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Abstract

Real-time identity-independent estimation of head pose from prototype images is a perplexing task requiring pose-invariant face detection.
The problem is exacerbated by changes in illumination, identity and facial position. We approach the problem using a view-based statistical
learning technique based on similarity of images to prototypes. For this method to be effective, facial images must be transformed in such a
way as to emphasise differences in pose while suppressing differences in identity. We investigate appropriate transformations for use with a
similarity-to-prototypes philosophy. The results show that orientation-selective Gabor filters enhance differences in pose and that different
filter orientations are optimal at different poses. In contrast, principal component analysis (PCA) was found to provide an identity-invariant
representation in which similarities can be calculated more robustly. We also investigate the angular resolution at which pose changes can be
resolved using our methods. An angular resolution of 10° was found to be sufficiently discriminable at some poses but not at others, while 20°
is quite acceptable at most poses. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Head pose, closely related to gaze, is an important visual cue
for interpretation of human behaviour and intentions. Estima-
tion of head pose from video sequences is a key task for vision
systems performing scene understanding for human—compu-
ter interfaces or security surveillance. However, the problem is
highly complex because the appearance of the face changes
with variations in head pose, spatial scale, identity, facial
expression and illumination conditions.

While face detection, tracking and recognition have been
actively researched for some time, it is usually assumed that
the faces are seen at a near-frontal view. The most success-
ful face detection systems that have been developed are
based on statistical learning of facial images. Rowley et
al. [20] used neural networks to perform face detection for
frontal views. Sung and Poggio [21] used a supervised
learning approach with a hyper-basis function network to
detect faces. Osuna et al. [15] used support vector machines
(SVMs) to detect faces. Turk and Pentland [23] used prin-
cipal component analysis (PCA) to detect faces in their
work on EigenFaces. The supervised learning approach
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based on static views is problematic because correspon-
dence between image points is not explicitly accommo-
dated. Kruger et al. [10] used a deformable graph method
to determine face position and pose from learned models.
However, this algorithm is iterative and would not be appro-
priate for real-time applications. Pentland et al. [16]
extended the work on EigenFaces to modular EigenSpaces
in order to estimate the pose of a face. The concern with this
approach is whether sufficient training data can ever be
obtained realistically at each pose to establish a reliable
PCA basis. Ng and Gong [14] used multiple SVMs for
different regions of the pose sphere to perform pose estima-
tion and pose detection across wide pose variations. Li et al.
[11] used support vector regression to estimate the pose of a
face, then modular SVMs to detect the presence of a face.

2. Motivation and approach

The pose of the head is essentially a three-dimensional
quantity being inferred from two-dimensional data, so ambi-
guities arise. Localisation of the face is implicitly required
but intractable when the approximate head pose is not
known. Hence the problems of pose-invariant face detection
and head pose estimation go hand in hand and must be
solved simultaneously.

The task we have undertaken is to develop a system for
real-time identity-independent head pose estimation from a
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Fig. 1. The system for acquiring labelled views across the view-sphere.

single 2D view. In order to address the enormous problem of
simultaneously localising faces and estimating their aspect,
two factors are exploited. First, simple attention-focusing
cues are used to localise potential facial regions. Efficient
focus of attention based upon motion and colour cues has
been used to direct face search with a generic appearance-
based neural network face detector [12,18]. Second,
temporal correlation of head pose and face position are
exploited by tracking the face and its pose rather than
searching for these parameters directly in each video
frame. To associate moving faces in real-time, we adopt a
view-based approach that utilises learnable appearance
models rather than explicit 3D models. The approach is
based on similarities to prototypes [9], which uses second-
order similarity to obtain robust similarity measures from
sparse data [4]. Therefore neither distributions nor decision
boundaries are explicitly calculated. Furthermore, the views
are aligned using only simple image-plane transformations
such as translation and scaling or at most affine transforma-
tion. In particular, no dense correspondences between
feature points on different faces are required and as a result,
real-time performance is obtained. The approach is similar
to work proposed for recognition using similarity measures
[2] and for novel view generalisation and synthesis using
linear combinations of prototypes [24]. This work extends
the idea to wider pose variations and tracking over time.
The method primarily relies on a general assumption that
different people at the same pose look more similar than the

same person at different poses. In other words, pose is a
stronger indicator of image—space similarity than identity.
The assumption is here referred to as the pose similarity
assumption. As one can imagine, this assumption is valid
only for significant changes in pose. Nevertheless, even for
significant pose differences, the assumption may be invalid
because intensity images are sensitive to variations in illu-
mination and misalignment. To validate the assumption, the
facial images must be transformed to compensate for these
variations and to emphasise differences in pose over differ-
ences in identity.

The contribution of this work is to experimentally inves-
tigate ways of improving performance of the similarity-to-
prototypes method for head pose estimation. We investigate
the following two issues. First, for a given pose, what trans-
formation of the images is optimal to exaggerate differences
in pose and suppress differences in identity? Second, what is
the minimum angular separation that can be resolved using
similarity-based methods?

The remainder of the paper is laid out as follows. In
Section 3, the process of acquiring a training database of
labelled face images across the pose sphere is described. A
3D sensor is used to align the data spatially and in pose. In
Section 4, the similarity-to-prototypes method is described.
Section 5 describes the use of this method for tracking faces
under varying pose and identity. It goes on to explain the
need for careful choice of image representation in order to
make the computation robust. A pose similarity ratio is
introduced in Section 6. Two image representations are
then examined. First, filtering using Gabor wavelets in
Section 7, and second, sub-space compression using PCA
in Section 8. The last experimental investigation is in
Section 9, examining the smallest angular change in head
pose that can be reliably discerned using this method. The
conclusions are presented in Section 10.

3. Acquisition of labelled views across the pose-sphere

In order to build appearance models, example views
labelled with 3D pose angles (both tilt and yaw) are
required. A system was designed that utilises both a
magnetic sensor attached to the subject’s head and a camera
calibrated relative to the transmitter. The sensor was then
used to provide pose labels for the face images of the subject
captured by the camera. Fig. 1 shows the acquisition system.

More precisely, an electromagnetic 6 DOF Polhemus
tracker with a sensor and a transmitter provided 3D co-ordi-
nates and 3D orientation of the sensor relative to the trans-
mitter. The tilt, yaw and roll correspond to rotations about
the x, y and z axes, respectively, and are Euler angles.

The sensor was rigidly attached to a head-band worn by
the user so that it follows the head’s movements and
changes in orientation. The image acquisition system used
has a single camera, which has been calibrated to the trans-
mitter’s co-ordinate system. The location and size of the
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Fig. 2. An example labelled head image set. The images of labelled views are from +90° to —90° in yaw and from +30° to —30° in tilt at 10° intervals.

head in the image were determined by back-projection onto
the image-plane and an appropriately cropped image is thus
acquired. The sensor orientation was used to label the image
with head pose.

3.1. Camera calibration

In order to locate and align the 2D head images, camera
calibration with respect to the transmitter is needed. This
involves determining camera parameters using the 3D posi-
tions provided by the sensor and their corresponding 2D
projections on the camera’s image-plane. Both intrinsic
and extrinsic parameters were estimated. The intrinsic para-
meters are focal length and radial distortion. The extrinsic
parameters are the position and orientation of the camera
relative to the transmitter’s co-ordinate system. We adopted
the camera model used by Tsai [22].

The sensor was located in the image by attaching an
easily trackable marker to the sensor so that the centre of
this marker was at the centre of the sensor. The marker was a
solid black circle on white cardboard. The user initialised
the tracker by clicking on the marker in the image. The
marker was then tracked using a scheme based on intensity
thresholding while the user moved it around in 3D space. At
regular time intervals, the 3D co-ordinates in sensor space
and the 2D co-ordinates in the image-plane were recorded.
Typically, a few hundred such data points were recorded.
These were then used to perform camera calibration.

3.2. Head alignment and labelling

The position of the sensor with respect to the head is
somewhat arbitrary. However, the position and scale of
the heads in the images acquired need to be consistent
across different people. Therefore, a few facial features
were manually located for each subject in order to bootstrap
the acquisition process by determining a scaling factor and a
3D point inside the head. This point was rigidly ‘attached’ to
the facial features (eyes and upper lip) and was used to

project onto the centre of the acquired head images. In
other words, the 3D co-ordinates of facial features were
used to determine the co-ordinates of a 3D point inside
the head relative to the sensor’s 3D co-ordinates. The
image was then cropped as determined by the scale factor
and re-sampled to a fixed number of pixels.

Acquisition of a subject’s facial images proceeds as follows.
First the subject’s eyes and the middle of the upper lip are
located in a frontal view. These features are fairly rigid with
respect to the head. Boxes and vertical lines overlaid on the
screen help the operator to find the frontal view by assessing
bilateral facial symmetry. The inter-ocular line is also required
to be horizontal for this view. The distance between the upper
lip and the midpoint of the inter-ocular line segment is used to
determine the scale factor. The subject is then asked to turn
until his face is seen in profile view, i.e. until the 3D orientation
estimate indicates rotation through 90°. For the moment
assuming that the feature points’ depths in the camera co-
ordinate system are the same as the depth of the sensor, the
three facial feature points project onto epipolar lines in the
profile view. They are moved along these lines by the operator
until they are at the front of the eyeball. This fixes the z co-
ordinate of the eyes with respect to the sensor for the frontal
view. The above process can be iterated with feature points
being adjusted in frontal and profile view until the operator is
satisfied that the 3D facial feature positions have been
accurately estimated.

Labelled images were captured with y-axis rotation in the
range +90° and x-axis rotation in the range +30° at inter-
vals of 10°. Examples of the captured data for one subject
can be seen in Fig. 2.

4. View-based face appearance models using prototypes

Face appearance models are essentially view-based,
holistic templates. A simple way to obtain a generic appear-
ance model is to estimate an average face template at each
pose. These mean templates can be used to associate face
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Fig. 3. Top: Example views of 11 different subjects. Bottom: Some of the mean templates obtained by averaging filtered face prototypes at each pose from

profile to profile.

images in order to recognise and track poses of faces across
viewpoints. Fig. 3 shows some of the mean templates
computed by averaging filtered views of 11 different
subjects. However, although these view-based mean
templates can result in reasonable performance in recognis-
ing and tracking pose, they are sensitive to illumination
changes and image noise. Furthermore, they do not capture
identity information. More elaborate appearance models use
linear combinations of training samples. Given sufficient
data, such linear combinations can also be statistical
models. This includes the use of PCA [16], linear discrimi-
nant analysis [5] and hyper-basis function networks [8].

4.1. Linear combination of prototypes

An image X at a given pose can be decomposed as a linear
combination of prototype faces (x;,X,...,X,) at that pose,
x=>?, a;x;. This can be computed using singular value

decomposition. The coefficients @ = (ay, ay, ..., &) mini-
mise:
q
Ee®) =[x = > ax; (1)
i=1

BB ASES

In the case of linear object classes, the coefficients « are
invariant to pose [24]. However, faces do not form a linear
class although the approximation is acceptable when pixel-
wise correspondence is established. Here we establish no
such correspondence due to the need for real-time perfor-
mance.

4.2. Similarity vectors to prototypes

In order to generalise between views rather than assuming

that face appearances are linear combinations of prototypes
[24], an image can be represented as a vector of similarities
to prototype views [3]. Here we exploit this approach to
both face pose tracking and recognition. Let a face image
X at a given pose be represented as a vector « of similarities
to g prototype faces y;,y»,...,y, at the same pose:
o = [al’a%"-’aq], a; = h(X,yl) 2)
where i =1,...,q and h(-) is a similarity function that
defines a similarity measurement. The calculation is illu-
strated in Fig. 4.

A straightforward h(-) can be the inverse Euclidean

Face prototype views at different poses

Fig. 4. Tllustration of the similarity vector formation process.
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Similarity Manifolds in 3D Space from Frontal to Profile Views
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Fig. 5. Left: Prototypes at profile view. Centre: Pose manifolds of novel faces in the vector space of similarity to prototypes. Right: Images of novel faces at

profile view.

distance between a face image x = [x,...,xy] and a proto-
type y = [vi,...,yn] at a given view where N is the dimen-
sionality of the images:

1
yll a Vo =y 4+ oy — w)?

To take normalisation for overall intensity and contrast into
consideration, a better measurement should be the inverse of
Pearson’s linear correlation coefficient [17]:

3)

1
h(x,y) = =

N N

\Z<x,- - uxf\z O = iy’

hxy) = V. = @)
D> = G — py)

i=1

where uy and w, are the mean of the elements of x and y,
respectively. Furthermore, a distribution-weighted distance
measure such as a Gaussian can also be adopted:

_ _ 2
h(x.y) = exp( %) )

By measuring similarity vectors of novel faces to prototypes
across changes in yaw (y-axis rotation), it can be observed
that they often form separable and approximately linear
manifolds (see Fig. 5). The model is therefore useful for

recognition. Let us, however, consider its use in pose recog-
nition and tracking across views.

5. Transforming facial views to increase within-pose
similarity

Given a database of multiple views of different people, a
generic view-based appearance model can conceivably be
learned for tracking head pose in a person-independent
manner given sufficient training data. In practice, the
number of examples available at each view is small. Alter-
natively, appearance models based on similarity vectors to a
limited number (in tens) of prototype faces at multiple views
can be adopted. Given that face images at the frontal view
can be readily detected [12], let a similarity vector « to
prototypes for a detected face image at the frontal view be
measured using Eq. (2). Pose recognition and tracking can
then be performed by finding the next pose 6 (both yaw and
tilt), which maximises

Z2(0) = |loy]| + wh(ah, ") (6)

where || is the L, norm of the similarity vector at pose 0
at time 7. Function h(ay, &'~ ') is the similarity measure
between the two similarity vectors at the previously
known pose and the currently likely pose. Maximising
£(0) imposes two constraints. The first term maximises
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the magnitude of similarity regardless of identity in a neigh-
bourhood centred at the likely pose at time ?, therefore
performing a generic face matching at the likely pose at
time ¢. The second term assumes identity constancy in
similarity vector space provided that all other sources of
variation such as lighting and translational shift in the
images have been eliminated (as shown in Fig. 5). The
constant k controls a trade-off between the two factors
and its value will depend on the expected smoothness in
the pose change and the variation in a face’s similarity
measures to prototypes in different views.

Crucially, such a model is based on the assumption
that different faces at the same pose are more similar to
each other than the same face at different poses. Since
pixel-wise correspondence between images is not
currently possible for real-time pose estimation, the
image data must be transformed to a space in which
this assumption is true on average for the chosen simi-
larity criterion.

The most obvious transformation for images is to
apply an image filter. The optimal filtering of prototype
images is expected to be different at each pose angle
because different features are important at different
poses [7]. The most natural filtering of images for this
task is to use orientation-selective features. Gabor filters
are particularly appropriate because they incorporate
smoothing, which reduces sensitivity to spatial misalign-
ments. Recent studies on Gabor filters have shown that
these filters are approximately the basis functions for
natural images [19] and have been discovered in the
early visual system of mammals [26].

While filtering may enhance pose-specific features, it
is expected to provide only small invariance to identity.
Intuitively, a representation of the images is required
that encodes only very coarse-scale intensity variations
with pose. It has been shown in Ref. [7] that PCA can
be used to discard identity information while maintain-
ing pose information. PCA has the extra advantage that
similarity measures in a low-dimensional space are
more robust and easier to compute than in a high-
dimensional space.

In this work, we define a criterion to quantify the
goodness of a given transformation method for pose
prototypes. The criterion is then used in a series of
experiments. In the first experiment, Gabor filters are
examined as a method for enhancing pose differences
at each pose angle. In the second experiment, PCA is
used to represent prototypes and its identity-invariant
properties are examined. In the third experiment, the

(NIl -—

Pose Similarity Ratio

average distance to neighbouring poses

Fig. 6. Illustration of the pose similarity ratio.

criterion is used to determine the angular resolution at
which neighbouring poses can be resolved.

6. The pose similarity ratio

When matching images from various poses to a group of
prototype images, it is desirable to calculate similarity in a
space that is invariant to identity and sensitive to differences
in pose. To select a good transformation, a criterion is
required to allow us to compare image representations.
The criterion should be based on the pose similarity assump-
tion that differences in pose are more significant than differ-
ences in identity. Our criterion is defined as the following
ratio:

d(¢, 0.1())

r(¢, 0.f(-) = d(p = 3,0+ 36,f(-))

(N

This ratio shall be referred to as the pose similarity ratio
where:

e () is a transformation function that maps the images to
some other representation either with the same dimen-
sionality, e.g. an image filter, or with lower dimension-
ality, e.g. linear projection;

e d(¢, 0,f(-)) is the average distance (inverse of similarity)
between f-transformed prototypes of varying identity at a

Fig. 7. Gabor filters at different orientations y. The real part is on the left, imaginary on the right.
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Fig. 8. Pose similarity ratios for varying head pose and filter orientation. (a) Varying yaw with tilt fixed at 90°. The neighbourhood is based on yaw only. (b)
Varying tilt with yaw fixed at 90°. The neighbourhood is based on tilt only.

given pose:
N-1 N ) i
D D AU Xy f Ky p)
(. 6.f()) = —2

S

i=1 j=i+1

®) .

where Xib,O is the prototype image of subject i at pose
angles (¢,0) and d(x;,X,) is the distance between two
points in high-dimensional space:
d(¢p = 3¢, 6 = 86,f(-)) is the average distance between f-
transformed prototypes at the given pose and prototypes
of varying identity and pose over the given range of
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Table 1
Average minimum pose similarity ratios for filters of different sizes

Filter size (in pixels) 9 11 13 15
Average best ratio 0.974617  0.964791  0.958090  0.953220

neighbouring poses:

d(p+ 3,0+ 3860,f(-)

y=¢+3¢ t=0+ 3560

> d(fx).f(x])) 8 — .t — 6)
=0—230

=¢d+d¢p 1=0+ 350

doD -0

i=1 j=1 y=¢— 8¢ 1=0— 00

=

C))

where 8¢ and 86 are the sizes of the yaw and tilt neigh-
bourhoods and &8(y — ¢, — 6) is a delta function to
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discount the distance of a prototype to itself:

0
é(a,b) = {

1 otherwise

ifa=0and b =0;
(10)

An illustration of the similarity ratio is shown in Fig. 6. The
ratio can be interpreted as follows: when the ratio is small,
faces at the given pose are more similar to each other than to
faces at neighbouring poses and the pose similarity assump-
tion is valid. For large ratio values, faces at neighbouring
poses are more similar than at the same pose and the
assumption is invalid. At a given pose, the ratio can be
minimised with respect to f(-).

We now describe three experiments using the ratio criter-
ion. All results are based on a database of 30 X 30 images
collected from N = 8 subjects at poses over the pose sphere
of range ¢ € [0°,10°,...,180°] and 0 € [60°,70°, ..., 120°].
In all experiments, the distance function used was Euclidean
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Fig. 9. Results for best filters of size 13 X 13. (a) Orientations of optimal filters over the pose range. (b) Corresponding minimum pose similarity ratios with
whiter cells corresponding to higher ratios. Ratios greater than one are denoted by “ X .
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¢ =90° and 6 = [60, 70, ..., 120] projected onto first two principal components.

distance. Images were always post-normalised by subtract-
ing the mean intensity from each pixel and dividing by the
intensity standard deviation.

7. Filtering for pose discrimination

Consider what sort of image filters would be appropriate
for discriminating different poses. It is expected that
different image features are important at different
poses and that those features will be oriented differ-
ently. For example, the mouth may be important at
frontal poses and the nose at profile poses. Therefore
filters that highlight oriented features are appropriate. In
this section, we investigate whether Gabor filters are
useful for discriminating pose.

Gabor filters are oriented sinusoidal filters modulated by a
Gaussian envelope. Examples of Gabor filters are shown in
Fig. 7 for angles 0, 30, 60, 90, 120 and 150°. The real and
imaginary parts are shown on the left and right, respectively.
These filters have a natural application for pose estimation
because pose estimation involves variations in orientation
[7]. Freeman and Adelson have used separable oriented
steerable filters for phase analysis, adaptive filtering, edge
detection and shape from shading [6].

To see whether Gabor filters are useful for discriminating
pose, let us evaluate the pose similarity ratio of Eq. (7) at a
fixed pose but with varying Gabor filter orientation. The
filter orientation vy is varied from 0 to 180° in 9° increments.
The tilt angle is fixed at 90° (frontal view) and is not varied
in the calculation of the ratio, i.e. 86 = 0°. The yaw neigh-
bourhood 8¢ is set to 30° and the size of the filters is 13 X
13. The result is a series of ratio values versus filter

orientation. The process has been repeated at different
fixed poses with yaw varying over the range [0°,90°] and
tilt fixed at 90°. The results are shown in Fig. 8(a). Clearly
the ratios vary smoothly with filter orientation and there are
well-defined minima in the curves. The implication is that
Gabor filters reveal oriented features in the facial images
that are specifically appropriate for discrimination at a given
pose.

In Fig. 8(b), the correlations between filter orientations
and pose variations in tilt are presented. Yaw is fixed at 90°
and the pose neighbourhood is 8¢ = 0°, 80 = 10°. Tilt is
varied over 60—120°. Again, it is observed that the ratios
vary smoothly with filter orientation and that the curves
contain well-defined minima. We can conclude that features
at a specific orientation are important for discriminating
poses. This raises the question: does the best filter orienta-
tion vary with pose, and if so, how does the orientation vary
across the pose sphere?

Let us now proceed to examine the best single orienta-
tion-selective Gabor filter for each pose by minimising the
pose similarity ratio at each pose. To determine the best
filter size, the average minimum ratio for a range of filter
sizes is shown in Table 1. It can be noted that the ratio
decreases monotonically with the filter size. Taking 13 X
13 as the filter size and using a neighbourhood of 8¢ =
20°, 86 = 10°, the optimal filter orientations and corre-
sponding ratios are shown in Fig. 9.

Examining Fig. 9(a), it is clear that different orientations
are optimal for different poses. Taking into consideration
that the pose database itself contains spatial and pose misa-
lignments, the variations in filter orientation with pose angle
are reasonably gradual. There is also a fair degree of
symmetry in the orientations about central yaw ¢ = 90°.
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In Fig. 9(b), the minimum ratios are represented as intensi-
ties with darker colours denoting lower (better) ratios. The
pose angles containing a ‘X ¢ have a ratio greater than 1.
The results show that Gabor filters are able to discriminate
faces from neighbouring poses except at some poses on the
fringe of the pose sphere.

There are a few other points of interest from Fig. 9(b).
The lowest ratios are at frontal yaw reinforcing the intuition
that pose discrimination is easier at frontal views. The ratios
when the subject is looking upwards are generally worse
than when looking downwards. This could either indicate
that the database acquisition system is less accurate at low
tilts or it could be a natural phenomenon. The asymmetry in
ratios about central yaw is due to misalignments and varying
illumination conditions in the database.
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To summarise, orientation-specific features are found in
facial images at different poses and Gabor filters can be used
to find these features. We now proceed to look at transfor-
mation for identity invariance.

8. Identity invariance through PCA

We have seen how orientation-selective filters can
emphasise differences in pose, but can we also suppress
identity? To obtain some invariance to identity, we investi-
gate the use of PCA on the pose data. PCA is a linear trans-
form based on Eigen Vectors, which are the orthogonal axes
of maximum variance in the given set of data [1]. If the data
lie in a linear sub-space of the original space, then a (usually
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Fig. 12. Comparison of pose similarity ratios calculated in image space and PCA space for varying tilt angles. (a) Lowest ratio averaged over tilt versus number
of PCA coefficients. (b) Ratios versus tilt angle for similarities calculated in image space and in PCA space using the first two coefficients.
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Fig. 13. Ratio versus different angular resolution across yaws at different tilts: (a) 6 = 80°; (b) 6 = 90°; (c) 6 = 110°.

significant) proportion of the Eigen Vectors will have only a
small data variance in that direction. Therefore for the
purposes of description of the data, only those FEigen
Vectors with significant variance are required. Subsequently
new data can be represented by its projection onto these
significant Eigen Vectors resulting in a reduction in dimen-
sionality. A previous investigation into pose distributions in
PCA space found that continuous changes in yaw result in
smooth manifolds in EigenSpace with identity collapsed [7].
Here we extend the study by calculating the pose similarity
ratio based on similarities calculated in the PCA space.

To examine pose manifolds in PCA space, two PCA
bases are calculated: one from images with tilt fixed at
90° and yaw varying from 0 to 90° and the other with yaw
fixed at 90° and tilt varying from 60 to 120°. The range of
poses for the investigation is restricted so that the PCA bases
are based on a manageable range of intensity variations. In
each case, prototypes from all eight subjects are used to
construct a PCA basis and all images are blurred and
normalised before use. Fig. 10 shows the prototypes of vary-

ing pose projected onto the first major principal compo-
nents. Prototypes belonging to the same person are joined
by a line in order of pose. In Fig. 10(a) for varying yaw, the
curves form a horseshoe shape but the identities are clus-
tered fairly tightly. The first two principal components
account for 54% of the variance in the data. In Fig. 10(b)
as tilt is varied, the same manifold shape is observed and the
first two components account for 55% of the variance. The
first two principal components largely describe changes in
pose while the remaining components primarily encode
changes in identity and facial expression. Therefore, projec-
tion onto the first two principal components provides a
representation that is invariant to identity but sensitive to
pose.

The PCA bases look appealing, but do they maintain suffi-
cient discernibility between poses? To investigate, we calcu-
late the pose similarity ratio with distances calculated in PCA
space. The ratio is calculated at a range of poses covered by the
PCA bases using a neighbourhood only in the axis of pose
variation. For varying yaw, the neighbourhood is 8¢ = 10°,
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860 = 0°, and for varying tilt the neighbourhood is 8¢ = 0°,
80 = 10°. The average best ratio is plotted versus the
number of principal components used where the average
is over varying yaw in Fig. 11(a) and over varying tilt in
Fig. 12(a). Comparing with the mean ratios for Gabor filters
in image space shown in Table 1, the PCA-based ratios are
much lower. Therefore PCA not only maintains good pose
discrimination, it does so much more effectively than in the
image space.

Using only the first two principal components to
calculate similarities, the ratios are plotted for varying
yaw and tilt in Figs. 11(b) and 12(b). On the same axes,
the ratios are plotted for similarities measured in image
space (no PCA, but blurred and normalised). Comparing
the ratios with and without PCA, it is clear that PCA is
a much more appropriate representation for the similar-
ity calculations. Relating these results back to the Gabor
filters, the non-PCA ratios plotted here are consistently
higher than those obtained using Gabor filters, empha-
sising the need for Gabor filtering to exaggerate pose
differences in image space.

In summary, PCA is an appropriate representation for
pose similarity prototypes because it suppresses identity
variations while maintaining sensitivity to pose. We have
also seen that pose similarity ratios both in PCA space and
after Gabor filtering in image space are better than those
based on the original images. The fact that lower ratios
are obtained with PCA than when using the Gabor filters
does not necessarily mean the orientation-selective filters
are no longer needed. Such a comparison is unfair because
distance calculations are generally less robust in the high-
dimensional image space due to the curse of dimensionality.
Gabor filters are also expected to improve the smoothness of
the PCA representation by reducing the sensitivity of the
first two components to illumination changes.

9. Valid angular resolution

Logically there is a limit to the angular resolution with
which poses can be discriminated using similarity-based
methods. For example, at differences of 1° yaw, two 30 X
30 facial images would look so similar as to be indistin-
guishable. So the question arises: what is the minimum
angular resolution at which pose differences can be
discerned in the presence of varying identity and illumina-
tion? To find out, we modify the denominator of the pose
similarity ratio. Eq. (9) becomes:

d(¢p = 3¢,0=30,f(-)

d(f(x],), (x],))

Here the ratio only involves neighbouring poses at ¢ * 3¢
rather than all poses in the range of ¢ — d¢,..., ¢ + 8¢ and
similarly for 6. This is akin to sampling the database at a
lower angular resolution. Now we can plot the modified
ratio versus angular resolution to find the minimum accep-
table resolution.

At a range of yaws and two different tilts, the pose simi-
larity ratio is calculated for the optimal filter (see Section 7)
at varying yaw resolution 8¢ € [10°,60°] but with no tilt
neighbourhood, 80 = 0. The results are shown in Fig. 13
with the r =1 threshold marked as a dotted line. As
expected, the ratios monotonically decrease with angular
separation because it is easier to discriminate larger changes
in pose. For each tilt angle, 10° angular separation is not
sufficient for some yaw angles because the ratio exceeds 1.
At 20°, however, the angular separation is generally suffi-
cient. The fact that the ratio is less than 1 at some yaws but
greater than 1 at others implies that different angular resolu-
tion may be required at different poses. This requirement
may arise because the problem is harder at these poses or
because the noise in the acquisition system is higher at these
poses.

Assuming that these results are indicative of the whole
pose sphere, we can conclude that the greatest lower bound
on discernible angular resolution is about 20°. Notwith-
standing the minimum angular tolerance may be 10° or
less at some poses.

10. Discussion and conclusions

We have presented an analysis of face similarity distribu-
tions under varying head pose for different types of image
transformation with the aim of understanding pose in simi-
larity space. The use of Gabor filters and PCA as transfor-
mations of prototype images to emphasise pose differences
but suppress identity differences was examined.
Orientation-selective Gabor filters were found to detect
features for pose discrimination. Dimensionality reduction
through PCA was found to provide invariance to identity
while accurately describing pose changes. PCA also has the
advantages of being understandable through visualisation
and more computationally efficient since similarities are
calculated in the low dimensional space. The lowest angular
separation at which pose differences can be feasibly
detected was also investigated. A greatest lower bound of
approximately 20° was determined and the actual minimum
resolution may be 10° or lower at some poses.

Overall, this work has shown that pose differences can be
enhanced and identity similarities suppressed within a simi-
larity-space framework using inexpensive algorithms. Such
findings should facilitate the development of real-time pose
estimation systems. Some remaining issues are: (i) The opti-
mal filter orientation at each pose is not necessarily unique.
Indeed, Gabor filters may not be the optimal filters for pose
estimation. A more general approach could be taken by
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adapting the filter orientation locally within the facial
images [6]. (ii) The benefits of pose-selective filters and
PCA can be combined. The main difficulty lies in creating
PCA bases from images that have been filtered differently.
(>iii)) PCA may not be the best linear projection for removal
of identity information. For instance, linear discriminant
analysis could be used to find the projection that maximises
discrimination between faces at different poses. Such an
approach has previously been adopted to achieve invariance
to illumination conditions and facial expression [13].
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