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Abstract. This paper investigates the appearance manifold of facial
expression: embedding image sequences of facial expression from the high
dimensional appearance feature space to a low dimensional manifold.
We explore Locality Preserving Projections (LPP) to learn expression
manifolds from two kinds of feature space: raw image data and Local
Binary Patterns (LBP). For manifolds of different subjects, we propose
a novel alignment algorithm to define a global coordinate space, and
align them on one generalized manifold. Extensive experiments on 96
subjects from the Cohn-Kanade database illustrate the effectiveness of
the alignment algorithm. The proposed generalized appearance manifold
provides a unified framework for automatic facial expression analysis.

1 Introduction

The ability to recognize affective states of a person is indispensable and very
important for successful interpersonal social interaction. Human-Computer In-
teraction (HCI) designs need to include the ability of affective computing, in or-
der to become more human-like, more effective, and more efficient [13]. Affective
arousal modulates all nonverbal communication cues such as facial expressions,
body postures and movements. Facial expression is perhaps the most natural
and efficient means for humans to communicate their emotions and intentions,
as communication is primarily carried out face to face. Therefore, automatic fa-
cial expression analysis has attracted much attention [12,5,20] in recent years.
Though much progress has been made [19,4, 3], recognizing facial expression
with a high accuracy remains to be difficult due to the complexity and variety
of facial expressions.

A face image with NV pixels can be considered as a point in the N-dimensional
image space, and the variations of face images can be represented as low dimen-
sional manifolds embedded in the high dimensional image space [17,14,7,6,8].
It would be desired to analyze facial expressions in the low dimensional subspace
rather than the ambient space. However, research on the manifold of facial ex-
pression has been very limited as far as it goes. Chang et al. [2] made first
attempt to apply two types of embedding, Locally Linear Embedding (LLE)
[14] and Lipschitz embedding, to learn the structure of the expression manifold.
In [3], they further proposed a probabilistic video-based facial expression recog-
nition method on manifolds. A complete expression sequence becomes a path on



the expression manifold, and the transition between basic expressions is repre-
sented as the evolution of the posterior probability of the six basic paths. Based
on a expression manifold obtained by Isomap embedding [17], they also proposed
an approach for facial expression tracking and recognition [9]. However, the ex-
isting research learned the expression manifold in the feature space described by
a set of facial landmarks such as 58 facial points [2, 3]; the appearance manifold
of facial expression is still unknown. Moreover, the existing research was con-
ducted on data sets containing only several subjects [2, 3]; there is no published
work on the expression manifold carried out on a large number of subjects.

A number of nonlinear techniques have been proposed to learn the struc-
ture of a manifold, e.g., Isomap [17], LLE [14], and Laplacian Eigenmap (LE)
[1]. However, these techniques yield maps that are defined only on the training
data, and it is unclear how to evaluate the maps for new test data, although some
mapping methods were discussed in [14]. Therefore, they may not be suitable
for expression recognition tasks. Recently He and Niyogi [7] proposed a general
manifold learning method called Locality Preserving Projections (LPP) (Sec-
tion 2), which are obtained by finding the optimal linear approximations to the
eigenfunctions of the Laplace Beltrami operator on the manifold. Different from
PCA, which implicitly assumes that the data space is Euclidean, LPP assumes
that the data space is a linear or nonlinear manifold. LPP shares some similar
properties with LLE and LE, such as locality preserving. More crucially, LPP is
defined everywhere in the ambient space rather than just on the training data,
and so it has significant advantage over LLE and LE in locating and explain-
ing new test data in the reduced subspace. LPP was shown to have superior
discriminating power than PCA and LDA in face recognition [8].

In this paper, we investigate the appearance manifold of facial expression,
which provides a unified framework for automatic facial expression analysis. We
explore Locality Preserving Projections to learn the structure of the expression
manifold from two kinds of feature space: raw image data and Local Binary
Patterns (LBP) [16]. For manifolds of different subjects, we propose a novel
alignment method to keep the semantic similarity of facial expression from dif-
ferent subjects on one generalized manifold (Section 3). We show in Section 4 the
experimental results on the Cohn-Kanade Database [10]. Expression manifolds
of 96 subjects are successfully aligned on the generalized manifold. Expression
recognition performed on the generalized manifolds further demonstrate the ef-
fectiveness of the alignment method. Conclusions are drawn in Section 5.

2 Locality Preserving Projections (LPP)

The generic problem of linear dimensionality reduction is the following. Given
a set r1,Ta,..., T, in R™, find a transformation matrix W that maps these m
points to Y1, Y2, - - - , Ym in R (I < n), such that y; represent z;, where y; = W7Tx;.
Let w denote the transformation vector, the optimal projections preserving lo-



cality can be obtained by solving the following minimization problem [7]:

H‘lhiln Z(WT@' —wlz;)28;; (1)
.3

where S;; evaluate the local structure of data space. It can be defined as follows:
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or in a simpler form as

(3)

g — 1 if x; and x; are “close”
! 0 otherwise

where “close” can be defined by |lz;—x;||* < €, or z; is among k nearest neighbors
of x; or x; is among k nearest neighbors of x;. The objective function with the
choice of symmetric weights S;;(S;; = S;;) incurs a heavy penalty if neighboring
points x; and x; are mapped far apart. Therefore, minimizing it is an attempt to
ensure that if ; and x; are “close” then y;(= w’z;) and y;(= w’z;) are close
as well. S;; can be seen as a similarity measure between objects. The objective
function can be reduced to:
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where X = [z1,29,...,2m,] and D is a diagonal matrix whose entries are column
(or row, since S is symmetric) sums of S, D;; = Zj Sji. L = D — S is the
Laplacian matrix. The bigger the value D;; (corresponding to y;) is, the more
important is y;. Therefore, a constraint is imposed as follows:

y' Dy =1=w/XDXTw =1 (5)

The transformation vector w that minimizes the objective function is given by
the minimum eigenvalue solution to the generalized eigenvalue problem:

XLXTw = XDX"w (6)

Note that the two matrices X LX” and X DX” are both symmetric and positive
semi-definite. The obtained projections are actually the optimal linear approxi-
mation to the eigenfunctions of the Laplace Beltrami operator on the manifold
[7]. Therefore, though it is still a linear technique, LPP recovers important as-
pects of the intrinsic nonlinear manifold structure by preserving local structure.
A more detailed derivation and justifications of LPP can be found in [7].

By applying LPP to LBP appearance feature space, image sequences of facial
expressions of an individual are mapped into the embedded space as shown in
Fig 1. The embedded manifolds of another three subjects are shown in Fig 2. It
is observed that image sequences representing basic expressions with increasing
intensity become curves on the manifold extended from the center (neutral faces)
to the typical expressions.
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Fig. 1. Six image sequences of basic expressions of an individual mapped into the
embedding space described by the first 3 coordinates of LPP. Different sequences are
represented by different colors: red: Anger; yellow: Disgust; blue: Fear; magenta: Joy;
cyan: Sadness; green: Surprise. (Note: the meaning of colors keeps same in all figures.)

3 Alignment of Manifolds of Different Subjects

Image sequences of facial expressions of an individual makes a continuous man-
ifold in the embedding space; however, due to significant appearance variation
across different subjects, the manifolds of different subjects vary much in the cov-
ered regions and the stretching directions. Fig 3 shows the embedded manifold
of image sequences from six subjects, which clearly shows that different subjects
correspond to different clusters. Manifolds of different subjects should be aligned
in a way that the images from different subjects with semantic similarity can be
mapped to the near region. Chang et al [2] proposed a nonlinear method to align
the manifolds of different subjects in the space of Lipschitz embedding. Their
alignment method was evaluated on image sequences from two subjects. Here
we propose a novel algorithm to align manifolds of different subjects in a global
space, and verify its effectiveness on O(10?) subjects.

As shown in Fig 1, an image sequence representing facial expression with in-
creasing intensity is embedded as a curve on the manifold, from the neutral face
to the typical expression. If we define a global coordinate space, in which differ-
ent typical expressions (including neutral faces and six basic expressions) from
multiple subjects are well clustered and separated, the image sequences from



different subjects with the same expression will be embedded as curves between
the same two clusters: neutral faces and the typical expression. In this way, the
manifolds of different subjects will be aligned on one generalized manifold.

We propose to define the global coordinate space based on images of typi-
cal expressions. For the data set containing images of typical expressions from
different subjects, as appearance varies a lot cross different subjects, there is sig-
nificant overlapping among different expression classes. Therefore, the original
LPP, which performs in an unsupervised manner, fails to embed the data set
in low dimensional space in which different expression classes are well clustered.
Here we proposed a Supervised Locality Preserving Projections (SLPP) algo-
rithm to solve the problem, which not only preserves local structure, but also
encodes class information in the embedding. SLPP preserves class information
when constructing the neighborhood graph. The local neighborhood of a sample
x; from class ¢ should be composed of samples belonging to class ¢ only. This
can be achieved by increasing the distances between samples belonging to dif-
ferent classes, but leaving them unchanged if they are from the same class. Let
Dis(i, j) denote the distance between z; and z;, the distance after incorporating
class information is defined as

SupDis(i,j) = Dis(i,7) + aMé(i, j) a € 10,1] (7)

where M = max; ; Dis(i,7), and 6(4,j) = 1 if 2; and x; belong to the same
class, and 0 otherwise. SLPP introduces an additional parameter « to quantify
the degree of supervised learning. When a = 0, one obtains the unsupervised
LPP; when a = 1, the result is fully supervised LPP. For fully supervised LPP,
distances between samples in different classes will be larger than the maximum
distance in the entire data set; this means neighbors of a sample will always be
picked from that class it belongs to. Varying a between 0 and 1 gives a partially
supervised LPP, where a embedding is found by introducing some separation
between classes. SLPP (o = 1) is used in this paper. By preserving local structure
of data belonging to the same class, SLPP obtains a subspace in which different
image classes can be well separated.

By applying SLPP to the data set of images of typical expressions, a subspace
is derived, in which different expression classes are well clustered and separated
(as shown in Fig 5). The subspace provides global coordinates for the manifolds
of different subjects, which are aligned on one generalized manifold. Image se-
quences representing facial expressions from beginning to apex are mapped on
the generalized manifold as the curves from the neutral faces to the cluster of the
typical expressions. For comparison, Fig 3 and Fig 6 show the unaligned man-
ifolds and the aligned manifolds of six subjects. The generalized manifold map
the images with sematic similarity but from different subjects in the near region;
so it provides a unified framework for automatic facial expression analysis.

4 Experiments

The optimal data set for expression manifold learning should contain O(102)
subjects, and each subject has O(103) images that cover basic expressions. How-



ever, until now, there is no such database that can meet this requirement. Chang
et al [2, 3] conducted experiments on a small data set builded themselves, e.g.,
only two subjects (one male and one female) were used in [2]. Here we conduct
experiments on the Cohn-Kanade database [10] which consists of 100 university
students in age from 18 to 30 years, though each subject only has several tens
frames of basic expressions. Image sequences from neutral to target expression
were captured, and the duration of the expression varied. In our experiments, 316
image sequences (5,876 images in total) of basic expressions were selected from
the database, which come from 96 subjects, with 1 to 6 emotions per subject.

Following Tian [18], we normalized the faces to a fixed distance between
the centers of the two eyes. Facial images of 110x 150 pixels were cropped from
original frames based on the two eyes location. No further alignment of facial
features such as alignment of mouth, or remove of illumination changes [18]
were performed in our experiments. So variations due to illumination, and pose
exist in our data. In [2], Active Wavelets Networks were applied on the image
sequences to reduce these variations.

Two kinds of appearance features were used: raw image data (IMG) and
Local Binary Patterns (LBP). LBP was proposed originally for texture analysis
[11]. Face images can be seen as a composition of micro-patterns which can be
effectively described by the LBP features. In our previous research [16,15], LBP
features were shown to be effective and efficient for facial expression analysis.
Each face image was represented by a LBP histogram with length of 2,478 (see
[16] for details). When considering IMG features, for computational efficiency,
we down-sampled face images to 55x 75 pixels, and represented each image with
a 4,125-dimensional vector.

Appearance Manifold of Facial Expression We selected six subjects from
the data set, each of which has six image sequences corresponding to six basic
expressions. At first, we applied LPP to image sequences of each subject respec-
tively to learn the expression manifold of each subject. 3-D visualization of the
embedded manifold in LBP feature space of one subject is shown in Fig 1. Due
to limitation of space, we only show the embedded manifolds of another three
subjects in Fig 2. It is observed that images of facial expressions of an individ-
ual were embedded as a smooth manifold, and every image sequence is mapped
to a curve on the manifold that begins from the neutral face and extends in
distinctive direction with varying intensity of expression.

Next we applied LPP to image sequences of all six subjects, and 3-D visual-
ization of the embedded manifold are shown in Fig 3. It is observed that there
are six clusters in the embedded space, and image sequences of different subjects
are mapped to different regions. As said above, due to the significant appearance
variation across subjects, it is very hard for LPP to keep images with similar
expression but from different subjects in the near region on the manifold. Fig
4 shows the 3-D embedded manifolds of all image sequences from 96 subjects,
which consists of many manifolds with different centers (neutral faces), covering
regions and stretching directions.
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Fig. 2. 3-D visualization of expression manifolds of three subjects (from left to right).
The first row: LBP; the second row: IMG.
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Fig. 3. Image sequences of six subjects mapped into the embedding space described
by the first three coordinates of LPP. Left: LBP; Right: IMG

Alignment of Appearance Manifolds We selected one neutral face and three
peak frames (during the apex of expression) of every sequence to build a data
set that consists of images of 7-class basic expressions. The Supervised LPP
was explored to embed the data set to a subspace as shown in Fig 5. Different
expressions were well clustered and separated in the subspace. It is also observed
that different expression classes are better separated with LBP features. The
distributions obtained reflect the human observation that Joy and Surprise can
be clearly separated, but Anger, Disgust, Fear and Sadness are easily confused.
In many existing research such as [18,4], most confusions also come from Anger,
Disgust, Fear and Sadness.

The subspace derived by SLPP provides global coordinates for the manifolds
of different subjects. Fig 6 plots appearance manifolds of the six subjects in the
global space, which are successfully aligned on one generalized manifold. The
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Fig. 4. Image sequences of 96 subjects mapped into the embedding space described by
the first three coordinates of LPP. Left: LBP; Right: IMG

Fig. 5. Images of typical facial expressions mapped into the embedding space described
by the first three coordinates of SLPP. Left: LBP; Right: IMG.

manifolds of 96 subjects are also aligned on the generalized manifold as shown
in Fig 7. We can conclude that the images with semantic similarity but from dif-
ferent subjects are successfully embedded in the near region in the global space.
A supplementary video ! demonstrates image sequences of different subjects are
embedded on the generalized manifold.

The global space is learned from images of typical basic expressions. So it is
simple and easy to implement. Although only image sequences of basic expres-
sions are discussed until now, the generalized appearance manifold provides a
global semantic representation for all possible facial expressions. For example,
the blends of expression will lie between the curves of basic expressions, so can
be analytically analyzed based on the basic curves. Intensity of expression can
also be defined easily on the generalized manifold. Therefore, the analysis of
facial expression will be facilitated on the generalized manifold.

! Available at http://www.dcs. gmul. ac.uk/ ~cfshan/demos/manifold_align. avi
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Fig. 7. The aligned manifolds of 96 subjects. Left: LBP; Right: IMG.

Facial Expression Recognition Following Chang et al [2], we applied a k-
Nearest Neighbor method to classify expressions on the aligned expression man-
ifold. Since there is no clear boundary between neutral face and the expression
of a sequence, we manually labelled neutral faces, which introduced noise in our
recognition. The recognition results are presented in Table 1. The experimental
results further demonstrate the effectiveness of our alignment method.

E-NN (k = 9)|k-NN (k = 11)|k-NN (k = 13)
IMG| 92.04% 91.27% 89.98%
LBP| 90.71% 90.79% 90.67%

Table 1. Expression recognition results on the generalized appearance manifold of
facial expression.

5 Conclusions

This paper investigates the appearance manifold of facial expression, which pro-
vide a general framework for automatic facial expression analysis. Locality Pre-
serving Projections (LPP) is explored to learn expression manifolds from two
kinds of feature space: raw image data and Local Binary Patterns (LBP). For



manifolds of different subjects, we propose a novel alignment algorithm by learn-
ing a global space from images of typical expressions. The semantic similarity of
facial expression from different subject is well kept on the generalized manifold.
Extensive experiments on 96 subjects from the Cohn-Kanade database illustrate
the effectiveness of the alignment algorithm.
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