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Abstract 

Robust, real-time tracking of objects from visual data re- 
quires probabilistic fusion of multiple visual cues. Previous 
approaches have either been ad hoc or relied on a Bayesian 
network with discrete spatial variables which suffers from 
discretisation and computational complexity problems. We 
present a new Bayesian modalityfusion network that uses 
continuous domain variables. The network architecture dis- 
tinguishes between cues that are necessary or unnecessary 
for  the object’s presence. Computationally expensive and 
inexpensive modalities are also handled differently to min- 
imise cost. The method provides a formal, tractable and ro- 
bust probabilistic method for  simultaneously tracking mul- 
tiple objects. While instantaneous inference is exact, ap- 
proximation is required for  propagation over time. 

1. Introduction 

Robust tracking of a single object under occlusion from 
visual data is difficult due to ambiguity and noise in the sen- 
sors, uncertainty in the trajectory of the object, and varia- 
tions in the appearance of the object over time. The prob- 
lem of noisy sensors, or sensors that generate ambiguous 
output from distracting objects, can be addressed through a 
process of Bayesian modalityfusion (BMF) [IO, 1 I]. BMF 
uses a Bayesian network to probabilistically combine the 
outputs of several complementary modalities. A reliability 
indicator for each modality is incorporated in the network. 
The use of complementary modalities overcomes the prob- 
lem of ambiguity if a distracting object in one modality is 
not present in another. The problems of noisy or failing 
sensors are addressed through the use of probabilities and 
reliabilities. Uncertainty in object trajectory is generally an 
unsolvable problem since often we cannot know the inten- 
tions of the object (if it is a person, for example). All that 
can be done is to impose a general temporal model, and 
use global searching of the spatial domain for focusing cues 
rather than local searching. Unfortunately local searching is 
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often used because global searching is necessarily compu- 
tationally prohibitive. Finally the varying appearance of the 
object must be approached by making the chosen modalities 
invariant to these appearances. For example, motion and 
colour are generally consistent over varying appearance. 

One difficulty with modality fusion is that the existing 
implementation [lo] uses discrete variables to model the 
spatial domain. Each spatial variable X can take the val- 
ues 1; . . . ~ N ,  where N is the number of pixels in the image. 
Hence marginalisation over conditional probability distribu- 
tions involving spatial variables has an undesirable C3(N 2,  

complexity. The problem can be managed to some extent 
by excessively sub-sampling the image domain. The con- 
sequences are not as bad as one might first think since the 
probability values in the sub-sampled domain are contin- 
uous. However, Toyama and Horvitz [lo] do not address 
the problem of choosing a sufficiently accurate level of sub- 
sampling. Furthermore, the discretisation of the spatial do- 
main prohibits extensibility to larger spatial domains and 
tracking of multiple objects. 

Another limitation of the BMF approach in [lo] is that 
observations of object positions are entered as specific lo- 
calised evidence from an isolated tracker, ie: the observa- 
tions are uni-modal. However, this is undesirable given that 
the combination of uncertain object trajectory and ambigu- 
ity in the modalities can result in multiple feasible obser- 
vations. Much information is discarded at an early stage 
that could have been valuable later. Contemporary track- 
ing approaches such as CONDENSATION [4] suffer from 
the same problem in a different way: only a sub-set of the 
current observations are used for tracking, that sub-set be- 
ing determined by a temporal model. This approach con- 
travenes the recent wisdom that successful vision requires 
both data-driven and model-driven processing simultane- 
ously. To that end, the full set of observations needs to be 
considered simultaneously, combined with prior informa- 
tion, and the most likely joint hypothesis inferred, provided 
it is computationally tractable. 

To track multiple objects, an exclusion principle must be 
applied on the observations so that multiple object trackers 
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do not continually claim responsibility for the same obser- 
vation [6]. There is generally a combinatorial explosion in 
the number of matching possibilities over time. Previous 
approaches at explicitly tracking multiple objects [7,3,9,5] 
have used heuristic approaches to deal with this complexity. 

We propose a new Bayesian modality fusion, Contin- 
uous Global Evidence-Based Bayesian Modality Fusion 
(CBMF), that makes four novel contributions but is also 
computationally tractable: 1) Continuous sampling: the for- 
merly suggested discrete domain spatial variables [ IO] are 
tumed into continuous variables to assuage the complexity 
of inference. 2) Global evidence: all observations from a 
single modality are considered during inference rather than 
a single position decided upon at an early and premature 
stage. 3 )  Distinct Modality Types: a distinction is made 
between modalities that are necessary for the presence of 
an object and those that only hint at its presence. 4) Se- 
lective Computation: computationally expensive modali- 
ties are treated differently from inexpensive modalities to 
improve performance. The network architecture is mod- 
ularly expanded to simultaneously track multiple objects 
and impose an exclusion principle in a theoretically princi- 
pled manner that exploits Bayesian "explaining away" [8]. 
Although exact inference in the continuous spatial domain 
can be used at a given time instant, an approximation is in- 
evitably required for propagation over time. 

2. CBMF for a Single Object 

General propagation rules in singly-connected Bayesian 
Networks for mixture-of-Gaussian variables have previ- 
ously been derived in [2]. Here we present a formulation for 
the specific CBMF architecture. Rather than entering obser- 
vations of a 2-dimensional spatial variable 2 = [z1; 2.1 as a 
specific value, evidence is entered as a likelihood over val- 
ues. The likelihood of the observational evidence e~ on the 
variable 2 is modelled as a mixture of K Gaussians: ' 

K K 

p ( e z l z )  = C ~ u k G ( ~ ; p k : ~ k ) ;  = 1 ( I )  

Clearly evidence must be discarded as irrelevant at some 
stage in the process to avoid high computational cost. How- 
ever we allow this discarding process to be driven by 
the observations rather than some prior and possibly mis- 
conceived hypothesis. Gaussian mixtures are only defined 
for spatial regions in which the modality yields a non-zero 
response. Therefore in general, K will vary from observa- 
tion to observation. 

Conditional probabilities between continuous variables 
X and E' are modelled using a continuous 2-dimensional 

k = l  k = l  

' In this paper, all 2D Gaussians have diagonal covariance, and the func- 
tional parameters z ,  1 and U are 2-vectors. 

Gaussian distribution: 

Therefore marginalisation over large tables of discretised 
Gaussian distributions is avoided through the simplified an- 
alytical form of Gaussian convolution. 

The general architecture of the CBMF network is shown 
in Figure 1 .  The chief inferred node X represents the po- 
sition of the object. It is a continuous variable whose dis- 
tribution is generally a mixture of Gaussians. X nodes are 
conditionally dependent over time to allow for a temporal 
dynamic model. Modalities are divided into two classes: 
necessary and conringenr. Necessary modalities, Y k ,  must 
be present when an object is present, and these nodes form 
the set of child nodes of X .  Contingent modalities are rep- 
resented by UI, and may or may not be present when x' is 
present. They form the set of parents of X .  Each modal- 
ity has a continuous spatial variable which is a mixture of 
Gaussians. Each modality also has an associated reliability 
node and sub-network that measures the reliability of the 
modality. Each reliability variable has a set of child indi- 
cator variables which serve as extemal information alluding 
to the current reliability of the modality. For example, for a 
motion-based modality, a suitable indicator may be the in- 
stantaneous motion energy in the image. If the energy were 
to drop to zero, this would indicate that the motion modality 
is unreliable. The reliability R k  and associated indicators 
Ik,l ~ . . . ~ I,,,, are all discrete variables. Virtual evidence 
is entered into each modality node using a dummy child 
node e k .  We exploit the global independence of variables 
by applying local propagation rules to determine the belief 
distribution for X given the observations, P ( X l e ) .  

In the remainder of this section, we derive a 
tractable solution to the proposed CBMF network for 
tracking. Given M necessary modalities E; ~ . . . ~ & 
and N contingent modalities, U 1 : .  . . ~ U,V in a net- 
work ', evidence e y  = { e Y , ; e / l , l  ; .  . . ~ . . ~ 

e ~ ; c  e/x.i ~. . .  er,,,,,,} (similarly for e u )  is entered via 
specific values e lk , ,  for the indicators I, and likelihoods eyk  

for the Yk (see Eqn.( I ) ) .  The posterior distribution for X is: 

where e; is all evidence contained in the parent sub-trees 
of X, e i  is evidence contained in child sub-trees of X, and 
p = P ( e $ ) / P ( e ) ,  an irrelevant constant. We have ex- 
ploited the independence of the parent and child evidences. 

'Note that only one necessary modality I$ and one contingent modal- 
ity b'k are shown in Figure I for simplicity. 
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Figure 1. Continuous Global Evidence-based 
Modality fusion network. Only one necessary 
modality Yk and one contingent modality uk 
are shown for simplicity. 

Now we can determine the two contributions separately: 

M 

P(exlz) = n P(.iY, 1.) (4) 

where e x y ,  is the evidence down the ith sub-tree only. Con- 
sidering Y, and dropping the i subscript for simplicity, we 
can derive the contribution from each sub-tree. We define a 
reliability weighting function F (  .) for convenience: 

a = 1  

n 

F ( r )  = p(r l eLy)  = { p ( r )  n p ( i ,  = e%> Ir) ( 5 )  
3 = 1  

where 
pendencies in the network yield: 

= l / p ( e i y ) .  Several steps which exploit the inde- 

where y = p ( e i y ) ,  and ov is the standard devia- 
tion corresponding to the given level of reliability, ie: 
low reliability needs high standard deviation in posi- 
tion for this modality. Given the 2-dimensional Gaus- 
sian functions on the domain [z1:z2] with mean vec- 
tor [p l , l  pL,,z] and diagonal covariance diag[o:,l o$], 
we apply the identity: s, G ( z ;  p l ,  a l )  G ( z ;  p2: o2) dz = 

G (p2  - p l ;  0: d m )  which yields a mixture of 
Gaussians: 

T k = l  

At the X node, these necessary nodes result in a product 
of mixtures of Gaussians. Now we address incorporation of 
the contingent modalities. Let us define U = { U1 . . . U,V} 
and R = {RI  ~. . . RN} .  Then: 

N 

np(.ile+,,,)p(riIe+xR,) ductrdzt-1 (7) 

Since the modalities are not necessarily present at the 
object location, we need a noisy-OR type rule. Given the 
modality locations, an object could really be anywhere, but 
is more likely to be found where the modalities occur. As 
modalities are superimposed, the likelihood of finding the 
object at a given location should increase since we have 
more evidence to that effect. These considerations can be 
represented as: 

i = I  

N 
p(zlu: r : z t - l )  = 6+wp(z l z t - l )+ ,w  C p ( z l u i ~ ~ )  (8) 

where 6 is a constant signifying that the object could be any- 
where, 'w = (1 - 6)/(.V + 1) is a weighting giving equal 
favour to all modalities, and p ( ~ l z ~ - ~ )  represents the tem- 
poral model for evolution of object position. Note that the 
distribution's expectation over X must equal one, hence the 
weightings W .  6 represents the extent to which no contin- 
gent modality can give indication as to the object's where- 
abouts. For example, for a motion-based modality, 6 would 
represent the proportion of image frames in which no mo- 
tion occurs. For a face detection modality, 6 would repre- 
sent the on-line failure rate of the face detector in a typical 
sequence. Such a parameter can be estimated off-line from 
data. Substituting Eqn. (8) into Eqn. (7) ,  assuming uniform 
priors on U,, defining Azc,-l and ot-l  to be the position 
offset and dispersion specified by the temporal model, and 
considering the prior distribution of X to be a mixture of 
Gaussians: 

2 = 1  

k= 1 

we obtain: 

P(zle;) = 6+ 
T 

k = l  

r .  ~,=1 k=l 

The final result is obtained by substituting Eqns. (4) 
and (9) into (3), and is a product of mixtures of Gaussians. 
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The consequent exponential growth in the number of Gaus- 
sian terms is characteristic of a method that evaluates mul- 
tiple joint hypotheses. 

3. Querying Expensive Modalities 

Modalities such as frame differencing and skin colour 
classification are inexpensive to compute and can be ac- 
quired for each pixel in the image. Other modalities, such as 
face detection and ellipse fitting, are not only expensive to 
compute, but rely on a size parameter that adds a search to 
the computation. It would be computationally infeasible to 
compute these expensive cues at each pixel for real-time ap- 
plications. The modality fusion approach here can be used 
to selectively calculate the more expensive modalities. It 
is a property of Bayesian networks that evidence need only 
be entered in a sub-set of variable nodes at any given time. 
We can begin by entering evidence e c  for the inexpensive 
modalities, resulting in a posterior P(z l ec ) .  Now if there 
is a clear maximum in the distribution, no further compu- 
tation is required. However if there is some ambiguity as 
to the maximum of P(z l ec ) ,  evidence e~ can be gathered 
from the expensive modalities at the candidate locations. 
Propagation of this evidence should disambiguate the result. 
The criterion used in this work to query expensive modal- 
ities is to calculate at the set of local optima on P(zJec). 
The new expensive evidence e F  is then propagated to yield 
P ( z ( e ~ )  = P ( z ( e c :  e ~ ) ,  where eT is the total evidence. 

4. CBMF for Multiple Objects 

Now consider the case in which there are L objects to be 
tracked in the scene. Here we present an Extended CBMF 
network to track multiple objects simultaneously. When 
tracking the objects from visual stimulus there will gener- 
ally be two types of modalities: those that indicate the pres- 
ence of all objects (eg: motion), and those that identify a 
single object (eg: appearance). The architecture is shown 
in Figure 2. We assume that the single object network de- 
scribed in section 2 has already been used to fuse modali- 
ties that are common to all objects. Therefore the posterior 
distribution P ( x l e ~ )  obtained from the single-object net- 
work in Figure 1 represents the probability of there being 
some unlabelled object at a given position. The node X is 
then cut-and-pasted into the multi-object network of Fig- 
ure 2, such that P ( X ( e T ) ,  is treated as the observation for 
this network. Note that it is a simplifying assumption to iso- 
late X in this manner from the variables of the single-object 
network. 

X has a set of parents A = {ill,. . . AL} which 
are continuous variables each representing the position of 
an object. The figure shows the relevant variables for 

A,, the position of the ith object. In similar fashion to 
the previous CBMF network, each A, has a set YA, = 
{Y,J > .  . . > yz,"!,1.., } of object-specific modalities and as- 
sociated reliabilities that are instantiated with mixtures of 
Gaussians and reliability indicator observations. The con- 
ditional probabilities associated with these object-specific 
modalities are the same as in the previous network. How- 
ever, to facilitate explaining away by the object variables, 
the conditional probability table for X is different, using a 
Noisy-OR rule [SI: 

/ L  \ 

1 - n (1 - 6(z ;n , ) ) )  (10) 
i=l 

where 7/(A) is a normalising constant ensuring that the dis- 
tribution integrates to unity for a specific configuration of 
A, and 6(z; y) is the unit delta function: 

1 i f z  = y; 
6(z;y) = 0 otherwise 

For now, we ignore the normalising constant and let ,rj(A) = 
1. The constant will only be different from l / L  for config- 
urations of A in which ui = u j  for some i and j in [l: L ] .  
Ignoring these cases means that hypotheses regarding oc- 
cluding objects are incorrectly weighted. However, ignor- 
ing greatly simplifies the analysis. 

Figure 2. Unit of multi-object tracking BBN. In 
general there are L objects, AI: .  . . > AL, and 
each object i has n(A,) associated modality 
sub-networks. For simplicity only one object 
and one associated modality are shown here. 

Inference using Eqn. (10) is now somewhat more com- 
plex because to infer the distribution of object .li, informa- 
tion must be gathered from all Aj+ through X .  In this way 
objects are able to claim evidence at X through the Noisy- 
OR rule. Let the evidence entered into the multi-object net- 
work be es .  We can determine the posterior P ( u i ( s ~ :  es) 
for each Ai as: 

n ( 4 , )  

P(u2leT: e s )  = Q . P ( ~ i ) P ( e , s , x l ~ i )  P(e;i , j  1%) 
j=1 
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where LY = l/p(e-j-, e s ) .  The evidencesp(eF,,, tu,) from the 
object-specific modalities are computed in analogous man- 
ner to Eqn. (6). The prior p(u , )  is important and can be 
taken as the posterior position distribution from the previ- 
ous time frame, which may be a single Gaussian for exam- 
ple. The difficult term is p(ei,,la,) which relies on the 
other objects being tracked: 

where8 = p ( e i J Z J + , )  is anormalisingconstant,p(ei 1.) = 
p(zleT)  is the posterior from the CBMF network, treated 
here as evidence and generally a mixture of Gaussians, and 
p(u j  is the evidential support provided by object j :  

Substituting Eqn. (10) into the above expression and sim- 
plifying yields: 

where rrl j (Lc)  = 1 - p ( u j  = xle;,,) is the object map for 
object :I. 

5. The Issue of Tractability 

Although the general theory for probabilistically fusing 
continuous-domain quantities has been presented, there are 
a few issues that must be considered for a computationally 
tractable implementation. Each observation is represented 
as a mixture of Gaussians. In the simplest case, the observa- 
tion could be a single Gaussian, as was the case in [lo]. A 
more general method could use individual modality track- 
ers to obtain an economical mixture of Gaussians using tra- 
ditional techniques such as K-means clustering or the EM 
algorithm [ I ] .  In the examples presented here, observations 
are represented as a dense mixture of Gaussians to over- 
come the problems of fitting mixtures of Gaussians to data. 
The given modality is thresholded to remove pixels with 
low probability. The remaining pixels are each instantiated 
as the mean of a single Gaussian, with variance arbitrarily 
set to 1 in the x- and y-directions, and a weighting coeffi- 
cient in proportion to the modality strength. The weightings 
are normalised to sum to 1. This is essentially the same as 

Parzen windowing for non-parametric estimation of the ob- 
servation likelihood. 

The most significant remaining issue is that mixtures of 
Gaussians are multipled during inference, resulting in an 
exponential growth in their number. Consider the posterior 
of X in the single-object tracker. The contingent modal- 
ities result in R.N.K Gaussians, where Z? is the average 
number of observation Gaussians per modality, and R is the 
number of discrete reliability values. The necessary modal- 
ities produce the product of M mixtures each containing 
RK Gaussians. Therefore the overall number of Gaussians 
is O(N(RI?)”+’). At a given time instant, the number 
of Gaussians can be kept to a manageable level through the 
observations by restricting I?. However, propagation over 
time will cause the Gaussian count to grow without bound. 
Therefore some approximation is required. Two possible 
schemes are considered. The first is to discretise the spatial 
posterior distribution after continuous inference, then re- 
form an analytic distribution for propagation. One method 
for forming the analytic distribution is to use each local 
optimum in the discretised distribution as the centre for a 
Gaussian. The second approximation method is to care- 
fully manage the number of analytic Gaussians by culling 
those that have small weighting coefficients. Here we use 
the discretisation approximation since it simplifies manip- 
ulation and interpretation of the distribution. For example, 
the most common use of P ( X l e )  is to find the value of X 
that maximises the distribution * =argPax P(zle). HOW- 

ever, there is no straight-forward way to maximise a super- 
position of Gaussians3. Given the discretised distribution, 
z* can be easily determined. 

It is worth noting the comparison in computational ex- 
pense between our approach using discretisation and other 
tracking methods. Let D be a measure of the extent of the 
spatial domain being modelled. For instance, D = ‘w x 11 

would be the number of pixels in an image. In the case 
of tracking a single object, the complexity of CBMF is 
O(MKDR),  where M is the total number of modalities. 
Therefore computation is linear in the number of modalities, 
observation units and domain size. Compare this with the 
original BMF framework which used discrete spatial vari- 
ables. In this case, I? = 1 because only one observation 
hypothesis was used per modality. The complexity of infer- 
ence is O(MI?D’R), which is quadratic in domain size! 
The saving has come about through exploitation of the sim- 
ple analytic form of the convolution of two Gaussians. The 
other improvement is that our method allows K > 1 so 
that valuable low-level information is not discarded during 
high-level inference. 
~~ ~~ 

31n general the local maxima of the superposition will occur when the 
sums of derivatives of terms equals zero: 

cw=o=~cr,  d G ( x ;  P , ,  0 ; )  

dx dx 
1 
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For the case of tracking L objects, the complexity of 
CBMF is O ( L M K D R )  where M is the average number 
of object-specific modalities. Therefore the complexity is 
the same as for our single-object case, but scales linearly 
with L.  This is a profoundly important property for simulta- 
neous tracking of multiple objects: the usual combinatorial 
explosion in joint object location hypotheses is avoided by 
communication through the X node. By comparison, other 
approaches such as [5] retain the L 2  complexity and assume 
tractability due to a small number of objects. Our approach 
can be compared with partitioned sampling [6], in which a 
hierarchical model of object independence is exploited to 
avoid L2 complexity. However, our approach is determinis- 
tic, does not suffer from sparse sampling problems and has 
fixed computational complexity. 

For multi-object tracking, note that the last term in 
Eqn.(l2) is a constant over u t .  Therefore a discretised ob- 
ject ma can be calculated for each object. A combined 
map n,=, r r iJ (x )  for X can then be computed. For a spe- 
cific object, the maps are combined with the observation at 
X to determiney(e~,Xlu,) .  

f 

6. Experimental Results 

We tested the CBMF approach on the problem of track- 
ing an individual’s head in a video sequence. Three modal- 
ities were used: skin colour (necessary), frame differencing 
(contingent), and ellipse fitting (necessary). While skin and 
motion are cheap to compute, the fitting of an ellipse to an 
edge image is expensive since the head position and size 
must be first hypothesised. Therefore the network used had 
Y = {Yl ~ Y..} where Yl is skin colour and Yz is the ellipse 
fit, and U = { U l }  where U1 is the motion estimate. The 
ellipse fitting modality was queried as an expensive modal- 
ity. We used a broad Gaussian distribution for the temporal 
model to specify the object’s expected position at the next 
time step, with Axc,-, = 0. Three discrete reliability val- 
ues, low, medium and high, are used in the network. Sim- 
ilarly all reliability indicators are discretised to one of the 
three values low, medium and high. 

The cues were calculated as follows. The frame dif- 
ference is the absolute difference between consecutive 
greyscale images. The skin image was computed using a 
single multi-dimensional Gaussian for classification in nor- 
malised RG-colourspace, where R = , r / N ,  G = .y /N,  and 
N = 7’ + 9 + 0. The Gaussian parameters were estimated 
off-line using user-selected image regions. In the cases of 
motion and skin colour, these real-valued images were then 
thresholded to obtain a binary classification. At the queried 
image locations, the ellipse fit was obtained on a blurred 
edge image at multiple sizes on the range of 20 to 60 pixels 
in width. An ellipse aspect ratio of x : :y = 1 : 1.2 was as- 
sumed. The criterion used is f = s / n ,  where s is the number 

of non-zero edge pixels under the ellipse perimeter, and n is 
the total number of perimeter pixels. The ellipse size with 
the highest criterion value at that position was used. 

The reliability indicator for the motion cue was the num- 
ber of moving pixels in the image, the rationale being that 
when there is either virtually zero or a great deal of motion 
present, that cue is unreliable for identifying the head. For 
skin, two indicators were used. The number of skin pixels 
was used in similar manner to the number of motion pixels. 
The second indicator is here termed pearling, or patchiness 
of the skin image. It is computed as the average variance of 
the binary skin image in 3 x 3 tiles. The more patchy the 
skin image is, the less reliable this modality. No reliabil- 
ity indicator was used for the ellipse fitting modality. S in 
Eqn. (8) was arbitrarily set to 0.1. 

A sample frame from results on a test sequence is shown 
in Figure 3. The figure shows (from left to right, top to bot- 
tom) the original image, the motion image, the skin image, 
the motion modality observation as a mixture of Gaussians, 
the skin modality observation, the prior distribution of X, 
the intermediate posterior P ( X  let), the expensive ellipse 
fitting modality observation instantiated at the appropriate 
locations, and the final fused distribution P ( X ( e ) .  It can be 
seen that many hypotheses for the position of the head are 
considered by the tracker. In the initial fusion result there 
are two competing peaks, one corresponding to the hand 
and the other to the head. The expensive ellipse fit modal- 
ity is queried at the local maxima of the fused distribution 
and propagated to yield the final fused posterior. The ex- 
pensive modality has successfully disambiguated the head 
with a clear peak at the proper location. 

In the second example, CBMF is used to simultaneously 
track the heads of three people under occlusion. The same 
experimental configuration as the first example was used to 
obtain a distribution on X, based on skin colour classifica- 
tion, frame differencing and ellipse fitting. The skin colour 
model used was trained using pixels from all three individ- 
uals. The single person-specific modality for each object 
was a skin classification based on a person-specific colour 
model. Reliabilities were used for the object-specific colour 
models as in the previous experiment. A sample frame is 
shown in Figure 4, and the CBMF results are shown in 
Figure 5.  The figure shows the person-specific skin colour 
modalities as mixtures of Gaussians on the first row, and the 
final posterior distribution for each object position on the 
second row. The results are startling. The modes in the pos- 
terior distributions match the positions of the correct faces 
for the respective skin colour model. However examining 
the figure it can be seen that only the modality distribution 
for the first object is very distinctive for that object. Never- 
theless, the mechanism of Bayesian “explaining away” has 
ensured that the second and third objects cannot be found at 
the distinctive position of the first object. 
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Figure 3. Continuous Global Evidence-Based Bayesian Modality Fusion results from a sample frame 
in a sequence. The figure shows from left to right, top to bottom: the original image, the motion 
image, the skin image, the motion modality observation as a mixture of Gaussians, the skin modality 
observation, the prior distribution of X ,  the intermediate posterior P ( X l e c ) ,  the expensive ellipse 
fitting modality observation,and the final fused distribution P ( X ~ ~ T ) .  

7. Conclusion 

Figure 4. Sample frame from multi-object 
tracking example. Crosses show positions of 
local optima in P ( X l e T ) ,  and labelled circles 
show estimated object positions. 

We have presented a theoretically sound, computa- 
tionally tractable, comprehensive probabilistic framework 
for continuous-valued, global evidence-dependent Bayesian 
modality fusion to track multiple objects in space. For 
tracking multiple objects simultaneously, the model com- 
plexity grows linearly with the number of objects rather 
than quadratically as for some existing techniques. The 
method uses exact inference, is deterministic, and combines 
information globally from all observations with prior infor- 
mation propagated over time. The method can distinguish 
between necessary and contingent modalities, and between 
computationally expensive and cheap visual cues. 

This method is a recent development and can be im- 
proved in a number of ways. A more efficient implemen- 
tation may be developed that is able to quickly find the lo- 
cal maxima of a mixture of Gaussians. This would remove 
the reliance of the computational complexity on the spatial 
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Figure 5. CBMF tracking three heads simultaneously; results on a sample frame from a sequence. 
The top row shows observations as mixtures of Gaussians. The bottom row shows the posterior 
distribution of position for each object. The corresponding image frame is shown in Figure 4. 

domain size. Certain parameters in experiments have been 
selected in an ad hoc manner, but could be estimated from 
data. Currently the CBMF network does not explicitly han- 
dle the case that the object leaves the field of view. The 
architecture will need to be modified to handle this case. 

The temporal dependence between object location dis- 
tributions in the multi-object tracker has been simplified 
by copying the posterior at time t to be the prior at time 
t + 1 because inclusion of these connections would over- 
complicate inference. It remains to be seen whether proper 
inclusion of these dependencies can improve tracking. An- 
other issue with the multi-object tracker is that the number 
of objects being tracked is currently fixed over time. We 
are experimenting with the following solution to this prob- 
lem. Tracking begins with a single object. Using Bayesian 
model selection techniques, the addition or removal of an 
object can be hypothesised periodically. Three networks are 
periodically tested: one with L objects, one with L - 1 and 
one with L + 1. A difficult issue occurs with removal of an 
object, since knowing which object to remove may require 
consideration of L new networks. 
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