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Abstract

Motivated by the demand for an effective background model, robust to
non-stationary environmental changes in outdoor scenes, we present a tech-
nique using Combinatorial Optimization to extract near-optimal background
estimates from blocks of temporally localized frames. Using an existing
graph cut technique in conjunction with subspace analysis,we demonstrate a
novel background model exhibiting results superior to those achievable with
the latter technique alone, and especially suitable for background modelling
in outdoor situations where variable lighting conditions prevail.

1 Introduction

An effective background model is a crucial first stage in mostcomputer vision applica-
tions, especially in outdoor environments. The reliability with which it identifies potential
foreground objects directly impacts on the efficiency and performance level achievable by
subsequent processing stages such as tracking, recognition and threat evaluation. The na-
ture of such a background is intrinsically statistical. Whilst the concept of statistical scene
modelling suggests that there is no exact distinction between what constitutes foreground
and background, a useful practical definition for surveillance in a busy urban scene is that
people and the objects they cause to move are foreground, whereas buildings, fixtures,
trees and permanent objects form the background. The task ofthe background model in
such a setting is to discriminate between the two classes under a potentially wide vari-
ety of lighting conditions. Evidently, confusion might still arise, since trees sway in the
wind, tending to become foreground, whilst people park their cars, which are eventually
subsumed by the background. The most commonly encountered models are based on per
pixel techniques such as adaptive Gaussian Mixture Models [9, 10], or subspace analysis
based methods [8, 7]. Both approaches have been used with success. However, in typical
implementations it is difficult to avoid such background models being contaminated by
foreground scene content, eventually resulting in a less discriminative model.

On the other hand, a method detailed in [3] has been shown capable of compiling a
‘background’ image on a per pixel basis from a short block of input frames by casting the
problem as an exercise in optimal labelling. Figure 1 shows an example of how 20 frames
from a continuously busy metro ticket hall can lead to a useful background approximation.
The background is drawn from parts of any of the input frames which are found to be
spatially and temporally consistent. Thus the solution comprises a set of labels or pointers,

1



one for each pixel in the background image, specifying from which of the 20 input frames
each pixel is to be taken. The method described in [3] is an application of Combinatorial
Optimization [4] achieving an approximately minimum cost solution using the Minimum
Cut/Maximum Flow [6] and Alpha Expansion [2] algorithms. However, prerequisites for
this approach to work are: (1) that all of the required background is visible for some
of the time, (2) that the required background is more consistently stable than any other
foreground pixel intensity, and further (3) that each background pixel is time-independent.
These conditions are not always satisfied.

To address the problem, we propose a method whereby objects which are obviously
foreground, under a given definition, are eliminated from input frames before allowing
those frames to contribute to the construction of a background model. We suggest that
such an approach yields a ‘purer’ representation of the truebackground, and hence one
with heightened sensitivity. Obviously, if this pre-processing stage were totally effective,
the task of background segmentation would already have beenachieved. In reality, it
only offers a useful measure of pre-processing. Our solution thus consists of the pixel-
labelling method described above as a stage of pre-processing, operating on short blocks
of input frames to produce a temporally localized background estimation per block. These
estimates are then used to build an eigenspace model. Such a hybrid approach permits the
latter to ‘concentrate’ on dealing with lighting and shadowchanges rather than being
contaminated with objects like cars and people which are considered to be foreground.

Figure 1: Left: 4 of the 20 input frames. Right: Recovered background.

2 Combinatorial Optimization

Given a temporally localized set ofF input frames of a scene each ofP pixels, we wish
to form an output imageIB to best represent the scene’s background at that time. Thus
we desire a set of labelsF, consisting of one label per pixel, specifying from which input
frame that pixel is to be taken. Evidently, the number of possible combinations is large,
but finite. In essence, the idea is to assign a cost to each choice of label (1 ofF) at each
pixel, and then solve for the minimum cost over the image as a whole in order to yield the
best set of background composition labels. For the algorithm to work, the cost assignment
scheme for the pixels has to reflect lower costs for better combinations of labels. This is
forced by penalizing poor temporal or spatial correlation between adjacent pixels.
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The Ford-Fulkerson algorithm [6] permits exact solution ofa combinatorial optimiza-
tion problem in polynomial time by a minimum graph cut (Min-Cut) in a situation where
there are only two class labels. Having defined a suitable costing model, an undirected
graph may be constructed for the background image consisting of a node for each pixel,
plus two extra nodes known as thesource and thesink, representing these two class labels.
The pixel costs become the arc weights on the graph. However,we haveF class labels
representing our block of input frames, whereF might typically be larger than ten or
more. Although the exact solution of such a problem is possible, it has been shown to be
NP-hard [2]. Instead, an approximate solution can be obtained rather more efficiently by
applying the Min-Cut algorithm iteratively, with each class label taking its turn to be the
source (α), whilst the otherF−1 class labels become the sink (α ′), as shown in Figure 2.

Figure 2: Graph for an array of only 9 pixels, incorporatingsource andsink nodes rep-
resenting the two classesα andα ′. Weightsbetween pixels stem from spatial continuity,
whilst those connecting to thesource andsink relate to temporal and motion continuity.
The actual graph contains a node forevery image pixel. Figure taken from [1].

Under this scheme, at any given iteration, a pixel might already belong to the class
label which is currently taking its turn at beingα. In this case, the weight (cost) linking
it to α is made infinite, so that the pixel cannot leave the class label at this iteration. The
overall result is that asα takes on each class labelF, pixels from all the other class labels
may leave in order to joinα, but none may leaveα. This is known asα-expansion which
has been shown by Boykov et al. [2] to lead to an approximatelyminimum cost labelling
solution after a number of cycles ofα throughF . The optimal graph cut at any iteration
is then obtained by a process drawing an analogy with networkflow, in which arc weights
are considered flow capacities, the objective being to achieve maximum flow (Max-Flow)
from source to sink. Under this condition, the arcs which aresaturated (i.e. have reached
their flow capacity) are those which should be cut to achieve the optimal partitioning in
the equivalent Min-Cut problem. To arrive at this situation, flow is added to the network
incrementally in an iterative fashion until no further addition is possible.
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3 A Hybrid Pixel-Labelling and Subspace Model

3.1 Labelling Cost Functions

Following the notation of [3], a set of inputF frames are denoted asI1, I2, . . . , IF , and
I f (p) is a colour intensity vector at pixelp wherep ∈ P is the set of pixels in an image.
A given labelling is defined asF = { fp}p∈P. The background estimation is formed by
taking a pixel intensity vectorp from input framef ∗p such thatIB = I f ∗p (p) where{ f ∗p}
is the set of labels corresponding to minimum cost. The cost of a given labellingF is the
energy function

E(F) = ∑
p∈P

Dp( fp)+ ∑
{p,q}∈N

Vpq( fp, fq) (1)

consisting of terms relating respectively totemporal smoothness at pixel p, and spa-
tial smoothness between pixelsp andq in a neighbourhoodN aroundp. The temporal
smoothness termDp( fp) consists of two parts

Dp( fp) = DS
p( fp)+ β DC

p( fp) (2)

whereβ controls the balance betweenDS andDC. The firstDS
p( fp) penalizes choice of

frames where the local temporal variance, evaluated over 2r frames, for a pixel averaged
over the three colour components is high, so that

DS
p( fp) = min

(

Var fp−r... fp(p),Var fp... fp+r(p)
)

(3)

The second partDC
p( fp), known as the consistency cost, penalizes choice of frames in

which there is a motion boundary for a pixel. We penalize choice of a framefp if, at
the pixel in question, it contains significant temporal differenceM fp f =

∥

∥I fp − I f
∥

∥

2
from

another framef , but at the same time, the latter contains little spatial difference. A large
ratio in the gradients ofM andI implies a moving object in framefp, which we would
want to exclude from our background. Using the square of theL2 norm, this ratio is
defined

Ω fp f (p) =

∥

∥∇M fp f (p)
∥

∥

2

∥

∥∇I f (p)
∥

∥

2
+ ε2

(4)

The small constantε prevents the denominator from being zero, and ensures a low cost
when there is little gradient in eitherM or I. Confidence about the identification of motion
in fp is gained by averagingΩ fp f over all frames

DC
p( fp) =

1
F

F

∑
f=1

Ω fp f (p) (5)

The spatial continuity cost between two pixelsp andq for two input framesfp and fq is

Vpq( fp, fq) = ρ

(
∥

∥I fp(p)− I fq(p)
∥

∥

2
+
∥

∥I fp(q)− I fq(q)
∥

∥

2

2× (number of colour planes)

)

(6)

The penalty of choosingfp and fq as different source frames for two neighbouringpixelsp
andq will be small if the frames differ by little in the vicinity ofp andq, thus encouraging
the switch from copying from one frame to another. Such a region is quite likely to
represent background in this case. The constantρ controls the balance betweenV and the
temporal costD.
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3.2 Subspace Modelling of Min-Cut Labelled Background Pixels

From a sequence ofM input frames of sizeh× v pixels, we draw overlapping blocks
of F frames to which we apply the above background recovery algorithm, yieldingN =
M−F +1 candidate background framesIB1, IB2 . . . , IBN . ThusIB1 is derived from input
frames 1. . .F , IB2 from frames 2. . .F + 1 and so on. The background images are then
rasterized to form column vectorsx1 . . .xN each of lengthhv elements. The mean vector
m of {x1 . . .xN} is determined asm = 1

N

(

∑N
i=1 xi

)

. After mean subtraction, the vectors
{x1 . . .xN} are concatenated horizontally to form a matrixX = [x1−m,x2−m . . . ,xN −m].
The covariance matrix for the background vectorsxn where 1≤ n ≤ N is then given by
the outer product ofX with itself C = XXT with eigenvectorsvi and eigenvaluesλi where
1≤ i ≤ N

XXT vi = λivi (7)

However, such a matrix would contain(hv)2 elements but only have a rank of at maximum
N. In this case we take advantage of the low dimensional methodin [7], whereby we pre-
multiply Equation (7) byXT and find that the much smaller matrixXT X of sizeN ×N
has the same eigenvalues asXXT and eigenvectorsui = XT vi

XT X(XT vi) = λi(XT vi) (8)

Thus we perform eigendecomposition onC′ = XT X, and retain theK eigenvectors cor-

responding to the largest eigenvalues ofC′ such that∑
K
i=1 λi

∑N
i=1 λi

≥ γ to form a normalized

approximate modelV =

[

XT v1

|XT v1|
XT v2

|XT v2|
. . .

XT vK

|XT vK|

]

whereγ represents a given fraction of

the original energy. A new image vectory may then be segmented into foreground and
background by projecting into the subspace spanned byV to determine what parts of it are
supported by the model. Re-projecting back into the image space and subtracting from
the original imagey leaves the residual image vectorr as

r = (y−m)−V
(

VT (y−m)
)

(9)

Thresholding each elementp of r against a constantτ yields a binary vectorB, that may
be de-rasterized to the original image aspect ratio to form abinary segmentation mask,
which is

Bp =

{

1 if rp > τ
0 otherwise

(10)

4 Experiment

In order to demonstrate the effectiveness of our scheme, we compared the performance
of a subspace model derived from pre-filtered backgrounds obtained by the Min-Cut opti-
mization (the ‘Min-Cut + Subspace’ method) with that of a subspace model built directly
from theN input frames (the ‘Direct Subspace’ method). We forced bothsystems to use
only 14 eigenvectors, a number which permitted the former torepresent 80% of its orig-
inal covariance energy. In addition, we show the result of using the Min-Cutalone on
frames taken from the input sequence (the ‘Min-Cut Only’ method).

5



Figure 3: Examples illustrating typical level of activity in the chosen urban road scene.

4.1 Dataset

For our experiment, we chose a very busy urban scene at a road junction by a metro station
containing continuous activity involving both people and vehicles (see Figure 3). Video
data was collected over a one hour period in colour at a frame rate of 25Hz, producing
90,000 RGB image frames at a spatial resolution of 720×576 and 8 bit intensity resolu-
tion per colour. For the purpose of model building, every 300th frame was extracted from
this to provide a set ofN = 300 images taken at 12 second intervals.

UsingF = 20 input frames to evaluate each pre-filtered background, the Min-Cut +
Subspace model was constructed using 280 images, whilst theDirect Subspace model
used the 300 unprocessed input frames. To accelerate the Min-Cut labelling process, the
input frames were sub-sampled to 360×288 resolution. Although the resultant label set
consisted of only this number of elements, the backgrounds were reconstructed using 1
label per 4 pixels in order to preserve the original image resolution. The cost balancing
constants for the Min-Cut process were set atβ = 1 andρ = 4, whilst in the consistency
cost calculationε = 1. The threshold for segmentation in both Min-Cut + Subspaceand
Direct Subspace methods was 20, given that the intensity range for the RGB data was
[0,255]. The Min-Cut Only method used 20 frames from the input sequence taken at 3
minute intervals, the binary mask being given by thresholding the difference from the
single recovered background. Finally, for all methods, thebinary masks were filtered to
remove single and small groups of pixels before display.

4.2 Results

The graph in Figure 4 illustrates the cumulative distribution of energy (eigenvalues) among
the eigenvectors of the covariance matrix for the Min-Cut + Subspace and Direct Subspace
models. We note that the former requires considerably fewereigenvectors to reach a cer-
tain energy fraction, thus supporting the idea that the proposed hybrid technique attains a
more compact model. The sharp rise of the Min-Cut + Subspace curve for energy frac-
tions above 0.95 here strongly indicates the dominance of a small number ofeigenvectors
in the model, as intended.

Figure 5 shows typical output from the Min-Cut pre-processing stage. As illustrated
by the left image, foreground object removal is not always complete. If the 20 input
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frames used to produce this particular background estimation contain the stationary car in
most frames, it will be indistinguishable from the background. Although such foreground
objects still contaminate the subsequent subspace model, the pre-processing removes so
much of the foreground clutter that overall, considerable advantage is gained.

The segmentation maskB for two typical input frames, which werenot used to build
the models, are shown in Figure 6 for all three cases of the experiment. The Min-Cut
+ Subspace model clearly demonstrates the cleanest segmentation of objects which, for
a typical surveillance application, are required to be foreground. For the Direct Sub-
space model, some of the road markings and shadows from the traffic signals are breaking
through into the foreground. The level of foreground clutter contaminating the model and
the limited expressive power of having so few available eigenvectors result in desensiti-
zation and poor discrimination.

For the Min-Cut Only experiment, the images at the bottom of Figure 6 show prob-
lems with shadows. Because no variability is catered for in the single recovered image,
the changing shadows at the edges and walls of buildings havenot been accommodated
well. Since the result of the optimization, a single image compiled from images taken
throughout the whole hour of the input video, the chances of alighting match with a sin-
gle arbitrary input frame is small. Different parts of the background model will match
different lighting conditions.
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Figure 4: Graph showing that Min-Cut + Subspace consistently requires considerably
fewer eigenvectors to retain a certain fraction of energy than the Direct Subspace method.
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Figure 5: Typical output from the Min-Cut pre-processing stage. Left: Imperfect object
removal. Right: Near optimal background recovery.

5 Discussion and Further Work

The success of the hybrid Min-Cut algorithm may be explainedby consideration of its
two constituent parts separately. The more effectively that we can eliminate foreground
objects from the ’background’ images by the Min-Cut stage, the more compact becomes
the eigenspace model for a given energy fraction. The Min-Cut process can only remove
foreground objects if they are not consistently placed in theF source frames. Turning this
around, the true background can only be found if it is found tobe dominant in relation to
the costing rules defined.

There is considerable scope for determining an optimal selection of source frames
from real-time incoming video. The imperfect object removal illustrated in Figure 5 is
typical of what happens when the choice of source frames is unsuitable. The present
method of takingF = 20 frames at 12 second intervals is perhaps rather arbitraryand
crude. Naturally, the combinatorial optimization will take longer if we decide to use
blocks of more than 20 frames, but using less frames might cause some areas of true
background never to be discovered.

The optimal sampling interval will depend on the temporal content of the scene. In our
example, the activity of people and cars is governed largelyby the sequence of the traffic
lights on the junction, the cycle time of which was measured to vary between 98s and
116s. Waiting cars accumulating at a red light could, for instance, constitute background
if most of theF frames were taken while the cars waited.

An altogether more intelligent way of selecting frames for the optimization stage is
required in order to maximize the capability of the pre-processing for elimination of un-
wanted foreground. One possibility would be to add a furtherterm to the cost function in
order to exclude choice of pixels or frames which are too distant from a current version of
the model. However, this should be pursued with care, since the resultant system would
contain a feedback loop which may invite bootstrapping and instability problems.

Although we chose to use a subspace model for the second stage, possibilities cer-
tainly exist for incorporating other techniques. A per pixel model might need less or
only one Gaussian if the pre-processing tends to reduce multi-modality in colour space.
Dispensing with the Expectation-Maximization stage [5] that usually goes with Gaussian
Mixture Models could lead to considerable saving in processing time.
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However, we believe that the subspace model as chosen here has the best possibility of
success, since it excels in modelling the global linkage of changes between pixels rather
than the spatially localized disturbances which the Min-Cut stage tends to attenuate. Such
a property makes it ideal for a compact model of daylight variability.

6 Conclusion

We have demonstrated that a hybrid background modelling scheme consisting of a pre-
processing stage based on the combination of a Min-Cut/Max-Flow algorithmand a con-
ventional subspace model shows advantage over the conventional subspace model op-
erating alone. Suitable for application in outdoor environments, we have succeeded in
developing a system tolerant of lighting changes, whilst showing robustness to a high
level of activity in a complex scene. Although rather computationally intensive, the new
algorithm produces useful improvements when running at a sub-multiple of the true frame
rate. With refinements in the software architecture, it is believed that the Min-Cut + Sub-
space method does have a useful rôle to play in practical applications, but in any case is
valuable as a vehicle for future research in this direction.
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Figure 6: Segmentation of two frames using Min-Cut + Subspace, Direct Subspace, and
Min-Cut Only methods. Min-Cut + Subspace shows the best segmentation here.
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