequence provides important con-
straints in data registration and association. En-
vironmental layout and physical freedom in human
head movement limits possible changes of a moving
face. Dividing face space in time ties this impli-
cit contextual constraints to temporal correlations
(possible invariants) between successive face images
in a sequence. If we capture a set of image se-
quences of moving faces where all the sequences
start from and finish at the same “two distinctive”
regions in a given context, each image frame from
every sequence contributes to one “similar orienta-
tion” in time. Then we can divide face space into a



set of subspaces that correspond to groups of face
orientations associated with time index. We call
these groups “temporal face subspaces” (illustrated
in Fig. 7).
To extract the temporal signature of a face class
we do the following: First, we track and segment a
set of face sequences with a fixed number of frames
(M) taken from the head movement of one person.
We then compute M temporal face subspaces for
that individual with each subspace corresponding
to one time frame (see Fig. 7). The ith temporal
face subspace is represented by the few significant
eigenfaces of the ith image frames from the se-
quence set. The ith image frame of a given face se-
quence can then be represented by a pattern vector
given by Eq. (2). In the face sequence, we can then
measure the temporal change in the pattern vectors
of successive frames by their temporal-Euclidian-
distance:
€= — Qi | (3)

where t = 1,2,..., M’ — 1. We regard this inform-
ation relevant to a “temporal signature” of a face
class in a given spatio-temporal context.

Fig. 8: An Elman recurrent neural net for learning tem-
poral signatures.

Second, we train a set of Elman networks to
learn possible temporal signatures of a set of face
classes (see Fig. 8). Each Elman net is trained to
learn any temporal signatures of one face class and
it has 20 inputs and 20 outputs. The input and
output patterns are the face image pattern vectors
and each temporal face subspace is represented by
the first 20 eigenfaces.

In the following, we describe one of our experi-
ments in order to highlight the computational pro-
cedures involved. In this experiment, we take 30
face sequences of 5 image frames for each of 3 differ-
ent individuals, “John”, “Pascal” and “Katerina”.
We represent each image by a pattern vector for the
first 20 eigenfaces and train 3 Elman networks (20
inputs, 30 hidden, 30 context and 20 outputs). The

networks were trained after 6000 epochs and were
used to test the the following task: “Recognising
John”. We use Model-John, Model-Pascal and
Model-Katerina to refer to the Elman nets for the
face classes. We then take a new face sequence of
John (Sequence-John) and compute 3 pattern vec-
tor sequences by projecting the frames of Sequence-
John to the 3 face class subspaces represented by
the three models. Each pattern vector sequence is
then applied to the Elman network associated with
the corresponding subspace and the Euclidian dis-
tance between successive outputs (predictions) of
the Elman network is computed as shown in Fig. 9.
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Fig. 9: The temporal-Fuclidian-distance between suc-
cessive pattern vectors that belong to Sequence-John and
the temporal-Euclidian-distance between the predictions
of Model-John, Model-Pascal and Model-Katerina re-
spectively.

It is clear that the temporal-Euclidian-distance
of Sequence-John is “much closer” to the temporal-
Euclidian-distance predicted by Model-John. In
other words, the temporal gradients of the pair of
temporal-Euclidian-distance lines on the left hand
side of Fig. 9, which are respectively for Sequence-
John (e4) and Model-John (e,,), have similar val-
ues, i.e.
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This suggests that the rate of temporal change in
the pattern vectors of face sequences in a given
context could be used as a measure of temporal
signature for a dynamic face. Similar results were
obtained from 5 other test sequences of different
face classes.

5. Conclusion

In the first part of this paper we exploit different
data representations for predicting trajectories with
generalised “8” shape using partially recurrent net-
works. Fig. 3 gives comparative results from co-
ordinate, continuous and quantised curvature rep-
resentations. The experiments show that although
a network trained with coordinate representation
can generalise well in predicting trajectories of ran-
dom position and size, it can not predict accur-
ately sharp changes in curvature along a traject-
ory. Better results are obtained by using either



the continuous or quantised curvature representa-
tion. Training an Elman network with the quant-
ised curvature representation was able (1) to gen-
eralise well by recovering fast from sharp curvature
change, (2) to provide a good qualitative prediction
and overall (3) to outperform a network trained
with continuous representation. However, this may
be the result of the coarse representation of the tra-
jectories we used here. Further experiments using
trajectories of different length and more frequent
sampling are required to establish a better quantit-
ative understanding of the difference between these
two schemes. The second part of this paper ad-
dresses the scale and orientation problem in the
eigenface approach to face recognition. We studied
a novel approach that exploits temporal correlation
and invariance among face images in order to recog-
nise face appearances of large viewpoint difference.
With our preliminary experiment, we illustrated
how to use contextual constraints in data registra-
tion and association in face recognition. Instead of
recognising a single face “snapshot”, a temporal se-
quence of a moving face is used to selectively cluster
face space according to time and space and register
a “dynamic” face where possible temporal invari-
ance of a moving face in a given spatio-temporal
context can be learnt and extracted as a form of
“temporal signature” in recognition. More extens-
ive and systematic experiments will be undertaken
shortly to provide a quantitative measure of this
approach.
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