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ABSTRACT

Person re-identification (re-id) is the task of matching multi-
ple occurrences of the same person from different cameras,
poses, lighting conditions, and a multitude of other factors
which alter the visual appearance. Typically, this is achieved
by learning either optimal features or distance metrics which
are adapted to specific pairs of camera views dictated by the
pairwise labelled training datasets. In this work, we formulate
a deep learning based novel approach to automatic prototype-
domain discovery for domain perceptive person re-id. The
approach scales to new and unseen scenes without requiring
new training data. We learn a separate re-id model for each
of the discovered prototype-domains and during model de-
ployment, use the person probe image to automatically select
the model of the closest prototype-domain. Our approach re-
quires neither supervised nor unsupervised transfer learning,
i.e. no data available from target domains. Extensive eval-
uations are carried out using automatically detected bound-
ing boxes with low-resolution and partial occlusion on two
large scale re-id benchmarks, CUHK-SYSU and PRW. Our
approach outperforms state-of-the-art unsupervised methods
significantly and is competitive against supervised methods
which use labelled test domain data.

Index Terms— Person Re-Identification, Deep Learning,
Transfer Learning, Prototype Domain

1. INTRODUCTION

The task of re-identifying the same person across different
cameras has attracted much interest in recent years. Most
existing approaches interpret each camera as a separate vi-
sual domain and focus on developing features or metrics that
can robustly recognize a person across such camera-view-
perspective domains [1]. In this work, we consider other
camera-view-independent factors, such as pose, illumination,
occlusions, and background which influence the visual ap-
pearance of a person. We aim to identify visual domains de-
fined by these factors and use them to construct camera-view
independent re-id models for better scalability to unknown
camera views and scenes.

We propose a two-stage approach to automatically dis-
cover visual domains in large amounts of diverse data and use
them to learn feature embeddings for person re-identification.
In the first stage, we create a training dataset with a large
degree of visual variation by pooling many existing re-id
datasets. We then apply clustering based on feature learning
in convolutional neural networks (CNNs) to automatically
discover dominant visual domains (prototype domains). In
the second stage, we apply CNNs to learn a feature embed-
ding for each of these prototype domains. This allows our
approach to learn specific details about each individual pro-
totype domain while ignoring the complexities of others. For
example, an embedding learned for a domain which predom-
inantly contains people of dark-dress does not need to encode
information relevant to distinguishing a person dressed in
light blue colors from a person dressed in white clothes. The
domain perceptive embedding can thus focus on learning
more subtle discriminative characteristics among similar vi-
sual appearances. At test time, a probe image is first matched
to its closest domain. Then, the feature embedding learned
on that domain is used to perform re-identification. Note, this
approach is purely inductive. It does not require any training
data (labelled or unlabelled) from the target (test) domains,
and the model is designed to scale to any new target do-
main. Our approach is particularly well suited to scenarios in
which no fixed set of camera views is available (i.e. no fixed
domain borders are specified). We thus evaluate it on the lat-
est CUHK-SYSU and PRW datasets, which contain images
from diverse sources of mobile cameras, movies and fixed-
view cameras, with a multitude of view angles, backgrounds,
resolutions and poses. Our inductive approach yields state-
of-the-art accuracy on CUHK-SYSU and performs very close
to state-of-the-art supervised approaches on PRW.

Our contributions are: (1) We formulate a novel approach
to automatic discovery of prototype-domains for character-
ising a person’s visual appearance with domain perceptive
awareness. (2) We develop a deep learning model for do-
main perceptive (DLDP) selection and re-id matching in a
single automatic process without any supervised or unsuper-
vised domain transfer learning. (3) We show the significant
advantage of our model by outperforming the state-of-the-art
on the CUHK-SYSU benchmark [2] with up to 5.6% at Rank-
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Fig. 1. DLDP overview: For training we discover prototype-domains in diverse data and learn a domain-specific re-id model
for each domain. At deployment, the query image identifies a matching domain and optimal model for re-id.

1 re-id, and being competitive on the PRW benchmark [3] of
45.4% Rank-1 re-id compared to the 47.7% state-of-the-art,
notwithstanding that the latter benefited from model learning
on target domain.

2. RELATED WORK

Most re-id approaches fall in two categories: Feature design
and metric learning. The former aims to develop a robust
feature representation. The latter focuses on optimizing a dis-
tance metric that, given any feature, yields small distances
for matching person images and large distances for images
of different people. In recent years, deep learning has shown
superior performance for image classification, and has been
applied to person re-id as well.

Many deep learning approaches focus on feature learn-
ing. CNNs are trained using either the softmax [4, 5, 6] loss
for classification of person IDs, ranking losses, such as the
triplet loss [7], or modifications thereof [8]. The responses
of specific network layers are then used as features (feature
embeddings) for re-id. Some deep learning approaches focus
on studying network layers specifically designed for person
re-id, such as the filter pairing approach by Li et al. [9] or the
neighborhood matching layer [10, 11]. Xiao et al. [2] propose
an approach which combines person detection and re-id into
an end-to-end model.

A few works have also focused on how to better separate
individuals with very similar visual appearance. Karaman et
al. [12] combine simple discriminants with a Markov Random
Field which leverages local structure in feature space. Garcia
et al. [13] introduce a re-ranking method which uses content
and context clues to optimize visually similar top ranks.

Recent studies have addressed cross-domain re-id by us-
ing target domain data for supervised [14, 15, 16] or unsuper-
vised [17, 18] domain adaptation. Others have evaluated their
models across datasets without any adaptation to the target
domain [19, 20, 4]. To our knowledge, the proposed model in

this work, uniquely, does not rely on domain adaptation using
target domain data whilst learning domain perceptive re-id for
unknown target domains.

3. METHODOLOGY

The central objective of our approach is to learn a domain
adaptive re-id model (domain perceptive) which is scalable
to new and unseen domains without requiring any additional
training data for adaptation. We propose a two-stage approach
to achieve this: (1) In the first stage, characteristic and domi-
nant prototype domains are automatically discovered in large
amounts of diverse data; (2) In the second stage, this informa-
tion is used to train a number of domain specific re-id embed-
dings by deep learning. An overview of our approach is given
in Figure 1.

3.1. Automatic Domain Discovery

Divergent Data Sampling: A key requirement for a mean-
ingful domain discovery is divergent data sampling which
aims to provide a large range of realistic visual variation. In
order to achieve such a high degree of variation, we pool a
number of publicly available person re-identification datasets
into a new, large dataset for domain discovery, called DLDP
dataset1. We combine 10 datasets: HDA [21], GRID [22],
3DPeS [23], CAVIAR4REID [24], i-LIDS [25], PRID [26],
VIPeR [27], SARC3D [28], CUHK2 [29], and CUHK3 [9].
The combined dataset contains images of 4,786 different per-
sons with a total of 41,380 bounding boxes of which 14,097
are obtained by a person detector. We resize all bounding
boxes to a uniform size of 160× 80 pixels.
Network Architecture: We use the same network architec-
ture for all models trained in our approach. The architecture
is based on inception layers [30] and resembles that described

1The DLDP dataset will be made publically available.



Fig. 2. Prototype-domains discovered by our approach:
Supervised initialization with a re-id net (left), initializa-
tion by weights learned through unsupervised autoencoding
(right). Our model learns semantically meaningful prototype-
domains (e.g. light-colored, yellow and blue clothing).

in [5]. We empirically found two modifications to this archi-
tecture which result in increased accuracy for our approach:
we add a fourth initial convolutional layer and increase the
size of the final feature layer to 512.
Prototype-Domain Discovery: We apply deep learning
based clustering to discover prototype domains from the
DLDP dataset. Specifically, we exploit the concept of unsu-
pervised deep embedding space learning proposed in [31].
Our deep learning clustering model alternates between (1)
training a CNN to learn a feature embedding and (2) applying
conventional k-means clustering in the embedding space to
find clusters. To initialize the weights of our feature embed-
ding CNN, we first train the model using the person ID labels
available in the data. We set the last fully connected layer of
the network to 4,786 dimensions and train using person ID
labels in a one-hot encoding and a softmax loss for ID classifi-
cation. The resulting weights are used for initialization of the
domain embedding. This initialization from a re-id pretrained
net is crucial to the success of our prototype domain discov-
ery. The re-id training ensures that the initial model does
not react strongly to the dataset biases present in our feature
pool. This prevents the clustering from simply discovering
trivial dataset boundaries as prototype domain boundaries
and instead, lets the model focus more on the content of each
person bounding box. Figure 2 shows three domains resulting
from our proposed initialization compared to three domains
resulting after initialization from an autoencoder. For the
domain discovery (i.e. k-means clustering) the ID softmax
loss layer is replaced by a softmax loss which corresponds to
the number of clusters. Thus, after a supervised initialization,
the domain discovery continues in an unsupervised manner.
Training Strategy: For training our deep clustering model
we use a low initial learning rate of 1e-3 to ensure that the
cluster embedding does not deviate too quickly from its ini-
tialization. Given the initial embedding, we perform 25 repe-
titions of k-means clustering in the embedding space and se-
lect the best result for the next refinement of the embedding.
This ensures stability of the iterative training process. The
refinement (fine-tuning) of the embedding CNN is then per-
formed for a further 10,000 training iterations. We divide the

learning rate by 10 every two iterations of the discovery pro-
cess. This iterative process is repeated until less than 1% of
images change their cluster assignments.

3.2. Domain Perceptive Re-Id Model

The second stage of our DLDP re-id model consists of learn-
ing a domain-sensitive re-id model for each prototype do-
main. That is, we train one feature embedding with all person
ID labels for each of the discovered prototype domains from
the first stage. To that end, we start by training a common
generic baseline re-id model on all available data without con-
sidering the domains. The individual domain models are then
trained by fine-tuning this baseline model.
Baseline Model: For a baseline, we train a model for 60,000
iterations on all training data to learn a generic feature embed-
ding without domain specific adaptation. The initial learning
rate is set to 1e-2 and divided by 10 after every 20,000 it-
erations. We use the output of the 512 dimensional layer as
our baseline feature embedding for re-id. Re-id matching is
performed by cosine distance.
Domain Sensitive Embeddings: In order to create domain
specific training data, we select for each person ID in a given
domain all of that person’s images and add them to the train-
ing data for the domain. This data sampling method allows
the domain models to specialize and focus particularly on the
visual cues relevant to persons from their domain while not
having to also learn how to distinguish between persons from
other domains. We train the domain specific embedding by
fine-tuning the baseline model. The dimension of the softmax
layers is adapted according to the number of persons in each
domain. For each domain we fine-tune for 30,000 iterations
at an inital learning rate of 1e-4.
Automatic Domain Selection: During model deployment,
a probe person image is first matched to its most likely do-
main by the deep clustering model (Section 3.1). The corre-
sponding domain specific re-id model is then used to rank the
gallery images. This dynamic model selection at query time
lets our model adapt to the target domain on-the-fly without
any need for re-training.

4. EXPERIMENTS

Datasets and Protocol: We evaluate our model on the
CUHK-SYSU [2] and PRW [3] full-image datasets which
consist of 8432 and 932 person IDs as well as 99,809 and
34,304 bounding boxes, respectively. Both datasets contain a
large number of viewing angles, range of pose, occlusions and
resolution. This allows us to investigate the generalization
capability of our approach under very realistic conditions,
its ability to handle large amounts of varying views and to
evaluate its performance on automatically detected person
bounding boxes. Note, that both datasets contain many dis-
tractor persons without ID in the galleries (i.e. open-set eval-



k=1 k=2 k=4 k=6 k=8
mAP 68.4 67.1 71.4 72.6 74.0
Rank-1 70.3 68.7 73.3 75.1 76.7

Table 1. Effect of prototype-domain numbers (k) on re-id
rate, using CUHK-SYSU with the gallery 100 setting.

uation) and any person detector will generate false positive
detections which the re-id approach has to handle. Since our
approach does not require training data on the target domain,
we only use the test part of each dataset. We follow the exact
evaluation protocols specified in [2] and [3], respectively and
use the provided evaluation code. We use mean Averaged
Precision (mAP) and Rank-1 accuracy as evaluation metrics
for comparison to existing models [2, 3].
Number of Domains: In Table 1 we investigate the influ-
ence of the number of chosen domains on the accuracy of
DLDP. The setting for a single domain (k=1) corresponds to
our baseline model. For few domains (k=2) the resulting re-
id models perform less accurate than the baseline. This is
due to the low degree of specialization in the domains which
leads to the resulting models merely being weaker versions of
the baseline model. Given an increasing number of domains,
DLDP’s advantage becomes greater until it saturates around
eight domains, which is adopted for all other experiments.

mAP Rank-1

[2
]

Person Search [2] 55.7 62.7
Baseline Model 61.4 68.3
DLDP 66.8 71.9

SS
D

DLDP (SSD VOC300) 49.5 57.5
DLDP (SSD VOC500) 57.8 64.6
Baseline Model (SSD VOC500) 54.2 59.9

Table 2. Performance comparison between DLDP and [2]
using auto-detections from [2] or the SSD detector.

mAP Rank-1

D
PM

In
ri

a IDE [3] 13.7 38.0
IDEdet [3] 18.8 47.7
BoW + XQDA [3] 12.1 36.2
Baseline Model 12.9 36.5
DLDP 15.9 45.4

SS
D

BoW + XQDA (SSD VOC300) 6.8 26.6
DLDP (SSD VOC300) 10.1 35.3
DLDP (SSD VOC500) 11.8 37.8

Table 3. Performance comparison on the PRW dataset, with
5 bounding boxes per image. Note that all existing models
except ours were trained (supervised) on the PRW dataset.

Comparison with the state-of-the-art: We give results on
the CUHK-SYSU dataset for gallery sizes of 100 images in
Table 2. Our baseline model outperforms [2] when relying on
the same set of detections and still performs very well when
relying on detections generated by the SSD detector [32]. The

full DLDP approach outperforms [2] in both settings. Impor-
tantly, DLDP in combination with the SSD detector (trained
on Pascal VOC data) still outperforms [2] (which relies on re-
id features and detections which were trained on the CUHK-
SYSU training set) by 1.9% at Rank-1.
For the evaluation on the PRW benchmark, we compared
DLDP to a baseline using BoW features and XQDA met-
ric learning [33] and two deep feature embeddings IDE and
IDEdet from [3] which are based on the AlexNet [34] ar-
chitecture, trained on ImageNet and fine-tuned for re-id on
PRW. For person detection, we used both the DPM person
detector [35] trained on the INRIA dataset [36] provided by
[3] and the SSD detectors for a fair comparison. Our results
are shown in Table 3. It is evident that the SSD detector de-
creases re-id performance for all models as the SSD detectors
seem to perform poorly on the PRW dataset. Regardless,
our model outperforms both the BOW+XQDA baseline and
the deep IDE feature embedding reported in [3] when the
identical DPM person detector was used, by 2.2% and 7.4%
in mAP and Rank-1, respectively. Note, the improved deep
IDEdet embedding of [3] outperforms DLDP by 2.9% and
2.3% in mAP and Rank-1 accuracy. However, this is due
to its pretraining for person classification on the test domain
data resulting in less false positive detections. In all experi-
ments DLDP outperforms the baseline model, demonstrating
the effectiveness of domain perceptive model selection.

Fig. 3. Qualitative results of our approach. Correct results are
framed in red. Note that most incorrect results are visually
similar to the query.

5. CONCLUSION

In this work, we presented a novel approach to domain sensi-
tive person re-identification by deep learning without the need
for additional training data from the target (test) domains. Our
evaluations on two latest benchmarks demonstrate clearly that
the proposed DLDP model outperforms the state-of-the-art
without use of test domain data and is even competitive to
models trained with test domain data.
Acknowledgements: The research travel grant of the Karl-
sruhe House of Young Scientists (KHYS).
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