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Abstract

In a Local Binary Pattern (LBP) representation, circulampdeatures are
taken in their entirety as predicates and restricted tooumifpatterns with
limited scales of small numbers of features in order to alaige bin com-

plexity. Such a design cannot fully exploit the discriminatcapacity of

the features available. To address the problem, this papgopes (1) a
pairwise-coupled reformulation of LBP-type classificatizvhich involves

selecting single-point features for each pair of classessaanultiple scales
to form compact, contextually-relevant multiscale pretiés known as Mul-
tiscale Selected Local Binary Features (MSLBF), and (2)\&ehoinary fea-

ture selection procedure, known as Binary Histogram letdrgsn Minimisa-

tion (BHIM) designed to choose features with minimal redamdy. Exper-
iments show the advantages of MSLBF over traditional LBRasgntation
and of BHIM over feature selection schemes such as AdaBoost.

1 Introduction

Local binary patterns (LBPs) have been used extensivekgfture discrimination [6, 8],
demonstrating excellent results and good robustness sigaitation and global illumi-
nation changes. They have also been used successfullyfardesegmentation [9] and
recognition of facial identity [1] and expression [2, 11]ur@ntly, most LBP formula-
tions involve the use of “uniform” patterns, which have begperimentally observed to
correlate well with real-world structures [8]. These clempattern features are collected
from fixed circular neighbourhoods, each containing a ket small number of interpo-
lated samples. However, subhbit “uniform” patterns restrict the domain of attention to
the corresponding subspaces of fheimensional binary densities formed from the fixed
circular neighbourhoods.

Uniform patterns are extracted for each scale of a multipetel LBP operator [6] and
the corresponding reduced-bin histograms appended tgedla complete class descrip-
tor (with non-uniform patterns collected in a single bin) h#vi combined with rotation
invariant transformations to reduce bin numbers 1‘urthBF,’,£jHe2 provides very good clas-
sification results. However, this approach decouples thissts between scales and
suffers from restrictions in the size of the feature pooleafing all predicates jointly
would be computationally intractable as well as requirimfg@asibly large training sets for
reliable estimation. Additionally, the feature pools afeep restricted to 3 scales with
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at most 24 samples. Some work has addressed these issuegissimprovements in
reducing complexity [6] and selection of most relevant ctatgpatterns [11].

In this paper, an alternative and more effective method ep@sed for generating
LBP-type predicates, known as Multiscale Selected LocaaBi Features (MSLBF).
These MSLBF predicates are used in a pairwise-couplinggpt@ach with multiple bi-
nary classifiers, one for each pair of classes, along wittoersg procedure to perform
multiclass discrimination. Each classifier is a joint dgngienerated from individual bit
features selected from across scales in the training daifferéht pairs of classes are
modelled with features specifically relevant to those pairs

A feature selection method is required for creating MSLBé&dicates. A novel fea-
ture selection algorithm called Binary Histogram Intetgec Minimisation (BHIM) is
introduced. This is a relatively computationally inexpeagreedy feed-forward algo-
rithm which is shown to often find less redundant feature fseta two-class binary data
than two other fast algorithms. The selected features caieerted to a decimal value
in the same way as circularly-arranged features in tratifi@ BP methods. Contrary
to previous approaches, MSLBF codes need not derive frotmafipaontinuous binary
features. In principle, feature pools are generated in #i}mesmanner as for previous
LBP methods, along with the same rotation invariant medmasiif required. MSLBF
classification and BHIM feature selection are presentecktiGn 2.

While training a model can take hours depending on the nuwifidasses, the classi-
fication process generally requires around a second petiimage, even with hundreds
of model comparisons. Experiments are described in Se8tiwith a suite of the Ou-
tex database [7] for textures and the ORL face database [€tera direct comparison
is made between a traditional LBP classifier and several MStlBssifiers on the same
data. It is shown that MSLBF models generated from multijmasteé sample data outper-
formed traditional LBP models with very few features per pdiclasses.

Comparisons are also made between BHIM, Conditional Mutfakrmation Max-
imisation (CMIM) [3] and AdaBoost [4] for effectiveness iedture selection. CMIM
is designed to efficiently choose features which maximisé timutual information with
the class variable while minimising their redundancy. Ada& is a widely known and
developed method for generating strong classifiers by coimjpia set of weak learners
found through a process of dynamically weighting trainiagnples at each step. It is
shown that BHIM was consistently more effective than thesealternatives in choosing
compact, minimally redundant feature sets from binanntrej data without prohibitive
computational expense. Conclusions are drawn in Section 4.

2 Multiscale Selected Local Binary Features

Multiscale Selected Local Binary Features (MSLBF) pretdisaare proposed as an im-
provement to traditional LBP models for LBP-type classiima. Feature selection is
used to generate these predicates which comprise indiviirat features from across
multiple circular features at different scales. The sel@deatures are treated as binary
strings and converted to decimal values to represent ihalalisamples, as with previous
LBP methods. The resulting decimal histograms are useddssification by intersecting
them with input histograms. Rather than a single multictdassifier, there are multiple
binary classifiers, one for each pair of classes. Each dasred for an input according



to individual binary classifications. This form of reducties known as “pairwise cou-
pling” [5]. Here, a simple approach is taken to combiningslfier outputs by updating
the score of classes according to individual matches andraisg the input to the class
with the highest score.

2.1 Binary Histogram Intersection Minimisation

Binary Histogram Intersection Minimisation, when prowideith two binary data sets,
attempts to findK bits from the total feature pool whose joint distributiors £ach
of the two models are strongly divergent. More preciselyegitwo dataset® andQ
constructed from random variablas corresponding to binary features indexed hy
1 < f <F, the objective of the algorithm is to find a #&t= {bs,by,...,bx } where the
bys are the indices of the selected features from the featusk pdistogram intersec-
tion is employed in the scoring of features. These are ondy esmputed with two-bin
binary histograms and so the “histogram distange™ HI(p,q)} given normalised his-
tograms p and g for a binary featurérom dataset® andQ is computed more simply as
|p(x=1) —q(x=1)|. Eachby is selected as follows:

by = argmax |p(x¢ =1)—q(x; = 1) @
f

1= argmex Y S(x,Bf) @)
f¢B  x—{0,1}K

whereB’ = {by, by, ..., by}, k < K is the partial set of features selected so far and

S(x, B, f) = p(xg)-a(Xe')- | P(xt = 1|xg/) — a(x; = 1|xg/)| 3

The termsp(xg/) andq(xg’), Wherexg = {Xy,, ..., Xq, }, are the joint probabilities of
occurrence of a specific instance of the binary vegtawver thek previously selected
features with indice® = {by,by,...,bx}, for classesP and Q respectively. Similarly,
the termsp(Xt|Xg) and q(xs|xg) are the normalised binary histograms for featyre
conditional on the specific binary vectoover the selected featurgs

At stepk+ 1 and for each featuré ¢ B', the algorithm computes equation 2, the ex-
pectation of the histogram distance between the datRsetdQ over the joint density for
feature seB'. This involves at most!values forx, although only values present in both
datasets need be included in the computation. Datasetsicon features with strongly
separating statistics will generally have far fewer shatades between them, requiring
less computation to find. The algorithm stops witefeatures have been selected or no
value ofx has a positive probability for both models simultaneouskganing their corre-
sponding joint binary histograms have zero intersectiotuitively, this algorithm finds
features with maximally divergent two-bin binary denstieghen previously selected fea-
tures fail to discriminate. It should be noted that histogdistance may be replaced with
another measure, such as Kullback-Leibler distance.

2.2 MSLBEF classification and computational cost

An MSLBF classifier is simply a list of pairs of histogramschgair uniquely corre-
sponding to a specific two & classes. Consequently there ém(N —1) binary clas-



sifiers required for aiN-class classification task. Each classifigy comprises a set of

K selected feature indic&pq corresponding to their positions in the feature pool along
with two 2X-bin histograms corresponding to the joint densities @¢ey, one for each of

the two classeB andQ. Given a set of training class&sto Ty, the trainer cycles through

all possible combinations of pairs of clasSgsandTg, P # Q and calls the feature se-
lection algorithm with the samples for those classes to ggeBpq. Adding classes is
straightforward and requird¢ extra binary classifiers to be generated, one for each of the
N classes against the new class indeked 1. Each clas® (1 < n < N) in anN-class
problem ha®N — 1 binary classifiers for comparing against each of the dthed classes.

Classification of an input involves keeping a score for edctheN classes. Since
each combination of pairs of classes has a separate setooimdizative features, his-
tograms are assembled for each of gﬁe(N — 1) binary classifiergpg given their cor-
responding features. Each pair-specific input histograimtégsected with the two pair-
specific model histograms. At this point, a scoring procedsiconsidered which involves
updating the score of the highest match, adding the intéoseealue itself. After all bi-
nary classifications are performed, the class with the lsiggeore is assigned to the input.
Algorithm 1 provides pseudocode for the classification pthoe.

With a Matlab implementation, classification of an input gedor a 24-class texture
experiment shown in Section 3.1 (involving 276 binary diéess) required only a frac-
tion of a second. Classification of an input for a forty-cléesse recognition task shown
in Section 3.2 involving 780 classifiers required just oveeaond on average. The low
number of bits for each classifier helped to keep computdiina down both in terms
of histogram assembly and comparison. The computationfiimeassifying an input is
linear with the number of classifiers although the numbetadsifiers increases quadrat-
ically with the number of classes.

for P=1to N-1do

for Q=P+1to N do

r=genhist(l,B(P,Q))

s_P=histint(r,h(P,Q,P))

s_Q=histint(r,h(P,Q,Q))

if s_P greater than s_Q then
| score(P)=score(P)#3

end

if s.Q greater than s_P then

| score(Q)=score(Q)+®

end
end

end

result=argmaxj (score(j)), j=1..N
Algorithm 1. The MSLBF classification procedurgen_hist(l,B(P,Q)) is a function return-
ing the histogram for input datagiven the feature8(P,Q) specific to the pair of classes
P andQ. Thehist_int(a,b) function computes the histogram intersection between two h
togramsa andb. Theh(P,Q, j) function returns the histogram corresponding to ciags= P
or j = Q, from the binary classifier pairing classesndQ.




3 Experiments

The BHIM algorithm was applied to generate MSLBF models ¥ay tifferent domains;
texture recognition and facial identity recognition. The &f the experiments was to in-
vestigate the improvement that can be gained from modgbiingly across scales (pred-
icates) and the benefits of a larger feature pool for selgctiare relevant features. Fur-
thermore, the BHIM, CMIM and AdaBoost algorithms were apglfor comparison in
feature selection. A traditional LBP classifier was traioedoth the texture data and the
face data for comparison with MSLBF in classification.

3.1 Texture recognition

The MSLBF approach was applied to a suite of the Outex [7]lete, specifically, Ou-
tex. TC_00000. This data set comprises 24 texture classes acros$24830128 pixel
images with 20 images per class. Samples are shown in Figuve IBP§}? 2 42
classifier was trained on part of the data (with samples defiyeproblem no.25 in the
Outex 00000 suite) along with three MSLBF classifiers, each withadires selected per
class-pair by a different selection algorithm. These MSIcBissifiers were provided with
more training data by including predicates constructechfoircular neighbourhoods at
1, 2.5, 4,5.5, 7 and 8.5 pixel radii with 8, 16, 24, 32, 40 andsdBiples respectively.
The samples were extracted using bilinear sampling. The BFStlassifiers for this task
comprised 276 binary classifiers. The results here correspmthe application of the
four classifiers to a separate testing set comprising thgesaot used in training.

Figure 1: Examples from the Out&0000 texture suite.

The minimum number of features required (between 1 and 8hfobest score ob-
tained for each class was recorded. Table 1 provides thelbbwast scores across all
classes along with the number of features required to aeHisvse scores, averaged
over all classes. It can be seen that all three MSLBF classifietperformed the vanilla
combined-predicate LBP. Only the MSLBF+BHIM combinatiarheeved a perfect score
and with a lower number of average features required pes.cliilse highest number of
features required for BHIM was 4 (class “carpet009”), 5 fddl and 6 for AdaBoost.
Consequently the MSLBF+BHIM combination constituted a exo@mpact and effective
discriminative model than the other combinations. To comphe relative strength of
the four classifiers, average histogram distances for elasl evas computed. Figure 2
plots discriminative strengths of BHIM, CMIM and AdaBooshiesh shows consistently
superior model separation for BHIM generated models.

3.2 Face recognition

A more challenging problem of face recognition given facag®es captured under large
variations in lighting and 3D pose was also considered. TRe @ce database [10] was



Classifier Success (%)  Mean no. features
LBPRy'SZ +1¥2 +742 95.4 -
MS.BF+BHIM 100 1.625
MSLBF+CMIM 99.6 1.958
MSLBF+AdaBoost 99.6 2

Table 1: Overall success rate of the four classifiers withe®00000 along with the av-
erage number of features needed to gain the best scores Brhelassifier is constructed
from smaller samble areas than the MSLBF.
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Figure 2: Average histogram separation per class for LBPMS8U4BF models gener-
ated by BHIM, CMIM and AdaBoost. The mean histogram distafoceeach class for
Outex 00000 is plotted. MSLBF+BHIM has significantly larger betmeclass distances.

employed for comparing the MSLBF approach to standard pmltﬂicatel_BngL +42. 4
+5§75. This is a relatively small database comprising 400 unteggsl images of 40 peo-
ple with 10 samples for each person. The samples are greyaodlsized at 92 112
pixels. They contain large within-class variance in liglti pose and appearance due to
the presence/absence of glasses/facial hair and difféinees of capture (see Figure 3).

Figure 3: Examples from the ORL face database demonstnatthin-class variations of
appearance, lighting and/or pose.

The data was split up with five samples per person used faritiaieven indices)
and the other five used for testing (odd indices). LBP has peeviously applied using
a windowed approach [1] to model different facial regiongesately with good results.
Although modelling different facial regions separatelylameighting them according to
importance was shown to demonstrate better classificatitjnfiere the faces were mod-
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Figure 4: Average histogram separation for LBP and MSLBF ef®ébr the ORL face
database. BHIM, CMIM and AdaBoost were compared for seigdeatures for MSLBF
models. As with textures, the BHIM features show largerdgsam distances.

elled globally to make the problem more generic (indepehdead-hoc region segmen-
tation) and to gauge the benefit of the pairwise-coupled MSkaBproach. The same
sample sizes were used for both an LBP and three MSLBF clssifigain trained with
BHIM, CMIM and AdaBoost for up to 8 features, with predicateshe training data be-
ing formed at 1, 3 and 5 pixel radii with 8, 16 and 24 samplepaesvely. Table 2 shows
the overall results averaged over classes. The MSLBF catibirts outperformed the
vanilla LBP classifier with the MSLBF+BHIM combination prioyg the best. Figure 4
demonstrates the mean histogram distances for each fez folaLBP and the three
MSLBF classifiers as combined with BHIM, CMIM and AdaBoosts #ith textures,
MSLBF+BHIM shows better histogram distances.

Classifier Success (%)  Average bits
LBPY +135 +51s 87 -
MSLBF+BHIM 93 3.9
MSLBF+CMIM 87.5 4.2
MSLBF +AdaBoost 91 3.9

Table 2: Overall success rate of the four classifiers with@RL database along with
the average number of bits needed to gain the best scoredM$hBF classifiers were
constructed from the same sample regions as the LBP classifie

3.3 Comparison of feature selection methods

Figure 4 showed the MSLBF+AdaBoost combination to be clodd$LBF+BHIM. In
order to further examine the effectiveness of feature seleevith these combinations,
additional experiments (with ground truth) were desigreedampare an efficient imple-
mentation of BHIM with CMIM and AdaBoost on binary featurdesgion tasks. CMIM
(Conditional Mutual Information Maximisation) [3] is a #t that employs information



theory in a rigorous manner to select features correlatéld elass labels with minimal
redundancy amongst themselves. Ideally, the best détfedtures{by,by,....bk } given
training data are those that minimise the conditional gaytid(Y | Xy, , Xp, , ..., Xp, ) Where

Y is the random variable corresponding to class labels. Therarents here made use of
a Matlab implementation of the fast CMIM algorithm. Also ilamented for testing was
a very efficient binary AdaBoost algorithm based on [4].

For the objective of this experiment, synthetic dataseteweeated with each binary
feature drawn from a flat density. 12 features were randogriscted and a'2-bin his-
togram randomly generated for the joint density for eack<larhe densities for each
class were overlapped to random degrees so that a set ofgdirgs had a positive prob-
ability for both classes. Samples were drawn from theseitienand the corresponding
12-bit binary strings placed into the data at the selectesitipas as samples. These
embedded structures provided a target set of strong feaimeng random ones for al-
gorithms to find. Three factors were examined; (1) the “dqyaldf features selected,
measured by the conditional entropy of the class variaergihe selected features, (2)
the percentage of features selected that matched the deatamdomly embedded and
(3) computation time for selection. Each of these threeofacvere plotted against: (a)
feature pool size varying between 100 and 800, (b) numberaofihg samples ranging
between 10000 and 80000 and (c) number of features an &gontas required to select
from 2 to 12. Each parameter configuration was applied to B8amly generated pairs
of densities with random structure and the results averaged

Figure 5 shows the results. Columns correspond to differexdsures and rows to
different parameter changes. From the first row, it can be te BHIM outperformed
both CMIM and AdaBoost across varying feature pool sizese @htropies for BHIM
correlated closely with the embedded entropies and therdesselected were strongly
(and often perfectly) correlated with the features thatereandomly embedded. CMIM
and AdaBoost are comparable but selected significantlyriowelity features compared
to BHIM. In terms of computation time, all three algorithnre dinear in the size of the
feature pool. The middle row of Figure 5 plots performancaifst varying training-
set sizes. The figure demonstrates the same trends as wjhg/éeature pools. The
bottom row plots performance against increasing numbeiesatfires to select. While en-
tropies and embedded feature selection showed similadgriem all three algorithms as
for varying feature pools and training-set sizes, BHIM shdw weakness in its exponen-
tial increase in computation time with the number of feaduceselect. This is because the
main loop in BHIM involves comparing features against alues shared between two
data sets given the previously selected features. The nuaxipossible number of shared
values is equal to'2wherek is the number of previously selected features. However, the
limited size of training sets restricts the number of feasithat can be considered reliably
when calculating expected histogram distances, resudtnegtually in a linearisation of
computation time. The “window” of the expectation calcidatw, involving only at most
thew previously selected features, may be estimated-ad ogz%, wherev is the desired
minimum average number of samples per shared valuelrasdhe number of samples
in the training set for a class. For a binary histogram, agsgiten samples per bin for a
representative samplemay be set to 20.
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Figure 5: Compare BHIM, CMIM and AdaBoost. The columns (teftight) correspond
to average remaining entropy, average correlation of smlefeatures with embedded
features and time to compute features. The rows (top to mdtb@rrespond to varying
feature pool size, number of training samples and numbezaififes to select.

4 Conclusions

The contributions of this paper were twofold. Firstly, a neP-type model was intro-

duced known as Multiscale Selected Local Binary FeatureésL(BF). These are compact
predicates that model jointly across scales and are genkttatough the use of feature
selection to select strong single-point features from iplaltcircular feature pools. A

pairwise-coupling classification approach is taken to émngieater specificity in selected
features and simplify the feature selection process. 8etetndividual pixel features

rather than taking combined spatially contiguous groupfeafures with possible re-
dundancy enables more compact and descriptive models. riamply, it permits circu-

lar feature pools at any scale and angular resolution to ¢t@rprorated into the training
data. The experiments illustrated that MSLBF combined \aifieature selection algo-
rithm enabled models with greater discriminative power eéccbnstructed. Secondly, a
novel feature selection algorithm was described known aafgiHistogram Intersection
Minimisation. This algorithm selects a typically small nioen of features with strong dis-
criminative power and minimal redundancy. It is relativegmputationally inexpensive
and in these experiments consistently demonstrated ilisyabi select stronger features
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than either CMIM or AdaBoost in terms of a concrete inforratiheoretical measure.
The algorithm expends variable computational resourcesemiting on the strength of
the data available (stronger features require less coriput find) and has limits on
the exponential nature of reliable expectation estimatesaeh step, enabling linearity
of computation time in the long term. A major reason for therall efficiency of the
algorithm is that the computationally cheap two-bin histog intersection is all that is
required and entropy calculations are unecessary.

There are two main drawbacks to the pairwise-coupled apprdarstly, stable results
required the same number of features to be used for all daespite the varying numbers
of features required for a given error per class. Secortiycomplete separation between
the training of individual binary classifiers does not puoeld the possibility of histograms
for two classes being similar despite being constructed rompletely different features.
This can lead to a degradation in performance and effegtididite the potency of the
features originally selected.
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