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Abstract

Motivated by the demand for an effective background moadsiust to
non-stationary environmental changes in outdoor sceneqresent a tech-
nique using Combinatorial Optimization to extract neatiopl background
estimates from blocks of temporally localized frames. dsan existing
graph cut technigue in conjunction with subspace analygsjemonstrate a
novel background model exhibiting results superior to ¢hashievable with
the latter technique alone, and especially suitable fok¢pazind modelling
in outdoor situations where variable lighting conditiomeyail.

1 Introduction

An effective background model is a crucial first stage in namshputer vision applica-
tions, especially in outdoor environments. The reliapiiith which it identifies potential
foreground objects directly impacts on the efficiency andiggenance level achievable by
subsequent processing stages such as tracking, recagguitibthreat evaluation. The na-
ture of such a background s intrinsically statistical. Whihe concept of statistical scene
modelling suggests that there is no exact distinction betwehat constitutes foreground
and background, a useful practical definition for surveitiain a busy urban scene is that
people and the objects they cause to move are foregroundeahéuildings, fixtures,
trees and permanent objects form the background. The tasle dfackground model in
such a setting is to discriminate between the two classesrumg@otentially wide vari-
ety of lighting conditions. Evidently, confusion mightlstrise, since trees sway in the
wind, tending to become foreground, whilst people parkrthars, which are eventually
subsumed by the background. The most commonly encounterddlsare based on per
pixel techniques such as adaptive Gaussian Mixture Mo8elE]], or subspace analysis
based methods [8, 7]. Both approaches have been used witbssu¢iowever, in typical
implementations it is difficult to avoid such background ralsdbeing contaminated by
foreground scene content, eventually resulting in a lessrisiinative model.

On the other hand, a method detailed in [3] has been showrbeapcompiling a
‘background’ image on a per pixel basis from a short blockngit frames by casting the
problem as an exercise in optimal labelling. Figure 1 shamsxample of how 20 frames
from a continuously busy metro ticket hall can lead to a udedakground approximation.
The background is drawn from parts of any of the input framésctv are found to be
spatially and temporally consistent. Thus the solutionposes a set of labels or pointers,



one for each pixel in the background image, specifying framclv of the 20 input frames
each pixel is to be taken. The method described in [3] is atiain of Combinatorial
Optimization [4] achieving an approximately minimum cosfugion using the Minimum
Cut/Maximum Flow [6] and Alpha Expansion [2] algorithms. @ver, prerequisites for
this approach to work are: (1) that all of the required baokgd is visible for some
of the time, (2) that the required background is more coestt stable than any other
foreground pixel intensity, and further (3) that each baokigd pixel is time-independent.
These conditions are not always satisfied.

To address the problem, we propose a method whereby objéats &re obviously
foreground, under a given definition, are eliminated fromunhframes before allowing
those frames to contribute to the construction of a backgiianodel. We suggest that
such an approach yields a ‘purer’ representation of thehagkground, and hence one
with heightened sensitivity. Obviously, if this pre-preseng stage were totally effective,
the task of background segmentation would already have hekieved. In reality, it
only offers a useful measure of pre-processing. Our solutmis consists of the pixel-
labelling method described above as a stage of pre-pracgsgierating on short blocks
of input frames to produce a temporally localized backgrbesstimation per block. These
estimates are then used to build an eigenspace model. Sybhid dipproach permits the
latter to ‘concentrate’ on dealing with lighting and shadolanges rather than being
contaminated with objects like cars and people which arsidened to be foreground.

Figure 1: Left: 4 of the 20 input frames. Right: Recovereddgaound.

2 Combinatorial Optimization

Given a temporally localized set &f input frames of a scene each®fixels, we wish

to form an output imagég to best represent the scene’s background at that time. Thus
we desire a set of labelE, consisting of one label per pixel, specifying from whiclirn
frame that pixel is to be taken. Evidently, the number of giescombinations is large,

but finite. In essence, the idea is to assign a cost to eachechblabel (1 ofF) at each
pixel, and then solve for the minimum cost over the image ab@en order to yield the
best set of background composition labels. For the algortthwork, the cost assignment
scheme for the pixels has to reflect lower costs for bettertoations of labels. This is
forced by penalizing poor temporal or spatial correlatietzeen adjacent pixels.



The Ford-Fulkerson algorithm [6] permits exact solutiomafombinatorial optimiza-
tion problem in polynomial time by a minimum graph cut (Min{lin a situation where
there are only two class labels. Having defined a suitabléngpsnodel, an undirected
graph may be constructed for the background image congisfia node for each pixel,
plus two extra nodes known as tbmirceand thesink, representing these two class labels.
The pixel costs become the arc weights on the graph. HoweseehaveF class labels
representing our block of input frames, whdtemight typically be larger than ten or
more. Although the exact solution of such a problem is pdssibhas been shown to be
NP-hard [2]. Instead, an approximate solution can be obthiather more efficiently by
applying the Min-Cut algorithm iteratively, with each cidabel taking its turn to be the
source {), whilst the otheF — 1 class labels become the sinK), as shown in Figure 2.

source source

(a) A graph G (b) A cut on G

Figure 2: Graph for an array of only 9 pixels, incorporatstyrce andsink nodes rep-
resenting the two classesanda’. Weightsbetween pixels stem from spatial continuity,
whilst those connecting to theaurce andsink relate to temporal and motion continuity.
The actual graph contains a node évery image pixel. Figure taken from [1].

Under this scheme, at any given iteration, a pixel mightaalyebelong to the class
label which is currently taking its turn at beirmg In this case, the weight (cost) linking
it to a is made infinite, so that the pixel cannot leave the clasd kthihis iteration. The
overall result is that ag takes on each class lalie] pixels from all the other class labels
may leave in order to joir, but none may leave. This is known agr-expansion which
has been shown by Boykov et al. [2] to lead to an approximadhymum cost labelling
solution after a number of cycles af throughF. The optimal graph cut at any iteration
is then obtained by a process drawing an analogy with netfl@sk in which arc weights
are considered flow capacities, the objective being to aehigaximum flow (Max-Flow)
from source to sink. Under this condition, the arcs whichsatirated (i.e. have reached
their flow capacity) are those which should be cut to achibeedptimal partitioning in
the equivalent Min-Cut problem. To arrive at this situatifiow is added to the network
incrementally in an iterative fashion until no further atifati is possible.



3 A Hybrid Pixel-L abelling and Subspace M odel
3.1 Labdling Cost Functions

Following the notation of [3], a set of input frames are denoted as,I»,...,IF, and
I+(p) is a colour intensity vector at pixgd wherep € P is the set of pixels in an image.
A given labelling is defined a8 = {fp}pcp». The background estimation is formed by
taking a pixel intensity vectop from input framef; such that s = |f5(p) where{f;}
is the set of labels corresponding to minimum cost. The cbatgiven labellingF is the
energy function

E(F) = Dp(fp)+ Vpa(fp, fa) D

peP {p,ayeN

consisting of terms relating respectively temporal smoothness at pixel p, and spa-
tial smoothness between pixelgp andq in a neighbourhoo® aroundp. The temporal
smoothness ter(fp) consists of two parts

Dp(fp) = Dp(fp) + BDG(fp) )

where controls the balance betwe®¥ andDC. The firstD}(f,) penalizes choice of
frames where the local temporal variance, evaluated ovéaihes, for a pixel averaged
over the three colour components is high, so that

D5(fp) =min(Vars,_r_1,(p),Vars, i,+r(p)) (3)

The second parID%(fp), known as the consistency cost, penalizes choice of frames i
which there is a motion boundary for a pixel. We penalize caaif a framef, if, at

the pixel in question, it contains significant temporal eliéinceMr,t = ||+, —I¢||, from
another framef, but at the same time, the latter contains little spatidediince. A large
ratio in the gradients oM and| implies a moving object in framé,, which we would
want to exclude from our background. Using the square ofLth@orm, this ratio is
defined

|OMe,¢ ()2
|01 (p)||* + €2

The small constant prevents the denominator from being zero, and ensures adstv ¢
when there is little gradient in eith&t or 1. Confidence about the identification of motion
in fp is gained by averagin@+,+ over all frames

Qi1 (p) = (4)

1 F
DS(fp) == S Qr,t(p) (5)
p [= (Zl p
The spatial continuity cost between two pixglandg for two input framesf, and fq is

Voo 1) — p (1P P+ [l1y(@) —11y(@)]
pa e 2 x (number of colour plangs

(6)

The penalty of choosinf, andfg as different source frames for two neighbouring pixels
andq will be small if the frames differ by little in the vicinity op andg, thus encouraging
the switch from copying from one frame to another. Such aomg$ quite likely to
represent background in this case. The congtartntrols the balance betwe¥rand the
temporal cosD.



3.2 Subspace Modelling of Min-Cut Labelled Background Pixels

From a sequence dfl input frames of sizéh x v pixels, we draw overlapping blocks
of F frames to which we apply the above background recovery dhgor yieldingN =
M — F + 1 candidate background framks,, Iz, ...,lsy. Thuslg, is derived from input
frames 1..F, I, from frames 2..F +1 and so on. The background images are then
rasterized to form column vectoxs ... xy each of lengthv elements. The mean vector
m of {X1...xn} is determined asn = % (ZiNzlxi)' After mean subtraction, the vectors
{X1...Xn} are concatenated horizontally to form a makix [x; — m,x, —m..., Xy —m].
The covariance matrix for the background vectggsvhere 1< n < N is then given by
the outer product oX with itself C = XXT with eigenvectors; and eigenvalues where
1<i<N

XXTVi = AjVj (7

However, such a matrix would contajinv)? elements but only have a rank of at maximum
N. In this case we take advantage of the low dimensional methq, whereby we pre-
multiply Equation (7) byXT and find that the much smaller matgi" X of sizeN x N
has the same eigenvalues@%" and eigenvectons; = XTv;

XTX(XTv) = Ai(XTvi) (8)

Thus we perform eigendecomposition 8h= XTX, and retain th& eigenvectors cor-

K .
responding to the largest eigenvalues@fsuch that?;—lif >y to form a normalized
i=1""

XTvi XTvy XTvk
[XTva] [XTva| =" [XTvk]
the original energy. A new image vectpmay then be segmented into foreground and
background by projecting into the subspace spannadtmydetermine what parts of it are
supported by the model. Re-projecting back into the imagees@and subtracting from
the original imagey leaves the residual image vectoas

r=(y-m-V(Vi(y—m) )

Thresholding each elemeptof r against a constantyields a binary vectoB, that may
be de-rasterized to the original image aspect ratio to fotnmary segmentation mask,

which is _
Bp:{l ifrp>t (10)

approximate modeV =

] wherey represents a given fraction of

0 otherwise

4 Experiment

In order to demonstrate the effectiveness of our scheme,omeared the performance
of a subspace model derived from pre-filtered backgrountismdd by the Min-Cut opti-
mization (the ‘Min-Cut + Subspace’ method) with that of a spdce model built directly
from theN input frames (the ‘Direct Subspace’ method). We forced lsyfitems to use
only 14 eigenvectors, a number which permitted the formeepesent 80% of its orig-
inal covariance energy. In addition, we show the result aigishe Min-Cutalone on
frames taken from the input sequence (the ‘Min-Cut Only’ moef).



Figure 3: Examples illustrating typical level of activity the chosen urban road scene.

4.1 Dataset

For our experiment, we chose a very busy urban scene at aunetiign by a metro station
containing continuous activity involving both people arehicles (see Figure 3). Video
data was collected over a one hour period in colour at a fraateeaf 25Hz, producing
90,000 RGB image frames at a spatial resolution of ¥&F6 and 8 bit intensity resolu-
tion per colour. For the purpose of model building, everytBGfame was extracted from
this to provide a set dfl = 300 images taken at 12 second intervals.

Using F = 20 input frames to evaluate each pre-filtered backgrouredMim-Cut +
Subspace model was constructed using 280 images, whil€itbet Subspace model
used the 300 unprocessed input frames. To accelerate th€Mitabelling process, the
input frames were sub-sampled to 36@88 resolution. Although the resultant label set
consisted of only this number of elements, the backgrourete weconstructed using 1
label per 4 pixels in order to preserve the original imagel@on. The cost balancing
constants for the Min-Cut process were seBat 1 andp = 4, whilst in the consistency
cost calculatiore = 1. The threshold for segmentation in both Min-Cut + Subszak
Direct Subspace methods was 20, given that the intensityeréor the RGB data was
[0,255. The Min-Cut Only method used 20 frames from the input seqe¢aken at 3
minute intervals, the binary mask being given by threshmgdhe difference from the
single recovered background. Finally, for all methods, ilveary masks were filtered to
remove single and small groups of pixels before display.

4.2 Reaults

The graph in Figure 4 illustrates the cumulative distribotdf energy (eigenvalues) among
the eigenvectors of the covariance matrix for the Min-Cutib§pace and Direct Subspace
models. We note that the former requires considerably f@iggnvectors to reach a cer-
tain energy fraction, thus supporting the idea that the psegd hybrid technique attains a
more compact model. The sharp rise of the Min-Cut + Subspacedor energy frac-
tions above M5 here strongly indicates the dominance of a small numbeigeihvectors
in the model, as intended.

Figure 5 shows typical output from the Min-Cut pre-procegsitage. As illustrated
by the left image, foreground object removal is not alwaymptete. If the 20 input



frames used to produce this particular background estima&intain the stationary car in
most frames, it will be indistinguishable from the backgrduAlthough such foreground
objects still contaminate the subsequent subspace mbegbré-processing removes so
much of the foreground clutter that overall, consideralolesatage is gained.

The segmentation magkfor two typical input frames, which weneot used to build
the models, are shown in Figure 6 for all three cases of theraxgnt. The Min-Cut
+ Subspace model clearly demonstrates the cleanest seafinardf objects which, for
a typical surveillance application, are required to be dooeind. For the Direct Sub-
space model, some of the road markings and shadows fromefffie signals are breaking
through into the foreground. The level of foreground cluttentaminating the model and
the limited expressive power of having so few available eigetors result in desensiti-
zation and poor discrimination.

For the Min-Cut Only experiment, the images at the bottomigtife 6 show prob-
lems with shadows. Because no variability is catered fohedingle recovered image,
the changing shadows at the edges and walls of buildings matveeen accommodated
well. Since the result of the optimization, a single imagepded from images taken
throughout the whole hour of the input video, the chancesligfiéing match with a sin-
gle arbitrary input frame is small. Different parts of theckground model will match
different lighting conditions.
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Figure 4: Graph showing that Min-Cut + Subspace consistestjuires considerably
fewer eigenvectors to retain a certain fraction of energytthe Direct Subspace method.



Figure 5: Typical output from the Min-Cut pre-processinggs. Left: Imperfect object
removal. Right: Near optimal background recovery.

5 Discussion and Further Work

The success of the hybrid Min-Cut algorithm may be explaibgaonsideration of its
two constituent parts separately. The more effectively e can eliminate foreground
objects from the 'background’ images by the Min-Cut stape,hore compact becomes
the eigenspace model for a given energy fraction. The MibhgBocess can only remove
foreground objects if they are not consistently placed @Rfsource frames. Turning this
around, the true background can only be found if it is foundeéalominant in relation to
the costing rules defined.

There is considerable scope for determining an optimalktele of source frames
from real-time incoming video. The imperfect object remiallastrated in Figure 5 is
typical of what happens when the choice of source frames ssiitable. The present
method of taking= = 20 frames at 12 second intervals is perhaps rather arbitnady
crude. Naturally, the combinatorial optimization will ®konger if we decide to use
blocks of more than 20 frames, but using less frames mightecaome areas of true
background never to be discovered.

The optimal sampling interval will depend on the temporaiteat of the scene. In our
example, the activity of people and cars is governed larbglthe sequence of the traffic
lights on the junction, the cycle time of which was measuregary between 98s and
116s. Waiting cars accumulating at a red light could, fotanse, constitute background
if most of theF frames were taken while the cars waited.

An altogether more intelligent way of selecting frames foe bptimization stage is
required in order to maximize the capability of the pre-@ssing for elimination of un-
wanted foreground. One possibility would be to add a furtkan to the cost function in
order to exclude choice of pixels or frames which are tocedlistrom a current version of
the model. However, this should be pursued with care, sineedsultant system would
contain a feedback loop which may invite bootstrapping asthibility problems.

Although we chose to use a subspace model for the second gaggbilities cer-
tainly exist for incorporating other techniques. A per pireodel might need less or
only one Gaussian if the pre-processing tends to reduce-malality in colour space.
Dispensing with the Expectation-Maximization stage [Htthsually goes with Gaussian
Mixture Models could lead to considerable saving in procgssme.



However, we believe that the subspace model as chosen fetfeehizest possibility of
success, since it excels in modelling the global linkagehaingies between pixels rather
than the spatially localized disturbances which the Mirt4Zage tends to attenuate. Such
a property makes it ideal for a compact model of daylightafaitity.

6 Conclusion

We have demonstrated that a hybrid background modellingreehconsisting of a pre-
processing stage based on the combination of a Min-Cut/Maw~algorithmand a con-
ventional subspace model shows advantage over the coomahSubspace model op-
erating alone. Suitable for application in outdoor envir@mnts, we have succeeded in
developing a system tolerant of lighting changes, whilsivehg robustness to a high
level of activity in a complex scene. Although rather congtisnally intensive, the new
algorithm produces useful improvements when running abamsultiple of the true frame
rate. With refinements in the software architecture, it isdved that the Min-Cut + Sub-
space method does have a useful rdle to play in practicdicagipns, but in any case is
valuable as a vehicle for future research in this direction.
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Original Input Frame

Direct Subspace Min-Cut + Subspace

Min-Cut Only

Figure 6: Segmentation of two frames using Min-Cut + SubspBirect Subspace, and
Min-Cut Only methods. Min-Cut + Subspace shows the best satation here.



