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Abstract

In a Local Binary Pattern (LBP) representation, circular point features are
taken in their entirety as predicates and restricted to uniform patterns with
limited scales of small numbers of features in order to avoidlarge bin com-
plexity. Such a design cannot fully exploit the discriminative capacity of
the features available. To address the problem, this paper proposes (1) a
pairwise-coupled reformulation of LBP-type classification which involves
selecting single-point features for each pair of classes across multiple scales
to form compact, contextually-relevant multiscale predicates known as Mul-
tiscale Selected Local Binary Features (MSLBF), and (2) a novel binary fea-
ture selection procedure, known as Binary Histogram Intersection Minimisa-
tion (BHIM) designed to choose features with minimal redundancy. Exper-
iments show the advantages of MSLBF over traditional LBP representation
and of BHIM over feature selection schemes such as AdaBoost.

1 Introduction

Local binary patterns (LBPs) have been used extensively fortexture discrimination [6, 8],
demonstrating excellent results and good robustness against rotation and global illumi-
nation changes. They have also been used successfully for texture segmentation [9] and
recognition of facial identity [1] and expression [2, 11]. Currently, most LBP formula-
tions involve the use of “uniform” patterns, which have beenexperimentally observed to
correlate well with real-world structures [8]. These circular pattern features are collected
from fixed circular neighbourhoods, each containing a relatively small number of interpo-
lated samples. However, suchN-bit “uniform” patterns restrict the domain of attention to
the corresponding subspaces of theN-dimensional binary densities formed from the fixed
circular neighbourhoods.

Uniform patterns are extracted for each scale of a multipredicate LBP operator [6] and
the corresponding reduced-bin histograms appended together as a complete class descrip-
tor (with non-uniform patterns collected in a single bin). When combined with rotation
invariant transformations to reduce bin numbers further,LBPriu2

P,R provides very good clas-
sification results. However, this approach decouples the statistics between scales and
suffers from restrictions in the size of the feature pool. Treating all predicates jointly
would be computationally intractable as well as requiring infeasibly large training sets for
reliable estimation. Additionally, the feature pools are often restricted to 3 scales with
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at most 24 samples. Some work has addressed these issues, such as improvements in
reducing complexity [6] and selection of most relevant complete patterns [11].

In this paper, an alternative and more effective method is proposed for generating
LBP-type predicates, known as Multiscale Selected Local Binary Features (MSLBF).
These MSLBF predicates are used in a pairwise-coupling [5] approach with multiple bi-
nary classifiers, one for each pair of classes, along with a scoring procedure to perform
multiclass discrimination. Each classifier is a joint density generated from individual bit
features selected from across scales in the training data. Different pairs of classes are
modelled with features specifically relevant to those pairs.

A feature selection method is required for creating MSLBF predicates. A novel fea-
ture selection algorithm called Binary Histogram Intersection Minimisation (BHIM) is
introduced. This is a relatively computationally inexpensive greedy feed-forward algo-
rithm which is shown to often find less redundant feature setsfrom two-class binary data
than two other fast algorithms. The selected features can beconverted to a decimal value
in the same way as circularly-arranged features in traditional LBP methods. Contrary
to previous approaches, MSLBF codes need not derive from spatially continuous binary
features. In principle, feature pools are generated in the same manner as for previous
LBP methods, along with the same rotation invariant mechanisms if required. MSLBF
classification and BHIM feature selection are presented in Section 2.

While training a model can take hours depending on the numberof classes, the classi-
fication process generally requires around a second per input image, even with hundreds
of model comparisons. Experiments are described in Section3 with a suite of the Ou-
tex database [7] for textures and the ORL face database [10] where a direct comparison
is made between a traditional LBP classifier and several MSLBF classifiers on the same
data. It is shown that MSLBF models generated from multipredicate sample data outper-
formed traditional LBP models with very few features per pair of classes.

Comparisons are also made between BHIM, Conditional MutualInformation Max-
imisation (CMIM) [3] and AdaBoost [4] for effectiveness in feature selection. CMIM
is designed to efficiently choose features which maximise their mutual information with
the class variable while minimising their redundancy. AdaBoost is a widely known and
developed method for generating strong classifiers by combining a set of weak learners
found through a process of dynamically weighting training samples at each step. It is
shown that BHIM was consistently more effective than these two alternatives in choosing
compact, minimally redundant feature sets from binary training data without prohibitive
computational expense. Conclusions are drawn in Section 4.

2 Multiscale Selected Local Binary Features

Multiscale Selected Local Binary Features (MSLBF) predicates are proposed as an im-
provement to traditional LBP models for LBP-type classification. Feature selection is
used to generate these predicates which comprise individual point features from across
multiple circular features at different scales. The selected features are treated as binary
strings and converted to decimal values to represent individual samples, as with previous
LBP methods. The resulting decimal histograms are used for classification by intersecting
them with input histograms. Rather than a single multiclassclassifier, there are multiple
binary classifiers, one for each pair of classes. Each class is scored for an input according
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to individual binary classifications. This form of reduction is known as “pairwise cou-
pling” [5]. Here, a simple approach is taken to combining classifier outputs by updating
the score of classes according to individual matches and assigning the input to the class
with the highest score.

2.1 Binary Histogram Intersection Minimisation

Binary Histogram Intersection Minimisation, when provided with two binary data sets,
attempts to findK bits from the total feature pool whose joint distributions for each
of the two models are strongly divergent. More precisely, given two datasetsP andQ
constructed from random variablesx f corresponding to binary features indexed byf ,
1≤ f ≤ F , the objective of the algorithm is to find a setB = {b1,b2, ...,bK} where the
bks are the indices of the selected features from the feature pool. Histogram intersec-
tion is employed in the scoring of features. These are only ever computed with two-bin
binary histograms and so the “histogram distance”{1−HI(p,q)} given normalised his-
tograms p and q for a binary featurex from datasetsP andQ is computed more simply as
|p(x = 1)−q(x = 1)|. Eachbk is selected as follows:

b1 = argmax
f

∣

∣p(x f = 1)−q(x f = 1)
∣

∣ (1)

bk+1 = argmax
f /∈B′

∑
x←{0,1}k

S(x,B′, f ) (2)

whereB′ = {b1,b2, ...,bk}, k < K is the partial set of features selected so far and

S(x,B′, f ) = p(xB′).q(xB′).
∣

∣p(x f = 1|xB′)−q(x f = 1|xB′)
∣

∣ (3)

The termsp(xB′) andq(xB′), wherexB′ = {xb1, ...,xbk}, are the joint probabilities of
occurrence of a specific instance of the binary vectorx over thek previously selected
features with indicesB′ = {b1,b2, ...,bk}, for classesP and Q respectively. Similarly,
the termsp(x f |xB′) and q(x f |xB′) are the normalised binary histograms for featurex f

conditional on the specific binary vectorx over the selected featuresB′.
At stepk +1 and for each featuref /∈ B′, the algorithm computes equation 2, the ex-

pectation of the histogram distance between the datasetsP andQ over the joint density for
feature setB′. This involves at most 2k values forx, although only values present in both
datasets need be included in the computation. Datasets containing features with strongly
separating statistics will generally have far fewer sharedvalues between them, requiring
less computation to find. The algorithm stops whenK features have been selected or no
value ofx has a positive probability for both models simultaneously,meaning their corre-
sponding joint binary histograms have zero intersection. Intuitively, this algorithm finds
features with maximally divergent two-bin binary densities when previously selected fea-
tures fail to discriminate. It should be noted that histogram distance may be replaced with
another measure, such as Kullback-Leibler distance.

2.2 MSLBF classification and computational cost

An MSLBF classifier is simply a list of pairs of histograms, each pair uniquely corre-
sponding to a specific two ofN classes. Consequently there are1

2N(N−1) binary clas-
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sifiers required for anN-class classification task. Each classifiercP,Q comprises a set of
K selected feature indicesBP,Q corresponding to their positions in the feature pool along
with two 2K-bin histograms corresponding to the joint densities overBP,Q, one for each of
the two classesP andQ. Given a set of training classesT1 to TN , the trainer cycles through
all possible combinations of pairs of classesTP andTQ, P 6= Q and calls the feature se-
lection algorithm with the samples for those classes to generateBP,Q. Adding classes is
straightforward and requiresN extra binary classifiers to be generated, one for each of the
N classes against the new class indexedN + 1. Each classn (1≤ n ≤ N) in an N-class
problem hasN−1 binary classifiers for comparing against each of the otherN−1 classes.

Classification of an input involves keeping a score for each of the N classes. Since
each combination of pairs of classes has a separate set of discriminative features, his-
tograms are assembled for each of the1

2N(N−1) binary classifierscP,Q given their cor-
responding features. Each pair-specific input histogram isintersected with the two pair-
specific model histograms. At this point, a scoring procedure is considered which involves
updating the score of the highest match, adding the intersection value itself. After all bi-
nary classifications are performed, the class with the highest score is assigned to the input.
Algorithm 1 provides pseudocode for the classification procedure.

With a Matlab implementation, classification of an input image for a 24-class texture
experiment shown in Section 3.1 (involving 276 binary classifiers) required only a frac-
tion of a second. Classification of an input for a forty-classface recognition task shown
in Section 3.2 involving 780 classifiers required just over asecond on average. The low
number of bits for each classifier helped to keep computationtime down both in terms
of histogram assembly and comparison. The computation timefor classifying an input is
linear with the number of classifiers although the number of classifiers increases quadrat-
ically with the number of classes.

for P=1 to N-1 do
for Q=P+1 to N do

r=genhist(I,B(P,Q))
s P=hist int(r,h(P,Q,P))
s Q=hist int(r,h(P,Q,Q))
if s P greater than s Q then

score(P)=score(P)+sP
end
if s Q greater than s P then

score(Q)=score(Q)+sQ
end

end
end
result=argmaxj (score(j)), j=1..N

Algorithm 1: The MSLBF classification procedure.gen hist(I,B(P,Q)) is a function return-
ing the histogram for input dataI given the featuresB(P,Q) specific to the pair of classes
P andQ. Thehist int(a,b) function computes the histogram intersection between two his-
togramsa andb. Theh(P,Q, j) function returns the histogram corresponding to classj, j = P
or j = Q, from the binary classifier pairing classesP andQ.
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3 Experiments

The BHIM algorithm was applied to generate MSLBF models for two different domains;
texture recognition and facial identity recognition. The aim of the experiments was to in-
vestigate the improvement that can be gained from modellingjointly across scales (pred-
icates) and the benefits of a larger feature pool for selecting more relevant features. Fur-
thermore, the BHIM, CMIM and AdaBoost algorithms were applied for comparison in
feature selection. A traditional LBP classifier was trainedon both the texture data and the
face data for comparison with MSLBF in classification.

3.1 Texture recognition

The MSLBF approach was applied to a suite of the Outex [7] database, specifically, Ou-
tex TC 00000. This data set comprises 24 texture classes across 480128× 128 pixel
images with 20 images per class. Samples are shown in Figure 1. An LBPriu2

8,1 +riu2
16,3 +riu2

24,5
classifier was trained on part of the data (with samples defined by problem no.25 in the
Outex00000 suite) along with three MSLBF classifiers, each with 8 features selected per
class-pair by a different selection algorithm. These MSLBFclassifiers were provided with
more training data by including predicates constructed from circular neighbourhoods at
1, 2.5, 4, 5.5, 7 and 8.5 pixel radii with 8, 16, 24, 32, 40 and 48samples respectively.
The samples were extracted using bilinear sampling. The MSLBF classifiers for this task
comprised 276 binary classifiers. The results here correspond to the application of the
four classifiers to a separate testing set comprising the images not used in training.

Figure 1: Examples from the Outex00000 texture suite.

The minimum number of features required (between 1 and 8) forthe best score ob-
tained for each class was recorded. Table 1 provides the overall best scores across all
classes along with the number of features required to achieve those scores, averaged
over all classes. It can be seen that all three MSLBF classifiers outperformed the vanilla
combined-predicate LBP. Only the MSLBF+BHIM combination achieved a perfect score
and with a lower number of average features required per class. The highest number of
features required for BHIM was 4 (class “carpet009”), 5 for CMIM and 6 for AdaBoost.
Consequently the MSLBF+BHIM combination constituted a more compact and effective
discriminative model than the other combinations. To compare the relative strength of
the four classifiers, average histogram distances for each class was computed. Figure 2
plots discriminative strengths of BHIM, CMIM and AdaBoost which shows consistently
superior model separation for BHIM generated models.

3.2 Face recognition

A more challenging problem of face recognition given face images captured under large
variations in lighting and 3D pose was also considered. The ORL face database [10] was
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Classifier Success (%) Mean no. features
LBPriu2

8,1 +riu2
16,3 +riu2

24,5 95.4 -
MSLBF+BHIM 100 1.625
MSLBF+CMIM 99.6 1.958

MSLBF+AdaBoost 99.6 2

Table 1: Overall success rate of the four classifiers with Outex 00000 along with the av-
erage number of features needed to gain the best scores. The LBP classifier is constructed
from smaller sample areas than the MSLBF.
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Figure 2: Average histogram separation per class for LBP andMSLBF models gener-
ated by BHIM, CMIM and AdaBoost. The mean histogram distancefor each class for
Outex00000 is plotted. MSLBF+BHIM has significantly larger between-class distances.

employed for comparing the MSLBF approach to standard multipredicateLBPu2
8,1 +u2

16,3

+u2
24,5. This is a relatively small database comprising 400 unregistered images of 40 peo-

ple with 10 samples for each person. The samples are greyscale and sized at 92×112
pixels. They contain large within-class variance in lighting, pose and appearance due to
the presence/absence of glasses/facial hair and differenttimes of capture (see Figure 3).

Figure 3: Examples from the ORL face database demonstratingwithin-class variations of
appearance, lighting and/or pose.

The data was split up with five samples per person used for training (even indices)
and the other five used for testing (odd indices). LBP has beenpreviously applied using
a windowed approach [1] to model different facial regions separately with good results.
Although modelling different facial regions separately and weighting them according to
importance was shown to demonstrate better classification [11], here the faces were mod-
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Figure 4: Average histogram separation for LBP and MSLBF models for the ORL face
database. BHIM, CMIM and AdaBoost were compared for selecting features for MSLBF
models. As with textures, the BHIM features show larger histogram distances.

elled globally to make the problem more generic (independent of ad-hoc region segmen-
tation) and to gauge the benefit of the pairwise-coupled MSLBF approach. The same
sample sizes were used for both an LBP and three MSLBF classifiers, again trained with
BHIM, CMIM and AdaBoost for up to 8 features, with predicatesin the training data be-
ing formed at 1, 3 and 5 pixel radii with 8, 16 and 24 samples respectively. Table 2 shows
the overall results averaged over classes. The MSLBF combinations outperformed the
vanilla LBP classifier with the MSLBF+BHIM combination proving the best. Figure 4
demonstrates the mean histogram distances for each face class for LBP and the three
MSLBF classifiers as combined with BHIM, CMIM and AdaBoost. As with textures,
MSLBF+BHIM shows better histogram distances.

Classifier Success (%) Average bits
LBPu2

8,1 +u2
16,3 +u2

24,5 87 -
MSLBF+BHIM 93 3.9
MSLBF+CMIM 87.5 4.2

MSLBF+AdaBoost 91 3.9

Table 2: Overall success rate of the four classifiers with theORL database along with
the average number of bits needed to gain the best scores. TheMSLBF classifiers were
constructed from the same sample regions as the LBP classifier.

3.3 Comparison of feature selection methods

Figure 4 showed the MSLBF+AdaBoost combination to be close to MSLBF+BHIM. In
order to further examine the effectiveness of feature selection with these combinations,
additional experiments (with ground truth) were designed to compare an efficient imple-
mentation of BHIM with CMIM and AdaBoost on binary feature selection tasks. CMIM
(Conditional Mutual Information Maximisation) [3] is a filter that employs information
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theory in a rigorous manner to select features correlated with class labels with minimal
redundancy amongst themselves. Ideally, the best set ofK features{b1,b2, ...,bK} given
training data are those that minimise the conditional entropy H(Y |Xb1,Xb2, ...,XbK ) where
Y is the random variable corresponding to class labels. The experiments here made use of
a Matlab implementation of the fast CMIM algorithm. Also implemented for testing was
a very efficient binary AdaBoost algorithm based on [4].

For the objective of this experiment, synthetic datasets were created with each binary
feature drawn from a flat density. 12 features were randomly selected and a 212-bin his-
togram randomly generated for the joint density for each class. The densities for each
class were overlapped to random degrees so that a set of jointvalues had a positive prob-
ability for both classes. Samples were drawn from these densities and the corresponding
12-bit binary strings placed into the data at the selected positions as samples. These
embedded structures provided a target set of strong features among random ones for al-
gorithms to find. Three factors were examined; (1) the “quality” of features selected,
measured by the conditional entropy of the class variable given the selected features, (2)
the percentage of features selected that matched the features randomly embedded and
(3) computation time for selection. Each of these three factors were plotted against: (a)
feature pool size varying between 100 and 800, (b) number of training samples ranging
between 10000 and 80000 and (c) number of features an algorithm was required to select
from 2 to 12. Each parameter configuration was applied to 50 randomly generated pairs
of densities with random structure and the results averaged.

Figure 5 shows the results. Columns correspond to differentmeasures and rows to
different parameter changes. From the first row, it can be seen that BHIM outperformed
both CMIM and AdaBoost across varying feature pool sizes. The entropies for BHIM
correlated closely with the embedded entropies and the features selected were strongly
(and often perfectly) correlated with the features that were randomly embedded. CMIM
and AdaBoost are comparable but selected significantly lower quality features compared
to BHIM. In terms of computation time, all three algorithms are linear in the size of the
feature pool. The middle row of Figure 5 plots performance against varying training-
set sizes. The figure demonstrates the same trends as with varying feature pools. The
bottom row plots performance against increasing numbers offeatures to select. While en-
tropies and embedded feature selection showed similar trends for all three algorithms as
for varying feature pools and training-set sizes, BHIM showed a weakness in its exponen-
tial increase in computation time with the number of features to select. This is because the
main loop in BHIM involves comparing features against all values shared between two
data sets given the previously selected features. The maximum possible number of shared
values is equal to 2k wherek is the number of previously selected features. However, the
limited size of training sets restricts the number of features that can be considered reliably
when calculating expected histogram distances, resultingeventually in a linearisation of
computation time. The “window” of the expectation calculation w, involving only at most
thew previously selected features, may be estimated asw = log2

T
v , wherev is the desired

minimum average number of samples per shared value andT is the number of samples
in the training set for a class. For a binary histogram, assuming ten samples per bin for a
representative sample,v may be set to 20.
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Figure 5: Compare BHIM, CMIM and AdaBoost. The columns (leftto right) correspond
to average remaining entropy, average correlation of selected features with embedded
features and time to compute features. The rows (top to bottom) correspond to varying
feature pool size, number of training samples and number of features to select.

4 Conclusions

The contributions of this paper were twofold. Firstly, a newLBP-type model was intro-
duced known as Multiscale Selected Local Binary Features (MSLBF). These are compact
predicates that model jointly across scales and are generated through the use of feature
selection to select strong single-point features from multiple circular feature pools. A
pairwise-coupling classification approach is taken to enable greater specificity in selected
features and simplify the feature selection process. Selecting individual pixel features
rather than taking combined spatially contiguous groups offeatures with possible re-
dundancy enables more compact and descriptive models. Importantly, it permits circu-
lar feature pools at any scale and angular resolution to be incorporated into the training
data. The experiments illustrated that MSLBF combined witha feature selection algo-
rithm enabled models with greater discriminative power to be constructed. Secondly, a
novel feature selection algorithm was described known as Binary Histogram Intersection
Minimisation. This algorithm selects a typically small number of features with strong dis-
criminative power and minimal redundancy. It is relativelycomputationally inexpensive
and in these experiments consistently demonstrated its ability to select stronger features
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than either CMIM or AdaBoost in terms of a concrete information theoretical measure.
The algorithm expends variable computational resources depending on the strength of
the data available (stronger features require less computation to find) and has limits on
the exponential nature of reliable expectation estimates at each step, enabling linearity
of computation time in the long term. A major reason for the overall efficiency of the
algorithm is that the computationally cheap two-bin histogram intersection is all that is
required and entropy calculations are unecessary.

There are two main drawbacks to the pairwise-coupled approach. Firstly, stable results
required the same number of features to be used for all classes despite the varying numbers
of features required for a given error per class. Secondly, the complete separation between
the training of individual binary classifiers does not preclude the possibility of histograms
for two classes being similar despite being constructed from completely different features.
This can lead to a degradation in performance and effectively dilute the potency of the
features originally selected.
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