
Chapter 20
Scalable Multi-camera Tracking in a Metropolis
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Abstract The majority of work in person re-identification is focused primarily on
the matching process at an algorithmic level, from identifying reliable features to
formulating effective classifiers and distance metrics in order to improve matching
scores on established ‘closed-world’ benchmark datasets of limited scope and size.
Very little work has explored the pragmatic and ultimately challenging question
of how to engineer working systems that best leverage the strengths and tolerate
the weaknesses of the current state of the art in re-identification techniques, and
which are capable of scaling to ‘open-world’ operational requirements in a large
urban environment. In this work, we present the design rationale, implementational
considerations and quantitative evaluation of a retrospective forensic tool known as
Multi-Camera Tracking (MCT). The MCT system was developed for re-identifying
and back-tracking individuals within huge quantities of open-world CCTV video
data sourced from a large distributed multi-camera network encompassing different
public transport hubs in a metropolis. There are three key characteristics of MCT,
associativity, capacity and accessibility, that underpin its scalability to spatially large,
temporally diverse, highly crowded and topologically complex urban environments
with transport links.We discuss amultitude of functional features that in combination
address these characteristics. We consider computer vision techniques and machine
learning algorithms, including relative feature ranking for inter-camera matching,
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global (crowd-level) and local (person-specific) space–time profiling, attribute re-
ranking and machine-guided data mining using a ‘man-in-the-loop’ interactive par-
adigm. We also discuss implementational considerations designed to facilitate linear
scalability to an aribitrary number of cameras by employing a distributed computing
architecture. We conduct quantitative trials to illustrate the potential of theMCT sys-
tem and its performance characteristics in coping with very large-scale open-world
multi-camera data covering crowded transport hubs in a metropolis.

20.1 Introduction

Human investigators tasked with the forensic analysis of video from multi-camera
CCTV networks face many challenges, including (1) data overload from large num-
bers of cameras, (2) a short attention span leading to important events and targets
beingmissed, (3) a lack of contextual knowledge indicating what to look for and (4) a
lack of or inability to utilise complementary non-visual sources of knowledge to assist
the search process. Consequently, there is a distinct need for technology to alleviate
the burden placed on limited human resources and augment human capabilities.

As reflected in the published literature, much research effort has been expended
in developing low-level methods for the automatic visual re-identification of people
and other objects appearing in different places and at different time across multiple
cameras. The ultimate goal is to build ‘black-box’ systems capable of unilaterally
solving this problem. However, this is an inherently challenging task, especially if
visual appearance is the only available cue for discrimination, as shown in Fig. 20.1.
Much of the focus so far has been on finding the most reliable representative features
to employ in constructing templates of individuals’ visual appearance (e.g. major
colours [12], combinations of colour and texture [14], complex structural layouts
[4]), along with distance metrics (e.g. Bhattacharyya distance [14], L1-Norm [20])
or classifiers (e.g. K-Nearest Neighbour [5], Ranking SVM [2]) for matching. Such
work is generally conditioned towards maximising ranking performance on small,
carefully constructed closed-world benchmark datasets largely unrepresentative of
the scale and complexity of open-world scenarios where the number of cameras,
spatial size of the environment and numbers of people are all at a significantly larger
scale, with a search space of unknown size and a potentially unlimited number of
candidatematches for a target. Re-identification of targets in such open environments
can potentially scale to arbitrary levels, covering huge spatial areas spanning not just
different buildings but different cities, countries or even continents, leading to an
overwhelming quantity of ‘big data’.

To date, very little work has focused on addressing the practical question of
how to best leverage the current state of the art in re-identification techniques, while
tolerating their limitations in engineeringpractical systems that are scalable to typical
real-world operational scenarios. In this work, we describe the design rationale and
implementational considerations of building a prototype system known as Multi-
Camera Tracking (MCT ), a tool which human operators may employ for generating
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Fig. 20.1 An illustration of the difficulties of visual matching across different camera views.
Individuals may undergo significant variability in appearance due to changes in lighting, scale
and viewpoint. Other difficulties are caused by partial or complete occlusion which results in a lack
of complete visual information, and the tendency for variability between people (inter-variation) to
be less than the variability for a single person at different times and camera views (intra-variation).
All of these problems are compounded by spatially large environments with significant numbers of
cameras and levels of crowding

a global target trail by retrospectively searching, ‘back-tracking’ and reconstructing
the movements of targets of interest across multiple disjoint camera views in a large
public space spanning a city. The system takes the basic approach of searchingwithin
multiple camera views for a specified target from a watchlist and producing ranked
lists of candidate matches. Rather than attempting to solve the challenge of a fully
automatic black-boxwinner-take-all solution for Rank-1 re-identification, the system
takes the more practical approach of implementing mechanisms that: (a) quickly and
effectively narrow the search space of candidates for human operators to perform
target verification; and (b) incrementally increase the ranks of likely correct matches
without making hard decisions that may inadvertently discard them at too early a
stage during the re-identification process.

The overall design of the MCT system takes into account three key characteris-
tics in order to systematically address the challenge of scalability: (1) Associativity,
concerning the ability of the system to help users accurately extract targets of inter-
est from an extremely large search space; (2) Capacity, relating to computational
resources and the ability to process large numbers of camera inputs simultaneously;
and (3) Accessibility, the speed with which users can conduct searches of targets
and reconstruct their movements. In order to scale to arbitrarily large, busy and
visually complex spaces, the MCT system requires various augmentations to satisfy
these three requirements, in addition to the implementation of standard computer
vision and machine learning techniques. This is addressed through a highly mod-
ular, flexible network-centric implementation able to incrementally leverage multi-
ple hardware components in order to process arbitrary numbers of cameras, and a
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carefully designed user interface combining severalmechanisms that support a coher-
ent iterative piecewise search strategy for efficiently retracing multiple target move-
ments through large complex multi-camera environments.

In Sect. 20.2, we discuss six key mechanisms that enable the MCT system to
address the requirement of associativity. In Sect. 20.3, we detail implementational
considerations that permit the system to address the requirements of capacity and
accessibility. In Sect. 20.4, we describe a highly challenging open-world dataset
encompassing two transport hubs in ametropolis. This is used to conduct quantitative
trials of the MCT system, results of which are provided in Sect. 20.5. Finally, in
Sect. 20.6 we conclude with lessons learned and open questions for future work.

20.2 Key Mechanisms

The associativity of a scalable multi-camera tracking tool is related to the efficiency
and reliability with which it can aid users in locating targets of interest amongst
very large numbers of individuals. Consequently, the fundamental objectives for the
system are to reduce user workload by: (a) appropriately narrowing the search space
and producing a minimal set of candidates containing the target; and (b) ranking the
target highly within the candidate set. There are six key mechanisms of the MCT
system that combine to address these objectives.

20.2.1 Relative Feature Ranking

TheMCT system employs a comprehensive set of 29 types of visual features encom-
passing the colour and texture appearance of individuals for matching across cam-
era views. More specifically, the colour features incorporate different colour spaces
includingRGB,Hue-Saturation andYCrCb,with texture features derived fromGabor
wavelet responses at eight different scales and orientations, as well as thirteen differ-
ently parameterised Schmid filters [18]. Details can be found in [15]. Image patches
within bounding boxes corresponding to people automatically detected by a parts-
based person detector [3] are resampled to 300 pixels wide for consistency of scale.
They are then split into six equal horizontal segments, with separate normalised
histograms generated for each segment before concatenation into a single feature
vector. Given 16 bins for the histogram corresponding to each of the 29 feature types
for each of the 6 horizontal strips, we thus have a 2784-dimensional feature vector
per bounding box, which is used as an appearance descriptor.

Rather than considering each feature type equally in terms of relevance, we
dynamically learn the importance of each of these feature types to more strongly
weight those features most relevant for matching across different cameras [15, 21,
22]. Such a model is trained from a dataset of pairs of feature vectors derived from
single detections of the same person taken from different cameras [17]. More pre-
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cisely, given a training set of m samples X = (xi , yi )
m
i=1 where xi ∈ Rd is a feature

vector for a specific individual and yi a corresponding label, and given the feature
vectors x+

j from the same training set X corresponding to the same person from

another view (called relevant feature vectors) along with x−
j corresponding to dif-

ferent people (called irrelevant feature vectors), we learn a ranking function δ to
rank vector pair similarity such that δ(xi , x+

j ) > δ(xi , x−
j ). This takes the form of a

support vector machine (SVM) known as RankSVM [2, 6]. The RankSVMmodel is
characterised by a linear function for rankingmatches between two feature vectors as
δ(xi , x j ) = w�|xi −x j |. Given a feature vector xi , the required relationship between
relevant and irrelevant feature vectors is w�(|xi −x+

j |−|xi −x−
j |) > 0, i.e. the ranks

for all correct matches are higher than the ranks for incorrect matches. Accordingly,
given x̂+

s = |xi −x+
j | and x̂−

s = |xi −x−
j | and the set P = {(x̂+

s , x̂−
s )} of all pairwise

relevant difference vectors required to satisfy the above relationship, a corresponding
RankSVM model can be derived by minimising the objective function:

1

2
||w||2 + C

|P|∑

s=1

ξs (20.1)

with the constraints:
w�(x̂+

s − x̂−
s ) ≥ 1 − ξs (20.2)

for each s = 1, . . . , |P| and restricting all ξs ≥ 0.C is a parameter for tradingmargin
size against training error.

20.2.2 Matching by Tracklets

For comparing individuals, the Munkres Assignment algorithm, also known as the
Hungarian algorithm [7, 13], is employed as part of a multi-target tracking scheme
to increase the number of samples for each individual by locally grouping detections
in different frames as likely belonging to the same person. This process yields track-
lets encompassing individual detections over multiple frames, representing short
intra-camera trajectories. An individual D is accordingly represented as a tracklet
TD = {αD,1, . . . , αD,J } comprising a set of J individual detections with appear-
ance descriptors αD, j . Two individuals are then matched by computing the median
match score between each combination of detection pairs, one each from their respec-
tive tracklets. This approach mitigates the difficulties that might be faced by object
tracking techniques in highly crowded environments, where irregular movement and
regular occlusion causes tracking failure. Computing the median as a tracklet match
score permits a degree of robustness against erroneous assignments, where tracklets
may inadvertently comprise samples from multiple individuals.

More precisely, tracklets are built up incrementally over time, with an incomplete
set updated after each frame by assigning individual detections from that frame to



418 Y. Raja and S. Gong

a tracklet according to their appearance similarity and spatial proximity. That is,
given: (1) a set S = {α1, f , . . . , αM, f } of M appearance descriptors for detections in
frame f with corresponding pixel locations {β1, f , . . . , βM, f }; (2) a current set of N
incomplete tracklets R = {T̂1, . . . , T̂N } with their most recently added appearance
descriptors {α̂n, fn }; and (3) corresponding predicted pixel locations {β̂n, f }, an M×N
cost matrix C is generated where each entry Cm,n is computed as:

Cm,n = ω1|α̂n, fn − αm, f | + ω2|β̂n, f − βm, f | (20.3)

In essence, this cost is computed as a weighted combination of appearance descriptor
dissimilarity and physical pixel distance. Predicted pixel locations β̂n, f for frame f
are estimated by assuming constant linear velocity from the last known location and
velocity. The Munkres Assignment algorithm maps rows to columns in C so as to
minimise the cost, with each detection added accordingly to their mapped incomplete
tracklets. Surplus detections are used to initiate new tracklets. In practice, an upper
bound is placed on cost, with assignments exceeding the upper bound being retracted,
and the detection concerned treated as surplus. Additionally, tracklets which have
not been updated for a length of time are treated as complete.

For re-identification, completed tracklets are taken as a representation for an
individual, though individuals may comprise several tracklets. When matching two
individuals D1 and D2 with corresponding tracklets TD1 and TD2 , the score S j for
each pairing of appearance descriptors {(x, y) : x ∈ TD1 , y ∈ TD2}, j = 1, . . . , J1 J2
where J1 = |TD1 | and J2 = |TD2 | is computed using the RankSVM model as:

S = w�(|x − y|) (20.4)

where w is obtained by minimising Eq. (20.1). The match score SD1,D2 for the two
tracklets as a whole is computed as the median of these scores over all pairs of their
appearance descriptors:

SD1,D2 = median
({S1, S2, . . . , SJ1 J2}

) ; (20.5)

A set of candidate matches is ranked by sorting their corresponding tracklet scores
in descending order.

20.2.3 Global Space–Time Profiling

Given the inherent difficulties in visual matching when visual appearance lacks dis-
criminability, not least in real-world scenarios where there are a very large num-
ber of possible candidates for matching, it becomes critical that higher level prior
information is exploited to provide space–time context and significantly narrow the
search space [10, 11, 17]. Our approach is to dynamically learn the typical movement



20 Scalable Multi-camera Tracking in a Metropolis 419

patterns of individuals throughout the environment to yield a probabilistic model of
when and where people detected in one view are likely to appear in other views.
This top-down knowledge is imposed during the query process to drastically reduce
the search space and dramatically increase the chances of finding correct matches,
having a profound effect on the efficacy of the system.

More specifically, we employ the method proposed in [10, 11]. Each camera view
is decomposed automatically into regions, across which different spatio-temporal
activity patterns are observed.Letxi (t) andx j (t)denote the two regional activity time
series observed in the i th and j th regions, respectively. These time series comprise
the 2,784-dimensional appearance descriptors of detected individuals (Sect. 20.2.1).
CrossCanonicalCorrelationAnalysis (xCCA) is employed tomeasure the correlation
of two regional activities as a function of an unknown time lag τ applied to one of the
two regional activity time series. Denoting x j (t) = xi (t +τ), we drop the parameters
t and τ for brevity to denote x j = xi. Then, for each time delay index τ , xCCA finds
two sets of optimal basis vectors wxi and wx j such that the projections of xi and x j

onto these basis vectors are mutually maximally correlated.
That is, given xi = wT

xi
xi and x j = wT

x j
x j , the canonical correlation ρxi ,x j (τ ) is

computed as:

ρxi ,x j (τ ) = E[w�
xi

Cxi x j wx j ]√
E[w�

xi
Cxi xi wxi ]

√
E[w�

x j
Cx j x j wx j ]

(20.6)

whereCxi xi andCx j x j are thewithin set covariancematrices of xi and x j respectively,
and Cxi x j is the between-set covariance matrix.

The time delay that maximises the canonical correlation between xi (t) and x j (t)
is then computed as:

τ̂xi ,x j = argmaxτ

∑Γ
ρxi ,x j (τ )

Γ
(20.7)

where Γ = min
(
rank (xi ), rank (x j )

)
.

Given a target nominated in camera view j for searching in camera view k, the
search space is narrowed by considering only tracklets from k with a corresponding
time delay less than ατ̂x j ,xk (with α a constant factor) for matching. This candidate
set is then ranked accordingly.

20.2.4 ‘Man-in-the-Loop’ Machine-Guided Data Mining

The MCT system is an interactive ‘man-in-the-loop’ tool designed to enable human
operators to retrospectively re-trace the movements of targets of interest through
a spatially large, complex multi-camera environment by performing queries on
generated metadata. A common-sense approach to doing so in such an environment
is to employ an iterative piecewise search strategy, conducting multiple progressive
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Fig. 20.2 Usage of the MCT system. Given automatically extracted appearance descriptors from
across the multi-camera network along with a global space–time profile (Sect. 20.2.3), users nom-
inate a target and then iteratively search through the network in a piecewise fashion, marking
observed locations and times of the target in the process. The procedure stops when the target has
been re-identified in a sufficient number of views for an automatically generated reconstruction

searches over several iterations to gradually build a picture of target movements, or
global target trail.

More precisely, given the initial position of a nominated target, the first search is
conducted in the place most likely to correspond to their next appearance, such as
the adjacent camera view depending on direction of movement. Further detections
of the target provide constraints upon the next most likely location, within which the
next search iteration is conducted. The search thus proceeds in a manner gradually
spanning out from the initial detected position, marking further detections along the
way and building a picture of target movements, until the number of locations has
been exhausted or the picture is sufficiently detailed for an automatically generated
reconstruction of the target’s movement through the environment. This approach
ensures that the problem is tackled piecemeal, with the overall search task simplified
and the workload on users minimised. Figure20.2 illustrates the top-level paradigm
for system usage.

Additionally, in the process of conducting a query, unexpected associations such
as previously unknown accomplices may be discovered. These are not only highly
relevant to the investigation at large, butmay be exploited as part of the search process
itself. Such associates may naturally and seamlessly be incorporated into the query,
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forming a parallel branch of enquiry which proceeds in the same way. This allows:
(a) accomplices to aid in the detection of the target of interest, for example if the
latter is not visible for the system to detect but inferable by way of their proximity
to the detectable accomplice; and (b) accomplices to be tracked independently at the
same time as the original target should their trajectories through the multi-camera
network diverge.

The basic MCT query procedure is as follows: A user initiates a query Q0 which
comprises a nominated target with tracklets T0 = {t0, j0}, j0 = 1, . . . , J0 from
camera view ξ0. The first search iteration is conducted in camera view ξ1, resulting
in a set of J1 candidate matches T1 = {t1, j1}, j1 = 1, . . . , J1. Any number of
these can be tagged by the user, whether they correspond to the initial target or a
relevant association, yielding a set R1 of K1 indices for ‘relevant’ flags R1 = {rk1},
k1 = 1, . . . , K1. The set C1 = {t1,rk1

} is then used to initiate the next iteration of the
query Q1 in camera view ξ2, yielding J2 new candidate matches T2 = {t2, j2}, j2 =
1, . . . , J2. These are again marked accordingly by the user, yielding a set R2 of K2
indices for ‘relevant’ flags R1 = {rk2}, k2 = 1, . . . , K2. The new set C2 = {t2,rk2

} is
combined with the set from the previous iteration C1 as well as the initial nomination
to produce an aggregate set Ĉ2 = {T0 ∪ C1 ∪ C2}. The search proceeds for as
many iterations as required, finding relevant matches in each camera view. After n
iterations, we have the aggregate pool of matches tagged as relevant by the user over
all previous search iterations, plus the original nomination:

Ĉn = {T0 ∪ C1 ∪ C2 ∪ · · · ∪ Cn} = {t0, j0} ∪ {t1,rk1
} ∪ · · · ∪ {tn,rkn

} (20.8)

This set constitutes the final associated evidence fromwhich a video reconstruction of
targetmovements is automatically created by the system and instantly viewable. Note
that the search process is not generally linear. The interface provides the flexibility
to search in multiple cameras at once and then analyse the results from each camera
one-by-one. A user may also select matches from previous iterations to conduct
searches in a future iteration. This enables multiple targets to be tracked as part of a
single query as well as tracking movements both backwards and forwards in time.

20.2.5 Attribute-Based Re-ranking

The RankSVM model (Sect. 20.2.1) [2, 6] employs appearance descriptors com-
prising a multitude of low-level feature types which are weighted by the RankSVM
model. However, such a representation is not always sufficiently invariant to changes
in viewing conditions, leading to blunted discriminability. Furthermore, to a human
observer, such feature descriptors are not amenable to descriptive interpretation. For
example, depending on the tracking scenario, human operators may focus on unam-
biguous characteristics of a target, such as attire, colours or patterns. Consequently,
we incorporate mid-level semantic attributes [8, 9] as an intuitive complementary
method of ranking candidate matches. Users may select multiple attributes descrip-
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Suit Female Bald Backpack Skirt Red

Fig. 20.3 Examples of images associated with semantic mid-level attributes. Some images can
be associated with multiple attributes simultaneously—for example, the second example labelled
‘Femal’ can be also be labelled ‘Skirt’ (i.e. she is also wearing a skirt), and the third example
labelled as ‘Bald’ can also be labelled ‘Backpack’

tive of the target to re-rank candidates and encourage correctmatches to rise, reducing
the time taken for localisation.

We identify 19 semantic attributes, including but not limited to bald, suit, female,
backpack, headwear, blue and stripy. Figure20.3 shows some example images asso-
ciated with these attributes. We then create a training set of 3,910 sample images of
45 different individuals across multiple camera views and for each sample j generate
an appearance descriptor α j of the form used for the RankSVMmodel (Sect. 20.2.1).
These are manually annotated according to the 19 attributes. Given this data, a set of
attribute detectors ai , i = 1, . . . , 19 in the form of support vector machines using
intersection kernels are learned [8, 9] using the LIBSVM library [1]. Cross-validation
is employed to select SVM slack parameter values.

The outputs of the detectors are in the form of posterior probabilities p(ai |α),
denoting the probability of attribute i given an appearance descriptor α. Given I
user-selected attributes {a1, . . . , aI } and a set of K candidate matches {t1, . . . , tK }
where candidate tk = {αk,1, . . . , αk,J } is a set of J appearance descriptors, the score
Si,k for each attribute ai is computed for each candidate tk as an average of the
posterior probabilities for each of the J appearance descriptors:

Si,k = 1

J

J∑

j=1

p(ai |α j ) (20.9)

Accordingly, each candidate tk has an associated vector of scores [S1,k, . . . , SI,k]�.
The set of candidates is then ranked separately for each attribute, averaging the ranks
for each candidate and finally sorting by the average rank.
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20.2.6 Local Space–Time Profiling

Global space–time profiles (Sect. 2.1.2) significantly narrow the search space of
match candidates by imposing constraints learned from the observed movements
of crowds in-between camera views. To complement this, local space–time pro-
files further reduce the set of candidate matches by imposing constraints implied by
observed movements of specific individuals within each camera view. Ultimately,
this may incorporate knowledge of scene structure and likely trajectories of individ-
uals within the view, for example depending on which exit they are likely to take in
a multi-exit scene.

For the MCT system, we employed a simple method of filtering known as Con-
vergent Querying. For each camera view i , i = 1, . . . , 6, we selected a small set of
example individuals (e.g. 20) at random and manually measured the length of time
they were visible in that view, i.e. from the frame of their appearance to the frame
of their disappearance. Temporal windows τi were then estimated for each camera
view as:

τi = E[Xi ] + 3
√

(Var(Xi )) (20.10)

where Xi denotes the random variable for the observed transition times in frames
from Camera i .

Given a set T = {t1, . . . , tJ } of J candidate matches (tracklets) from Camera i ,
the user may tag one of the matches t j for local space–time profiling, resulting in the
pruned set:

T̂ = {t̂ ∈ T : |φ(t̂) − φ(t j )| ≤ τi } (20.11)

where φ(t) is a function returning the average of the first and last frame indices of
the individual detections of tracklet t . Consequently, the filter removes all tracklets
lying outside the temporal window, narrowing the results to those corresponding to
the tighter time period within which the specific target is expected to appear.

20.3 Implementation Considerations

The capacity of a multi-camera tracking system relates to the ability to process,
generate and store metadata for very large numbers of cameras simultaneously. A
related characteristic is accessibility, the ability to query the generated metadata in a
speedy fashion. Accordingly, the ability of the system to scale to typical open-world
scenarios where the quantity of data can arbitrarily increase depends upon careful
design and implementation of the processing architecture, the user interface and in
particular, the metadata storage scheme.

In order to enable on-the-fly analysis of videos streamswhichmay be pre-recorded
and finite or live and perpetual, the general top-level approachwe take towards imple-
menting theMCTprototype is to produce two independently functioning subsystems.

http://dx.doi.org/10.1007/978-1-4471-6296-4_2
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Fig. 20.4 MCT Core Engine, depicting the asynchronous Extraction and Matching engines. The
Extraction Engine takes the form of amulti-threaded processing pipeline, enabling efficient process-
ing of multiple inputs simultaneouslyon multi-core CPU platforms

First, the Generator Subsystem is responsible for processing video streams and gen-
erating metadata. This metadata includes tracklets of detected people in each camera
view and the storage of this metadata in a backend database. Targets which may be
nominated by individuals are restricted to those that can be automatically detected
by the system rather then permitting users to arbitrarily select image regions that
may correspond to objects of interest but which may not be visually detectable auto-
matically. Second, the Interrogator Subsystem provides a platform for users to query
the generated metadata through a secure, encrypted online browser-based interface.
These two subsystems operate asynchronously, enabling users to query metadata via
the Interrogator Subsystem as and when they become available by way of the Gen-
erator Subsystem functioning in parallel. The MCT system is designed to be flexible
and for its components to inter-operate either locally or remotely across a network,
in order to permit the incremental utilisation of off-the-shelf hardware. For example,
the entire systemmay operate on a single server, or with each component on separate
servers connected via the Internet.

Metadata is stored in an SQL Metadata backend database component. A Video
Streamer provides video data from recorded or live input to an MCT Core Engine
andmultipleUser Interface (UI) Clients that encapsulate the essential functionalities
of the MCT system.

The MCT Core Engine comprises two asynchronous sub-components known as
the Extraction and Matching Engines, which form the primary processing pipeline
for generating metadata for the Generator Subsystem (Fig. 20.4). This MCT pipeline
employs a multi-threaded approach, efficiently utilising multi-core CPUs to process
multiple camera inputs simultaneously. This implementation enables additional
processing resources to be added as available in a flexible manner. For example,
multiple camera inputs may be processed on a single machine, or allocated as desired
across several machines. Such flexibility also applies to the Extraction andMatching
Engines, which can be allocated separately for each camera. This facilitates poten-
tially unlimited incremental additions to hardware resources with ever-increasing
numbers of cameras.

The User Interface (UI) Clients are Java web-based applets which interface
remotely with a Query Engine Server to enable the search of metadata stored in
the SQL Metadata component. Usage of the system only requires access to a basic
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Fig. 20.5 MCT User Interface Client example screenshot. Here, users examine a paginated set
of match candidates from a search iteration, locating and tagging those relevant including target
associates. The local space–time profile Convergent Querying filter is employed here, using tagged
candidates to immediately narrow the set being displayed to the appropriate temporal window.
Attributes appropriate to the target may also be selected, which instantly re-rank the candidate list
accordingly

terminal equipped with a standard web browser with a Java plugin. Security features
include password protected user logins, per-user usage logging, automatic time-
outs and fully encrypted video and metadata transfer to and from the Query Engine
Server. The interface includes functions to support the piecewise search strategy
(Sect. 20.2.4), as well as for viewing dynamically generated chronologically-ordered
video reconstructions of target movements.

Figure20.5 depicts an example screenshot of theMCTUser Interface Client. This
screen lists all candidate matches returned from a search iteration in paginated form.
Here, users may browse through candidate matches from a search iteration, locating
and tagging those which are relevant to the query. Two key features available are: (1)
the Convergent Querying filter which is applied when tagging a candidate, instantly
imposing local space–time profiling on the currently displayed set (Sect. 20.2.6);
and (2) Attribute selection checkboxes for instant re-ranking of candidates by user-
selected semantic attributes (Sect. 20.2.5).
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1 2 3

(a)

4 5 6

(b)

Fig. 20.6 MCT trial dataset example video images. a Cameras 1, 2 and 3 (from Station A). Left
Corridor leading from entrance to Station A; Centre Escalator to train platforms; Right Entrances
to platforms. b Cameras 4, 5 and 6 (from Station B). Left Platforms for trains to Station A; Centre
Platforms for those arriving from Station A; Right Ticket barriers at entrance to Station B

20.4 MCT Trial Dataset

As defined in Sect. 20.1, there are three key characteristics that influence scalability:
associativity, capacity and accessibility. The scale of the environment concerned
profoundly impinges upon all of these factors since it is correlated with the quantity
of data to process, as well as the number of individuals to search through and for
whom metadata must be generated and stored. We conducted an in-depth evaluation
of theMCT system in order to determine its scalability in terms of these three factors.

The MCT system has previously been tested [17] using the i-LIDS multi-camera
dataset [19]. The i-LIDS data comprised five cameras located at various key points
in an open environment at an airport. A key limitation of this dataset is that the five
cameras covered a relatively small area within a single building, where passengers
moved on foot in a single direction with transition across the entire network taking at
most 3min. As such, the scale of the i-LIDS environment is limited for testing typical
open-world operational scenarios. Trialling the MCT system requires an open-world
test environment unlike all existing closed-world benchmark datasets.

To address this problem, we captured a new trial dataset during a number of ses-
sions in an operational public transport environment [16]. This dataset comprises six
cameras selected from existing camera infrastructure covering two different trans-
port hubs at different locations on an urban train network, reflecting an open-world
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Fig. 20.7 Topological layout of Stations A and B. Three cameras (sample frames shown) were
selected from each and used for data collection and MCT system testing

operational scenario. Camera locations are connected by walkways within each hub
and a transport link connecting the two hubs. Lighting changes and viewpoints
exhibit greater variability, placing more stress on the matching model employed by a
re-identification system. Furthermore, passenger movements are multi-directional
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and less constrained, increasing uncertainty in transition times between camera
views. The average journey time between the two stations across the train network
takes approximately 15min. Example video images are shown in Fig. 20.6, and the
approximate topological layout of the two hubs and the relative positions of the
selected camera views are shown in Fig. 20.7.

As a comparison between the MCT trial dataset and the i-LIDS multi-camera
dataset, each i-LIDS video ranges from between 4,524 to 8,433 frames, yielding on
average 39,000 candidate person detections and around 4,000 computed tracklets.
In contrast, each 20min segment of the MCT trial dataset contains typically 30,000
video frames with around 120,000 candidate person detections and 20,000 tracklets.
Consequently, the complexity and volume of the data to be searched and matched
in order to re-identify a target demonstrates an increase by one order of magnitude
over the i-LIDS dataset [19], making it significantly more challenging.

The MCT trial dataset was collected over multiple sessions for prolonged periods
during operational hours spanning more than 4 months. Each session produced over
3h of testing data. To form ground-truth and facilitate evaluation, in each session
a set of 21 volunteers containing a mixture of attire, ages and genders travelled
repeatedly between Stations A and B. These volunteers formed a watchlist such that
they could all be selected as probe targets for re-identification. Since reappearance
of the majority of the travelling public is not guaranteed due to the open-world
characteristics of the testing environment, this ensured that the MCT trial dataset
contained a subgroup of the travelling public known to reappear between the two
stations, facilitating suitable testing of the MCT system.

20.5 Performance Evaluation

We conducted an extensive evaluation of the MCT system against the three key
scalability requirements: associativity (tracking performance), capacity (processing
speed) and accessibility (user querying speed). The results are as follows:

20.5.1 Associativity

The performance of the MCT system in aiding cross-camera tracking, i.e. re-
identification, was evaluated by conducting queries for each of the 21 volunteers
on our watchlist making the test journey between Stations A and B. The total
number of search iterations (see Sect. 20.2.4) conducted over all 21 examples was
95. We were primarily interested in measuring the effectiveness of the three key
ranking mechanisms: relative feature ranking [15]; attribute-based re-ranking [8,
9]; and local space–time profiling, in increasing the ranks of correct matches, as
well as gauging the more holistic effectiveness of all six mechanisms (the above in
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Fig. 20.8 The cumulative number of correct matches appearing in the top 6, 12, 18, 24 and 30
ranks, averaged over all search iterations and all camera views. The Convergent Querying (CQ)
filter doubled the average number of correct matches in the first 6 ranks over the RankSVM model
alone, from around 0.5 to 1. Selecting a single attribute was more beneficial than two or three,
improving on the RankSVMmodel. Overall, a single attribute combined with CQ demonstrated the
greatest improvement of around 200% over the RankSVM model

addition to matching by tracklets; global space–time profiling; and machine-guided
data mining) in tracking the targets across the multi-camera network.

We measured two criteria: (1) the number of correct matches in the first 6, 12, 18,
24 and 30 ranks after any given search iteration, averaged over all 95 search iterations,
indicating how quickly a user will likely find the target amongst the candidates; and
(2) overall re-identification rates in terms of the average percentage of cameras
targets were successfully re-identified in, indicating tracking success through the
environment overall. The exact querying procedure adhered to the iterative piecewise
search strategy described in Sect. 20.2.4.

Number of Correct Matches

Figure20.8 shows the cumulative number of correct matches that appeared in the top
6, 12, 18, 24 and 30 ranks viewed by a user, averaged overall search iterations and
all camera views.

Using the RankSVM model alone [2, 6], the average number of correct matches
in the first six ranks was around 0.5. Using the Convergent Querying (CQ) filter
significantly improved upon the RankSVM model at all ranks, and approximately
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Table 20.1 Effect of convergent querying filter

Stage of query Mean candidate set size

Before CQ 392.9
After CQ 79.6

The mean reduction in candidate set size when employing the CQ filter, averaged over all query
iterations and camera views. The effect was significant, resulting in an average 72.1% reduction by
more acutely focusing on the time period containing the target and removing the bulk of irrelevant
candidates

doubled the number of correct matches in the first six ranks from around 0.5 to 1. The
primary reason for thiswas its ability to remove the vastmajority of incorrectmatches
by focusing on the appropriate time period. This is demonstrated by Table20.1,
showing that the reduction in the number of candidates invoked by the CQ filter was
over 72%, averaged over all query iterations. A single attribute model also showed
around 50% improvement, whereas adding a second and third attribute was less
effective. However, the combination of a single attribute with the CQ filter provided
the most significant improvement, with a 200% increase over the RankSVMmodel.
Consequently, local space–time profiling was critical for narrowing the search space
more acutely and finding the right target more quickly amongst very large numbers
of distractors. Combining this with a single attribute model provided an extra 50%
performance boost on average by providing an additional context for narrowing the
search further.

Overall Re-identification Rates

Table 20.2 shows the percentage of watchlist targets that were explicitly detected
by the system in each camera view. Apart from Cameras 4 and 5, detection rates
were above 80%. For Camera 5, the slightly larger distances to individuals resulted
in slightly lower performance for the MCT person detector [3]. The profile views
common in Camera 4 were responsible for lower person detection performance.

It is important to note that detection failure does not imply tracking failure, due
to the facility for tagging visible associates of targets (refer to the piecewise search
strategy in Sect. 20.2.4). Consequently, targets may still be tracked through camera
views in which they may not be detected.

Table 20.3 shows the percentage of all six cameras that watchlist targets were
tracked within on average; more specifically, the percentage of cameras within which
users could tag matches that contained the target and which could be incorporated
into a reconstruction, regardless of whether that target was explicitly detected by the
system.

It can be seen that tracking coverage, i.e. re-identification, was very high,
approaching 90% over the entire network on average for both directions of move-
ment. The result for the Station B to Station A journey was lessened due to the rele-
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Table 20.2 Detection rates per camera

Camera Target detection rate (%)

1 85.7
2 85.7
3 81
4 72.7
5 76.2
6 85.7

The percentage of watchlist targets explicitly detected in each camera view. Apart from Cameras 4
and 5, detection rates were above 80%. For Camera 5, the slightly larger distances to individuals
resulted in slightly lower performance for the MCT person detector [3]. The profile views common
in Camera 4 were responsible for lower detection performance

Table 20.3 Overall tracking coverage

Direction of journey Mean tracking coverage (%)

Station A to B 88
Station B to A 84.6

The average percentage of all six cameras within which a watchlist target could be found and
incorporated into a reconstruction, whether or not explicitly detected by the system. Often targets
were found for all cameras, with the few failures occurring due to: (a) unpredictable train times
operating outside the global temporal profile, resulting in a loss of the target between stations; and
(b) target occlusion due to crowding or moving outside the video frame

vance of Camera 4 for this journey (Sect. 20.4) and its corresponding lower detection
reliability.

Failures were due to two main reasons. First, abnormal train waiting or transition
times resulted in two watchlist targets being lost in between stations. These times
fell outside the range of the learned global space–time profile, resulting in a faulty
narrowing of the search space. In very large-scale multi-camera networks such as
those spanning cities where different parts of the environment are connected by trans-
portation links, this danger can be compounded by multiple unpredictable delays.
This suggests that integrating live non-visual information, such as real-time train
updates, should be exploited to override or dynamically update global space–time
profiles in order to ensure correct focusing of the search as circumstances change.
Second, lone targets could occasionally become occluded and thus remain undetected
or untrackable by association, due to excessive crowding or moving outside the view
of the camera. This highlights the value of careful camera placement and orientation.
Nevertheless, occasional detection failure in some camera views was not a barrier to
successful tracking since searches could be iteratively widened when required and
the target successfully reacquired further along their trajectory.
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Table 20.4 Module processing time per frame

Module Processing time (%)

Person detector 39.8
Appearance descriptor generator 57.7
Other 2.5

The relative computational expense of key processing modules of the Extraction Engine

20.5.2 Capacity

Acritical area of system scalability is the speed of the system in processing video data
depending on the size of the multi-camera environment. Consequently, a major area
of focus is the effective use of acceleration technologies such as GPU acceleration
and multi-threading. Table20.4 shows the relative time taken by two key process-
ing modules of the Extraction Engine in the Generator Subsystem (Sect. 20.3) to
process a single video frame. The most computationally expensive processing mod-
ule, namely the Appearance Descriptor Generator, was re-implemented to employ
GPU acceleration in order to conduct an initial exploration of this area. Additionally,
multi-threading was employed to specifically exploit the computational capacity of
multi-core processors.

In exploring the characteristics of processing capacity, four GPU and multi-
threading configurations were evaluated in order to highlight the importance and
effectiveness of applying acceleration technologies in working to achieve accept-
able processing speeds: (1) single thread, no GPU acceleration; (2) single thread,
GPU acceleration of the Appearance Descriptor Generator; (3) multi-threading of
pipelines to parallelise the processing of individual camera inputs, no GPU accel-
eration; and (4) both GPU acceleration of the Appearance Descriptor Generator
and multi-threading together. The hardware platform employed contained an Intel
Core-i7 quad-core processor operating at 3.5GHz, running Microsoft Windows 7
Professional with 16GB of RAM and two Nvidia GTX-580GPU devices.

Figure20.9 shows the average time in seconds taken for each of the four acceler-
ation configurations to process a frame for 2, 3, 4, 5 and 6 cameras simultaneously.
It can be clearly seen that GPU accelerating the Appearance Descriptor Generator
alone (requiringmore than 50% of the computational resources when unaccelerated)
resulted in halving the processing time for a video frame. This amounted to the vast
majority of the processing time for that component being eliminated. Significantly, it
can also be seen that the use of multi-threading enabled six cameras to be processed
on the same machine with negligible overhead, demonstrating that multi-threading,
in addition to the distributed architecture design, facilitates scalability of the system
to arbitrary numbers of cameras (i.e. the ability to process multiple video frames
from different cameras simultaneously) by exploiting the multi-core architecture of
off-the-shelf CPUs. A quad-core processor with hyper-threading technology is capa-
ble of processing eight cameras simultaneously with little slow-down; more cameras
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Fig. 20.9 Time taken in seconds for the MCT system to process a single frame across all camera
streams for 2, 3, 4, 5 and 6 cameras in 4 different acceleration configurations. This demonstrated
both the efficacy of employing multi-threading and GPU acceleration as well as the scalability
of the system to arbitrary numbers of cameras. It can be seen that employing GPU acceleration
dramatically improved the time to process a single video frame, and multi-threading facilitated the
ability to process frames from multiple cameras simultaneously, demonstrating linear scalability
of the system to larger camera networks

may be processed by simply adding another quad-core machine to provide another
eight camera capability. Future processors with greater core numbers promise to
efficiently increase scalability yet further.

20.5.3 Accessibility

The quantity of metadata generated by the system is strongly correlated with the size
of the multi-camera environment, influencing the speed and responsiveness of the
user interface in the course of a query being conducted.As such, this is a critical factor
where scalability to typical real-world scenarios is concerned. Here, we investigate
two key areas determining accessibility: (1) query time versus database size, relating
system usability with the quantity of data processed; and (2) local versus remote
access, comparing the speed of querying when running the User Interface Client
locally and remotely in three different network configurations.

Query Time Versus Database Size

Open-world scenarios will typically present arbitrarily large numbers of individuals
forming the search space of candidates during a query. The key factor in querying
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Table 20.5 Length of video versus number of metadata match entries

Video length (min) Number of tracklets Number of match entries (millions)

10 8000 8.7
20 16000 26.9
40 31000 83.1

Relationship between the length of processed videos from six cameras, the number of extracted
tracklets from those videos and the number of match entries in the corresponding metadata. A few
minutes of video from all cameras yielded thousands of tracklets and millions of match entries in
the database. Here we see that a 40min segment of the six-camera data produced more than 30,000
tracklets and more than 83 million match entries

Table 20.6 Video length versus query time

Video length (min) Mean query time (s)

10 82
20 124
40 284

The average time for the same query conducted three times for databases generated from 10, 20 and
40 min segments of the six-camera MCT trial dataset. While the 10 and 20min segments resulted
in acceptable times of around 1.5–2 min, the 40min segment more than doubled the query time for
the 20min segment. The significant increase in query time with the quantity of video data processed
highlighted a key bottleneck of the current system

time is the number of tracklets which have been generated for those individuals,
and the size of a corresponding match table in the metadata which contains the
matching results for appropriate global space–time filtered sets of tracklets between
camera views. Table20.5 shows the relationship between the number of tracklets
and the corresponding number of match entries in the metadata match table for three
different processed video segment lengths. It can be seen that 20min of processed
video from six cameras produced on the order of tens of thousands of tracklets and
tens of millions of match entries in the database.

The question arises as to what effect this increase in the size of the database has on
querying times. Table20.6 shows the average time for the same query conducted three
times over the same LAN connection for each of these three database sizes. While
the 10 and 20min segments resulted in acceptable times of around 1.5–2min, the
40min segment more than doubled the time over the 20min segment. The significant
increase in query time with the quantity of video data processed highlights a key
bottleneck of the current system and a major focus on improving the scheme for
metadata storage and access in working towards a deployable system.

Local Versus Remote Access

Table20.7 shows the difference in query time for the same query conducted on the
same metadata database accessed: (a) locally on the same machine as the Query
Engine Server and SQL Metadata database; (b) remotely on a 1Gbps local area
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Table 20.7 Network access environment versus query time.

Query environment Mean query time (s)

Local 97
LAN 125
Internet 181

Comparison of a typical query involving two feedback iterations for local, remote LAN (1Gbps)
and remote Internet (1Mbps upload) access to the web server. Using the system over the internet
with a very modest upload bandwidth resulted in almost doubling the query time over local access.
A dedicated server with sufficient bandwidth would alleviate this drawback

network connected to the machine hosting the Query Engine Server and SQL Meta-
data database; and (c) remotely from the Internet with a server-side upload speed
of approximately 1Mbps. The query was conducted on metadata generated from a
20min segment, and involved two search iterations examining and tagging appro-
priate candidates.

It can be seen that the same query took nearly twice as long over the Internet
as compared to locally. The main slow-downs occurred in two places: (a) when
retrieving either initial or updated candidate match lists, requiring the transmission
of image data and bounding boxmetadata; and (b) when browsing the candidate tabs,
again requiring the transmission of both image thumbnails and bounding boxes.
This is a function of server-side upload bandwidth which in this case was very
modest; a dedicated server offering higher bandwidth would result in lower delays
and faster response times, important for open-world scenarios where highly crowded
environmentswill typically result in larger numbers of candidates being returned after
each query iteration.

20.6 Findings and Analysis

In this work, we presented a case study on how to engineer a multi-camera tracking
system capable of coping with re-identification requirements in large scale, diverse
open-world environments. In such environments where the number of cameras and
the level of crowding are large, a key objective is to achieve scalability in terms
of associativity, capacity and accessibility. Accordingly, we presented a prototype
Multi-Camera Tracking (MCT) system comprising six key features: (1) relative fea-
ture ranking [2, 6, 15], which learns the best visual features for cross-camera match-
ing; (2) matching by tracklets, for grouping individual detections of individuals into
short intra-camera trajectories; (3) global space–time profiling [10], which models
camera topologies and the physical motion constraints of crowds to significantly
narrow the search space of candidates across camera views; (4) machine-guided
data mining, for utilising human feedback as part of a piecewise search strategy;
(5) attribute-based re-ranking [8, 9], for modelling high-level visual attributes such
as colours and attire; and (6) local space–time profiling, to model the physical motion
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constraints of individuals to narrow the search space of candidateswithin each camera
view.

Our extensive evaluation shows that the MCT system is able to effectively aid
users in quickly locating targets of interest, scaling well despite the highly crowded
nature of the testing environment. It required 3min on average to track each target
through all cameras using the remote Web-based interface and exploiting the key
features as part of a piecewise search strategy. This is in contrast to the significantly
greater time it would require human observers to manually analyse video recordings.

It was observed that attribute-based re-rankingwas on average effective in increas-
ing the ranks of correct matches over the RankSVMmodel alone. However, employ-
ing more than one attribute at a time was generally not beneficial and often detri-
mental. Local space–time profiling was extremely effective under all circumstances
and combining it with a single attribute always led to a significant increase in the
ranks of relevant targets, with a tripling of the average number of correct matches in
the first six ranks alone. These features are critical in enabling the MCT system to
cope with the large search space induced by the data by focusing on the right subset
of candidates, at the right place and at the right time.

Overall, out of the 21 watchlist individuals, all but two were trackable across both
stations in the MCT trial dataset. The two exceptions were lost on a single train
journey. This was due to the train time falling outside the learned global space–time
profile. This emphasises the utility of employing non-visual external information
sources such as real-time train updates to modify global space–time profiles on-the-
fly. This would permit such profiles to be tighter andmore relevant over time, making
themmore consistently effective in narrowing the search space. This can be a critical
factor in very large open-world scenarios where different parts of the multi-camera
network may be connected by unpredictable and highly variable transport links.

Our testing of system speed shows that employing GPU acceleration for the most
computationally intensive component resulted in a 50% reduction in computation
time per frame. Furthermore, employing multi-threading on a quad-core CPU with
multi-threading enabled all six cameras of the MCT trial dataset to be processed
simultaneously with negligible slow-down. This suggests that, in conjunction with
the modular distributed nature of the system architecture design, the processing
capacity of the system is linearly scalable to an arbitrary number of cameras by
adding more CPUs to the system architecture (e.g. another machine on the network).
Furthermore, by focusing effort on optimising each processing component of the
Extraction Engine, a real-time frame rate per camera is likely achievable.

The most significant bottleneck of the entire MCT system was found to be meta-
data storage.Using an off-the-shelf SQL installation and basic tables, storedmetadata
was found to become prohibitively large over time. Querying metadata from video
data longer than 20min would result in long waiting times for the Query Engine
Server to return the relevant results. Given the typical number of cameras in a highly
crowded open-world scenario, this highlights the criticality of designing an appro-
priate storage scheme to store data more efficiently, reduce waiting times during a
query and improve accessibility to metadata covering longer periods of time.
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It is clear that there is great promise for the realisation of a scalable, highly effective
and deployable computer vision-based multi-camera tracking and re-identification
tool for assisting human operators in analysing large quantities ofmulti-camera video
data from arbitrarily large camera networks spanning large spaces across cities. In
building the MCT system, we have identified three areas worthy of further investiga-
tion. Firstl, integration with non-visual intelligence such as real-time transportation
timetables (e.g. flights, trains and buses) is critical for dynamically managing global
space–time profiles and ensuring that the search space is always narrowed in a con-
textually appropriate manner. Second, careful optimisation of individual processing
components is required, which also involves a proper mediation between multi-
threading and GPU resources to best harness availability in each machine compris-
ing the distributed MCT system network. Finally, an optimised method for metadata
storage is required for quick and easy accessibility regardless of the quantity being
produced.

Acknowledgments We thank Lukasz Zalewski, Tao Xiang, Robert Koger, Tim Hospedales, Ryan
Layne, Chen Change Loy and Richard Howarth of Vision Semantics and Queen Mary University
of London who contributed to this work; Colin Lewis, Gari Owen and Andrew Powell of the UK
MOD SA(SD) who made this work possible; Zsolt Husz, Antony Waldock, Edward Campbell and
Paul Zanelli of BAE Systems who collaborated on this work; and Toby Nortcliffe of the UK Home
Office CAST who assisted in setting up the trial environment and data capture.

References

1. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 27:1–27:27 (2011)

2. Chapelle, O., Keerthi, S.: Efficient algorithms for ranking with SVMs. Inf. Retrieval 13(3):
201–215 (2010)

3. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discrimi-
natively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645
(2010)

4. Gheissari, N., Sebastian, T., Hartley, R.: Person reidentification using spatiotemporal appear-
ance. In: IEEEConference on Computer Vision and Pattern Recognition, vol. 2, pp. 1528–1535
(2006)

5. Hahnel, M., Klunder, D., Kraiss, K.F.: Color and texture features for person recognition. In:
IEEE International Joint Conference on Neural Networks, vol. 1, pp. 647–652 (2004)

6. Joachims, T.: Optimizing search engines using clickthrough data. In: Knowledge Discovery
and Data Mining, pp. 133–142 (2010)

7. Kuhn, H.: The hungarian method for the assignment problem. Naval Res. Logist. Quarterly 2,
83–97 (1955)

8. Layne, R., Hospedales, T., Gong, S.: Person re-identification by attributes. In: British Machine
Vision Conference, Guildford, UK (2012)

9. Layne, R., Hospedales, T., Gong, S.: Towards person identification and re-identification with
attributes. In: European Conference on Computer Vision, First International Workshop on
Re-Identification. Firenze, Italy (2012)

10. Loy, C.C., Xiang, T., Gong, S.:Multi-camera activity correlation analysis. In: IEEEConference
on Computer Vision and Pattern Recognition, pp. 1988–1995 (2009)



438 Y. Raja and S. Gong

11. Loy, C.C., Xiang, T., Gong, S.: Time-delayed correlation analysis for multi-camera activity
understanding. Int. J. Comput. Vis. 90(1), 106–129 (2010)

12. Madden, C., Cheng, E., Piccardi, M.: Tracking people across disjoint camera views by an
illumination-tolerant appearance representation. Mach. Vis. Appl. 18(3), 233–247 (2007)

13. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl.
Math. 5(1), 32–38 (1957)

14. Prosser, B., Gong, S., Xiang, T.: Multi-camera matching under illumination change over time.
In: European Conference on Computer Vision, Workshop on Multi-camera and Multi-model
Sensor Fusion (2008)

15. Prosser, B., Zheng, W., Gong, S., Xiang, T.: Person re-identification by support vector ranking.
In: British Machine Vision Conference, Aberystwyth, UK (2010)

16. Raja,Y.,Gong, S.: Scalingupmulti-camera tracking for real-world deployment. In: Proceedings
of the SPIE Conference on Optics and Photonics for Counterterrorism, Crime Fighting and
Defence, Edinburgh, UK (2012)

17. Raja, Y., Gong, S., Xiang, T.: Multi-source data inference for object association. In: IMA
Conference on Mathematics in Defence, Shrivenham, UK (2011)

18. Schmid, C.: Constructing models for content-based image retrieval. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 30–45 (2001)

19. UK Home Office: i-LIDS dataset: Multiple camera tracking scenario. http://
scienceandresearch.homeoffice.gov.uk/hosdb/cctv-imaging-technology/i-lids/ (2010)

20. Wang, H., Suter, D., Schindler, K.: Effective appearance model and similarity measure for
particle filtering and visual tracking. In: European Conference on Computer Vision, pp. 606–
618, Graz, Austria (2006)

21. Zheng, W., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance com-
parison. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 649–656,
Colorado Springs, USA (2011)

22. Zheng, W., Gong, S., Xiang, T.: Re-identification by relative distance comparison. IEEE Trans.
Pattern Anal. Mach. Intell. 35(3), 653–668 (2013)

http://scienceandresearch.homeoffice.gov.uk/hosdb/cctv-imaging-technology/i-lids/
http://scienceandresearch.homeoffice.gov.uk/hosdb/cctv-imaging-technology/i-lids/

	20 Scalable Multi-camera Tracking in a Metropolis
	20.1 Introduction
	20.2 Key Mechanisms
	20.2.1 Relative Feature Ranking
	20.2.2 Matching by Tracklets
	20.2.3 Global Space--Time Profiling
	20.2.4 `Man-in-the-Loop' Machine-Guided Data Mining
	20.2.5 Attribute-Based Re-ranking
	20.2.6 Local Space--Time Profiling

	20.3 Implementation Considerations
	20.4 MCT Trial Dataset
	20.5 Performance Evaluation
	20.5.1 Associativity
	20.5.2 Capacity
	20.5.3 Accessibility

	20.6 Findings and Analysis
	References


