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Abstract

The paradigm of perceptual fusion provides robust solutions to computer vision problems. By combining the outputs of
multiple vision modules, the assumptions and constraints of each module are factored out to result in a more robust
system overall. The integration of different modules can be regarded as a form of data fusion. To this end, we propose
a framework for fusing different information sources through estimation of covariance from observations. The frame-
work is demonstrated in a face and 3D pose tracking system that fuses similarity-to-prototypes measures and skin colour
to track head pose and face position. The use of data fusion through covariance introduces constraints that allow the
tracker to robustly estimate head pose and track face position simultaneously. © 2001 Pattern Recognition Society.

Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The approach we have taken to computer vision, refer-
red to as perceptual fusion, involves the integration of
multiple sensory modules to arrive at a single perceptory
output. The sensory modules all use the same physical
sensor, the video camera, but compute different informa-
tion. A data fusion approach is needed to integrate these
different sources of perceptual information.

Data fusion is traditionally used to increase the accu-
racy of the measurement being performed, and to over-
come unreliability in sensors or uncertainty in sensor
outputs. There is another benefit of data fusion which is
particularly useful for computer vision problems. Differ-
ent sources undergoing fusion are usually based on differ-
ent assumptions, some of which may be invalid at any

“Part of this work is funded by EPSRC ISCANIT Project
GR/L89624.

* Corresponding author. Tel.: + 44-20-7882-5230; fax: + 44-
20-8780-6553.

E-mail address: jamie@dcs.qmw.ac.uk (J. Sherrah).

given time. By performing data fusion, the assumptions
are in a way “factored out” [1]. Hence fusion can reduce
a system’s dependence on invalid a priori assumptions
and make the system more robust.

Given that data fusion is a beneficial approach, the
primary issue is how to combine or fuse the outputs of
systems that are possibly disparate. We propose the use
of covariance estimation to fuse the outputs of perceptual
sources. The covariance of the module outputs is esti-
mated from training examples, and then used in the
overall system to impose constraints. By imposing
mutual constraints on the observed quantities, the
covariance-estimation approach improves the robustness
of the system, and has the advantage that the constraints
are derived (learned) from practical measurement rather
than heuristics. We demonstrate this approach in a case
study on pose estimation which implicitly also requires
accurate face position alignment and tracking over time.
In Section 2, we describe head pose estimation based on
similarities to prototypes. Tracking of pose and face
position is performed using the CONDENSATION al-
gorithm [2]. The covariance of the state quantities is
learned from examples in order to estimate the state
propagation density. The correlation between face and
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head positions is used to model the state-conditional
observation likelihood function. Experiments are given
in Section 3 and we draw conclusions in Section 4.

2. Fusion of head pose and position alignment

Automatic, robust pose estimation from a video se-
quence in real time is non-trivial. It implicitly requires
pose-invariant face detection. We have previously de-
veloped a method for identity-invariant pose estimation
based on similarities to faces in a prototype database [3].
Under suitable conditions, a temporal trajectory of tilt
(elevation) and yaw (azimuth) angles can be computed
from a video sequence. However, the similarity-based
criterion is noisy and has many local optima, and the face
position in the image must be determined independently.
The existing method either relies on a Polhemus orienta-
tion and position sensor worn by the subject to obtain
the face position or relies on the identity of the subject
[3,4]. Here we describe a method to track both head pose
and face position by fusing similarity measures and skin
colour information. This is only made robust through the
estimation of their covariance.

2.1. Pose estimation in similarity space

Using the similarity-based method, a novel face is
represented by a vector of similarities to prototype faces.
This concept is illustrated in Fig. 1. For pose estimation,

the similarity vector of a novel face is computed for
a hypothesised pose and compared with vectors at other
poses. In the case that similarities are measured as
Euclidean distances, one would expect the magnitude of
the vector at the correct pose to be a minimum for the
correct pose. However, this criterion is subject to many
local minima. To further constrain the criterion to focus
on the relevant optimum, one can assume that similarity
vectors vary smoothly as the subject changes pose, and
use a compound criterion including the distance between
the current and previous similarity vectors:

S(t) = als()Il + (1 — o) d(s(r), s(z — 1)), 1)

where s(t) is the similarity vector at time t, 2 € [0, 1] is
a real-valued mixing parameter.

A major problem in automatic real-time pose tracking
is that one does not know where, in the current image, the
face is located. Given an initial position and pose for the
face, one could assign a search region in pose and image
space and seek the minimum value of the criterion in Eq.
(1). This method is impractical, however, since the cri-
terion S(t) is subject to the following sources of noise:

e local optima distract the search toward the wrong
position, scale and pose,

e the input face may be poorly aligned with the database
images,

e the illumination conditions may vary, and

o the database images themselves may be poorly aligned
both in position and pose.
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Fig. 1. llustration of the similarity-to-prototypes representation. A database contains example faces (top) of N different people at
different pose angles. For a given pose, a new face x (centre of circle) is compared with each prototype face at that pose y; (perimeter of
circle) using a similarity function h(-). The similarity measures s; are concatenated into a similarity vector s. In the example shown,
eleven prototypes were used to represent a face therefore its similarity vector at any pose has 11 dimensions.
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The noise in similarity measures can be compensated by
incorporating other visual cues.

2.2. Tracking pose using CONDENSATION

Since the similarity measures are noisy, a tracking
algorithm is required to simultaneously track pose, face
position and scale. These different quantities can be fused
together by the tracker. This approach is likely to fail if
the quantities are assumed to be independent because the
tracker state will then be under-constrained. Through
covariance estimation of the tracked parameters, the
tracker can be better constrained and become more ro-
bust. For our purposes, however, the tracker can still be
easily misled by local optima in similarity measures and
loses track of both face position and pose. The tracker
can be made more robust by incorporating additional
visual information such as skin colour to determine the
approximate face position. Skin colour is an inexpensive
but effective visual cue that can be easily computed in
real-time at each frame [5]. Using skin colour, a separate
head tracker can be used to supply a bounding box of the
head position in the image. While the head box is gener-
ally larger than the face box, the displacement between
head and face box position provides an additional con-
straint. In particular, correlations between head pose and
the face-head displacement can be exploited.

For the tracking task, we adopt the CONDENSA-
TION (CONditional DENSity propagATION) algo-
rithm [2]. CONDENSATION is a particle filtering
method which models an arbitrary state distribution by
maintaining a population of state samples x;(t) and their
likelihoods. Compared to a Kalman filter (a single Gaus-
sian density based model) commonly adopted for tem-
poral tracking, CONDENSATION is more generic and
flexible due to its propagation of arbitrary density mod-
els. In a sense the state samples can be considered as
multiple hypotheses for the current state of the system,
hence CONDENSATION is better suited to recover
from distractions. In our case, such distractions generally
manifest as local optima in the face similarity measure
criterion. When a new measurement (z,) is obtained, the
state samples and their probabilities are updated through
two steps:

(1) Drift and diffusion: the state samples are modified
through a deterministic component obtained from
knowledge of the problem, and random perturbation
based on the probability distribution of stage cha-
nges. The overall step equates to sampling from the
distribution p(x;(t)|x;(t — 1)).

(2) Measurement: a measurement is imposed on the state
distribution by calculating the likelihood p(z|x;(t))
for each state sample. This likelihood function again
comes from knowledge of the problem.

Using CONDENSATION to track head pose and face
position, the state is defined to consist of the object-
centred face position (x, y) with respect to the body, the
scale r of the face box, the head yaw (azimuth) ¢ and the
head tilt (elevation) 0:

XZ[X,)U’, ¢’ 9] (2)

The scale r is the ratio of the face box size to the proto-
type image size in the similarity database. The measure-
ments used by the tracker are the input image containing
the face, and the head box position from an independent
skin colour tracker.

To track the state using CONDENSATION, two
distributions p(x;(¢)|x;(t — 1)) and p(z|x;(t)) must be
modelled. It is in the modelling of these distributions that
tracked and measured quantities are fused through
covariance estimation.

2.3. Fusing state quantities

For the state propagation distribution p(x;(t)|x;(t — 1)),
previous applications of CONDENSATION [6] have
used a heuristic drift equation, and then arbitrarily added
independent Gaussian noise to each element of the state.
This approach has two problems. First, the noise para-
meters are not estimated from measurement, and could
cause the tracker to lose lock. Second, the assumption of
independence of state elements under-constrains the
search space so that computational resources are wasted,
and the tracker is distracted by local optima.

Our approach is to fuse the state elements by estima-
ting their covariance. The rationale is that when a person
turns their head, there is a correlated change in face box
position. Let the state change between two frames be

Ax(t) = x(t) — x(t — 1). (3)

A state transition covariance matrix was estimated from
training video sequences of people varying their head
pose freely in a number of scenes resulting in 454 sample
frames. Head pose and face position were measured using
a Polhemus sensor attached to the subject’s head. The
estimated state transition covariance matrix is

Ax Ay Ar A A0
Ax 12.090 0.558 0.019 15551 0.153
Ay 0558 3495 0.021 1.026 4239
Ar 0019 0021 0112 0237 0171
A¢p 15551 1.026 0.237 27.701 0.816
A0 0153 4239 0171 0816 7.854

All distances are measured in pixels and angles measured
in degrees. For simplicity, changes in size (Ar) are
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measured in pixels rather than as a change in ratio. There
are clearly correlations between the state changes which
are intuitively appealing. There is a strong correlation
between change in x-position and yaw, and between
changes in y-position and tilt. Changes in the horizontal
quantities have a higher magnitude than changes in the
vertical quantities.

It is precisely these constraints that will make the
CONDENSATION state sampling more robust and effi-
cient.

Assuming that these correlations are independent of
absolute pose and position, the state update distribution

x-offset

is modelled as a fully-covariant Gaussian

p(x(@)lx(t — 1))
1

—— €
V2mZ

2.4. Fusing measurements

1
Xp< — 5(Ax(@)"=¢ 1(AX(t))>- ®)

The state-conditional distribution p(z,|x;(t)) is based on
the similarity criterion and on the displacement between
the face and head position. Let the signed x-difference

180 yaw (degrees)

Fig. 2. An illustration of head and face box offset probability density in x-direction.

skin colour
region

SVM-detected

head tracker
4~ box

Fig. 3. Example of the information used to initialise the pose tracker.
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between the centres of the face and head boxes be dx. The
state-conditional distribution is then

p(z:[x:(1)) = p(S)Ix; (1)) p(x]9), (©)

where p(S(¢)|x;(t)) is the similarity-based weighting func-
tion given the hypothesised state, and p(dx|¢p) is
a modelled density function expressing the dependence of
face box x-displacements on yaw angle. The latter func-
tion incorporates observed correlations between abso-
lute face position and pose. Displacements in the y-
direction are too unreliable to be used due to varying
neck lines, hair colour and illumination conditions. The
two components of Eq. (6) work together to constrain the
tracker to the correct pose and face position. The two
constituent densities are defined as follows:

(1) The similarity-based weighting function gives high
probabilities for low dis-similarity values, and vice
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versa:

_ (S(t) - Smin)2
202

pS@Ix(1) = eXp< ™)

where S, 1S the minimum and o, is the standard
deviation of S-values observed over a set of training
sequences.

(2) The displacement density function is based on the
observation that facial position displacements are cor-
related with pose. For example, as a subject turns his
head to the left, the box surrounding the face moves
left-of-centre of the body, while the box surrounding
the head tends to stay central. Therefore covariance
between absolute face position and head pose is ex-
ploited, whereas only relative face position is used in
Eq. (5). The function also constrains the face position
to lie close to the independently-tracked head position
so that the tracker is not distracted by non-faces.
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Measured and tracked head pose angles for two example test sequences. (a) Yaw. (b) Tilt. (c) Yaw. (d) Tilt.
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The displacement density model is shown schemati- mean dependent on the currently hypothesised yaw
cally in Fig. 2. The density function is modelled as angle. The solid line in the figure shows how the mean
a Gaussian distribution with standard deviation o, and varies with yaw. The displacements dx; and ox, are

" ‘j- k-f&
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t16 tl? tlS t19 t20

Fig. 5. An example of continuous face position alignment and pose tracking over time. Each frame shows the whole image (top), the
cropped tracked face (lower-left), and the tracked head pose (lower-right).
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measured from video sequences at the extremes of pose,
0° and 180° yaw. At frontal views high probabilities are
given to small displacements, whereas at extremes of yaw
the high probabilities go to larger signed displacements.
At any yaw, a state with a face position that is far from
the head tracker position is given a low probability.

3. Experiments

A system based on the method described has been
developed and tested on both recorded and live video
sequences of subjects constantly varying their head pose.
Two sequences are shown here for illustration. Each
sequence is 200 frames long and the initial face position is
detected using a support vector machine (SVM) based
generic face model [7-9]. The SVM classifier is currently
used to recognise faces from near-frontal views only, and
can be too computationally expensive to use for every
frame during real-time tracking. Fig. 3 shows an example

1571

of the initial face box detected by the SVM. The outer-
most box is obtained by spatially clustering skin-col-
oured pixels. The SVM searches within this box to find
the face box. The head tracker then performs a localised
search around the face box to obtain the head box. To
simplify the process, a subject is initially assumed to face
the camera giving 0 = 90°, ¢ = 90°. The Polhemus sen-
sor is worn by the subject to obtain the approximate
ground-truth head pose angles for comparison. Our pose
tracker uses only image data, and is independent of the
Polhemus.

The yaw and tilt angles estimated and tracked over
time by the fusion-based tracker are compared to the
measurements of the Polhemus in Fig. 4. Five hundred
state samples were used in the CONDENSATION
tracker. In both cases, the tracker is able to approxim-
ately track the head tilt and yaw angles. Examples of the
continuous visual output from the tracker are shown in
Fig. 5. Each frame shows the whole image (top), the
cropped tracked face (lower-left), and the tracked head

tracked
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it (degress)
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i Polhemus

.
15 25
time (seconds)

L s n L L
0 05 1 15 2 25 3
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(a)

(b)

Fig. 6. Results of pose tracker on second sequence without the use of covariance. (a) Yaw (left) and tilt (right) angles for first 31 frames of
a test sequence. (b) The camera image, tracked face and pose dial at frame 31.
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pose (lower-right) using an intuitive dial. In this example,
the tracker accurately follows the face and head pose
until time 7,4 when the tracker momentarily loses lock
on face position and starts to move away from the face. It
regains lock again at t,¢. At t;5 the system is starting to
lose pose but recovers gradually over time. The ability of
the tracker to recover from momentary loss of lock
demonstrates the importance of fusing the face position
and pose. Without this function, the tracker would have
wandered away to incorrect poses or non-faces.

To demonstrate the role of covariance estimation in
tracker robustness, we remove the covariance informa-
tion from the tracker. This step requires the off-diagonal
elements of the state covariance matrix (Eq. (4)) to be set
to zero, and the removal of p(dx|¢) from the state-condi-
tional distribution (Eq. (6)). The tracker fully loses lock
without recovering after 31 frames. The results are shown
in Fig. 6 for the first 31 frames (3 s). Even though the
tracked pose angles have not deviated wildly, the face
box is far from its goal. Since the similarity criterion
is only locally optimal, the tracker is unable to regain
lock.

4. Conclusion

The concept of data fusion through covariance estima-
tion has been demonstrated in a face position alignment
and pose tracking system. Face position and head pose
were fused to form state update and measurement noise
models for a pose tracker. A principled approach to
fusion of different visual cues utilises additional con-
straints and improves robustness.
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