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Abstract

We introduce the idea of constructing Dynamic Bayesian
Networks (DBNs) with hierarchical structures for modelling
complex scenes at both the event level and the activity level
simultaneously. Practical issues regarding the structure
design of a DBN with multiple hidden processes and hi-
erarchical structure are identified and discussed. Experi-
ments are presented to compare a Multi-Observation Hid-
den Markov Model (MOHMM), a Hierarchical MOHMM,
a Hierarchical Dynamically Multi-Linked Hidden Markov
Model (DML-HMM), and a Hierarchical 2-layer DML-
HMM (2L-DML-HMM) for complex scene modelling. It
is demonstrated that only the Multi-Observation Hidden
Markov Model is able to perform meaningful factorisation
in the activity state space and to extract the deterministic
temporal structure of activities occurred in a complex dy-
namic scene.

1. Introduction
Modelling visual behaviour of activities captured by video
has received enormous attention in recent years due to its
great potential in applications such as threat assessment,
abnormal behaviour detection and public facility manage-
ment [5, 2, 11, 13, 8, 3, 16, 14, 17, 9]. A complex dy-
namic scene often involves multiple objects moving inter-
actively. Instead of modelling the activities of only a single
object/person in isolation, it has become increasingly neces-
sary that grouped activities should be modelled simultane-
ously. Dynamic Bayesian Networks (DBNs), which are ca-
pable of decomposing a complex system into simpler parts
and learning the hidden dependencies among these simpler
parts from data, appear to be suitable for complex scene
modelling [5, 11, 13, 8, 3, 14, 17, 9].

Typically, object behaviours are modelled based on the
tracked trajectories in a state space in which behaviour in-
terpretation is critically based on the discovery and subse-
quent modelling of the underlying temporal structures of the
trajectories. The recognition of activities then becomes the
problem of trajectory recognition, either continuously us-
ing particle filters such as the CONDENSATION algorithm

[12] or discretely using Hidden Markov Models (HMMs)
[13]. However, a number of implicit assumptions are often
made with this approach. Firstly that the videos are of high
enough quality that allows for elaborative object models to
be built using local image features and colour. Secondly that
objects can be tracked consistently in space and over time.
The first assumption is often not true for the video data cap-
tured in surveillance and for visual communication, which
are characterised by low resolution and being highly noisy.
The second assumption is normally invalid in busy scenes
(e.g. outdoor and public places) involving activities of mul-
tiple objects with frequent overlapping motion patterns re-
sulting in discontinuous object trajectories and inconsistent
labelling. Multiple object tracking is thus ill-conditioned
and remains one of the biggest challenges for computer vi-
sion research.

Rather than decomposing a dynamic complex scene into
tracked trajectories, we can decompose the scene into ac-
tivities consisting of correlated visual events [18, 9, 19].
Events are defined as significant scene changes and the cri-
terion for event detection can be different for different appli-
cations. Detected events are represented and classified into
different event classes. An event is labelled by its class, in-
stead of the identity of the object causing the event. Track-
ing is thus avoided. Scene modelling is achieved based
on interpreting the relevances and correlations of events of
different classes. In [9, 19], Dynamic Bayesian Networks
were constructed to model group activities involving corre-
lated multiple temporal processes. Each temporal process
is characterised by the temporal and spatial occurrences of
one class of visual events. It has been shown that activity
recognition can be performed successfully based on event
modelling.

In the real world, a complex dynamic scene often in-
volves multiple activities that may occur simultaneously.
Taking into account the fact that each activity is composed
of multiple events, it is natural to think of developing a
hierarchical model which is capable of modelling a com-
plex scene at both the event level and the activity level.
To this end, we introduce the idea of constructing DBNs
with hierarchical structures for complex scene modelling.
Such DBNs enable activities to be represented in a state

1



space where each discrete state corresponds to one impor-
tant stage of activity. In Section 2, we illustrate how visual
events can be modelled for the recognition of activities in-
volving multiple objects. Examples are given on modelling
the cargo loading and unloading activities occurred in an
outdoor airport ramp scene. In Section 3, we focus on the is-
sue of structure design for DBNs with multiple hidden tem-
poral processes and hierarchical structure. Practical issues
regarding the structure design of a DBN such as the topol-
ogy design and the determination of the number of states
for each hidden state variable are considered. Experiments
are presented to compare hierarchical DBNs with different
topologies and hidden states. Conclusions are presented in
Section 4.

2. Activity Modelling

A Dynamic Bayesian Network (DBN) � is described by
two sets of parameters �������	� . The first set � represents
the structure of a DBN which includes the number of hidden
state variables and observation variables per time instance,
the number of states for each hidden state variable and the
topology of the network (set of directed arcs connecting
nodes). The structure of a DBN can be either manually set
based on a priori knowledge or learned from data. In this
paper, we are interested in how the structure of a DBN can
affect its ability to model complex scenes. To this end, let
us first consider a specific problem of modelling group ac-
tivities in a complex outdoor airport ramp scene based on
discrete object event recognition.

In an airport scene with ground based cargo loading and
unloading operations, events that reflect significant changes
in the scene are to be detected automatically over time
without manual labelling or top-down hypothesising. To
this end, we focus on the cargo service area of the scene
and adopt an approach proposed by [18] for event detec-
tion and recognition. As shown in Figure 1, four differ-
ent classes of events are automatically detected. They are
movingTruck, movingCargo, movingCargoLift
and movingTruckCargo. It is observed that they cor-
rectly correspond to four key elements that contribute to-
wards frontal cargo service activities. It is also noticed that
such an event detection and recognition mechanism makes
mistakes. Mis-detection and wrong labelling can be caused
by discontinuous movement due to low frame rate and over-
lap of different objects. The problem of erroneous event de-
tection and recognition can only be effectively addressed by
interpreting groups of autonomous events in correlation and
as a result, explaining away the errors in the detection and
labelling of individual events.

Although the cargo loading and cargo unloading activi-
ties consist of the same classes of events, these events fol-
low different occurrence patterns. In other words, the same

(a)

(b)

Figure 1: Event detection and classification during an air-
craft cargo unloading activity. (a) Detected and classified
events with the cargo service area highlighted. (b) Highly
overlapped events were detected over time, including
movingTruck, movingCargo,movingTruckCargo
and movingCargoLift, illustrated using green, blue,
red and cyan bounding boxes respectively.

classes of events are correlated in different ways. We hope
that DBNs can learn these differences from data. Various
DBNs can be considered for factorising the state and ob-
servation space by introducing multiple observation vari-
ables and/or multiple hidden state variables. Figure 2 shows
five different types of DBNs for aircraft cargo activity mod-
elling. Observation nodes are shown as shaded circles and
hidden nodes as clear circles. The 
 th hidden state variable
and the � th observation variable at time instance � are de-
noted as 
������� and �������� respectively where 
��������! � � ���"$#&%
and �'�(�����! � � ���"*)+% , "�# and "*) are the number of hid-
den state and observation variables respectively. In this pa-
per, unless otherwise stated, 
 ������ are discrete and � ������ are
continuous random variables. One of advantages of DBNs
is that the a priori knowledge of the problem domain can
be easily incorporated into the model via topology design.
Different topologies of the DBNs shown in Figure 2 imply
different understandings of the scene. More specifically, a
Multi-Observation Hidden Markov Model (MOHMM) only
factorises the observation space with each observation vari-
able corresponding to one event class (Figure 2(a)). In con-
trast, all the other four DBNs aim to factorise both the state
and observation space. The hidden state space is factorised
into ‘state channels’ corresponding to multiple temporal
processes. Figure 2(b) shows a Parallel Hidden Markov
Models (PaHMMs) [17]. The temporal processes are as-
sumed to be independent with each other which in this case
implies that the four different classes of events occurred in
the cargo service area are independent from each other. This
assumption is clearly invalid. A Coupled Hidden Markov
Model (CHMM) [4] assumes that each hidden state vari-
able is conditionally dependent on all hidden state variables
in the previous time instance (Figure 2(c)). Instead of being
fully connected as in the case of a CHMM, a Dynamically
Multi-Linked Hidden Markov Model (DML-HMM) aims
to only connect a subset of relevant hidden state variables
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across multiple temporal processes [9] . This is achieved
by factorising the state transition matrices using Schwarz’s
Bayesian Information Criterion [15]. The factorisation re-
duces the number of unnecessary parameters and caters for
better network structure discovery. Comparing DML-HMM
with CHMM, it is clear that DML-HMM will always con-
sist of more optimised factorisation of the state transition
matrices and most likely have less connections. This al-
lows for more tractable computation when reasoning about
complex group activities. It has been noted that the fac-
torisation in the observation space, which is achieved by
the event classifier, would have a significant effect on the
states of hidden variables when the observation functions
are continuous [7]. To alleviate the effect of an inaccurate
factorisation in the observation space on the factorisation
in the state space, a second layer of hidden variables are
introduced in the topology of DML-HMM, resulting in a
2-layer DML-HMM (2L-DML-HMM) [19]. A 2L-DML-
HMM for modelling the airport cargo activities is shown in
Figure 2(e).
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Figure 2: Five different types of Dynamic Bayesian Net-
works for activity modelling.

The topology of a DBN has a direct influence on the
physical meaning of its states. States of each hidden state
variable in PaHMM, CHMM, DML-HMM and 2L-DML-
HMM represent the status of the occurrences of one class
of events, while states in MOHMM correspond to the status

of the occurrences of all the four classes of events because
there is only one hidden state variable at each time instance.
The physical meaning of states can also be affected by the
number of hidden states, which is another important aspect
of structure design for DBNs. For example, all the state
variables in PaHMM, CHMM, DML-HMM and 2L-DML-
HMM are binary due to the consideration of computational
efficiency. After parameter learning, these states correspond
to whether events of certain class are occurring in the scene.
In contrast, the state variables in MOHMM have �

�
states

where � is the number of event classes. After parameter
learning, these states correspond to the collective status of
the occurrences of events of different classes.

In summary, topology design and the determination of
the number of states of each hidden state variable are the
two important aspects of structure design for a DBN. These
two aspects determine the meaning of states of each hidden
state variable. The structures of the DBNs shown in Figure
2 have determined that all the hidden states would corre-
spond to the occurrences of events. As we mentioned be-
fore, a complex dynamic scene often involves multiple ac-
tivities that may occur simultaneously. To model the corre-
lation at the activity level, it is necessary to represent activi-
ties in a state space where each discrete state corresponds to
one important stage of activity, meaning that activities are
modelled explicitly and separately from events. In terms of
structure design, it means that hierarchy needs to be intro-
duced in the topology of DBNs.

3. Scene Modelling

A hierarchical Dynamic Bayesian Network for complex
scene modelling has two layers: an activity layer and an
event layer, with the activity layer built on top of the event
layer. As far as topology design is concerned, a hidden state
node representing the activity state space is introduced at
each time instance.

Such a topology can be implemented based on any of
the DBNs shown in Figure 2. However, experiments in
[9, 19] suggested that in terms of learning the correlations
among events for activity recognition the performances of
MOHMM, DML-HMM and 2L-DML-HMM are superior
compared to those of PaHMM and CHMM, with 2L-DML-
HMM being the best. We thus conduct the topology exten-
sion only to MOHMM, DML-HMM and 2L-DML-HMM.
The resultant hierarchical DBNs are shown in Figure 3.

As shown in Figures 3 (b), (c) and (d), we can simply add
an activity state layer to the topologies of MOHMM, DML-
HMM and 2L-DML-HMM. The resultant DBNs are called
Hierarchical MOHMM, Hierarchical DML-HMM and Hi-
erarchical 2L-DML-HMM respectively. The activity layer
consists of a single hidden state variable at each time in-
stance which acts as the parent node of the event state nodes.
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Figure 3: Four different Dynamic Bayesian Networks for
scene modelling.

This type of topology determines that each state of the activ-
ity state variable would correspond to one important activity
stage. As we discussed in Section 2, the number of states
also plays a part in determining the meaning of states. If the
number of states for the hidden state variables in MOHMM
is automatically determined instead of being manually set
as �

�
, the event state nodes ( 
 � in Figure 2(a)) turn into ac-

tivity state nodes and we have a two-layer structure using
the same topology as the MOHMM for activity modelling.
The MOHMM for scene modelling is shown in Figure 3(a).
Comparing Figures 3(a) and (b), the MOHMM for scene
modelling can be seen as a simplified version of Hierar-
chical MOHMM, with events being modelled only in the
observation space.

The remaining structure design problem is to determine
the exact number of states of the activity state variable,
which is essentially a model selection problem. We propose
to use Schwarz’s Bayesian Information Criterion (BIC) [15]
to automatically determine the number of states from data.
For a model � � parameterised by a � � -dimensional vector
����� , the BIC is defined as:

��� ���
	 ����
���� � � ��� ����� � ��
�� " (1)

where � � ��� � � is the maximal likelihood under � � , � � is
the dimension of the parameters of � � and " is the size of
the dataset. For the DBNs shown in Figure 3 , the BIC can
be rewritten as:

��� �
��	 ����
�� ��� � "! #"$ ��%&
')(�*+
��,�-/.�0 
 �����-213+

� ,54
(6*+
��,�-".�0 
 ������87 .:9 � 
 ������ � 1

3+
� ,�-

(�;+
�<,�-=.�0 � ������>7 .:9 ��� ������ � 1@? AB ? AB�C� � ��
�� " (2)

where 
 ����� are hidden state variables, � ����� are events as ob-
servations, and .:9 � 
 ����� � and .:9 ��� ����� � are the parents of

 ����� and � � ��� respectively. We consider two states for each
event state variable except for variable 
 �D- �� in Figure 3(b)
which has 16 states. The search for the optimal number of
activity states that produces the minimal BIC value involves
parameter learning. More specifically, for each candidate
state number, the corresponding parameters are learned it-
eratively using Expectation-Maximisation (EM) algorithm.
The E step, which involves the inference of hidden states
given the parameters estimated in the last M step, can be
implemented using an exact inference algorithm such as
the junction tree algorithm [10]. After parameter learning
the BIC value can be computed using Equation (1) where� � ��� � � has been obtained from the final M step of EM for
parameter learning. Alternatively, parameter and structure
learning can be performed within a single EM process using
a structured EM algorithm [6].

The hierarchical structure of the DBNs shown in Fig-
ure 3 are designed such that the temporal structure of an
activity is modelled explicitly in the activity state space.
Can meaningful temporal structure of activities be discov-
ered from real data by these DBNs? We shall find out
through experiments. Our database for the experiments con-
sists of 24 (10 loading and 14 unloading) continuous air-
craft loading/unloading activity sequences selected from the
2 weeks recording giving in total 44490 frames of video
data that cover different time of different days under chang-
ing lighting conditions, from early morning, midday to
late afternoon. The length of each sequence was between
828 to 3449 frames, accounting for 7-29 minutes video
footage. Typically sequences taken in the early morning
contained indistinct objects, reflecting poor lighting, whilst
those taken during the midday had strong sunshine causing
strong shadows in the scene. Fast moving clouds, exacer-
bated by the low frame rate of 2Hz, were common during
the daytime, which resulted in very unstable lighting con-
dition and discontinuous object motion. The camera was
more than 50 meters away from the activities, giving low
resolution images of the objects concerned. Among the 24
sequences, there are 8 clean loading and 8 clean unload-
ing, 2 noisy loading and 6 noisy unloading sequences. By
‘clean’ we imply that the lighting change in the duration
of a sequence is tolerable with limited error in event detec-
tion. We used different combinations of different subsets
from the 24 sequences data set to train the models in or-
der to avoid any bias in the results. Four training sets were
constructed using randomly selected 4 clean loading and 4
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clean unloading sequences added with the 2 noisy loading
and 6 noisy unloading sequences.
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Figure 4: Search for the optimal number of activity states
for MOHMM using BIC.

The optimal numbers of activity states for MOHMM,
Hierarchical MOHMM, Hierarchical DML-HMM and Hi-
erarchical 2L-DML-HMM were determined using BIC. As
shown in Figure 4, the optimal number of activity states
for MOHMM was determined as 4 1. However, it was
found that larger numbers of activity states always produced
higher BIC score for the other three models which means
that BIC failed to determine the meaningful optimal num-
ber of activity states for them.
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Figure 5: (a) is a randomly initialised transition matrix and
(b), (c), (d), (e) are the activity state transition matrices
for MOHMM, Hierarchical MOHMM, Hierarchical DML-
HMM and Hierarchical 2L-DML-HMM learned from cargo
unloading data respectively. Darker entries represent higher
state transition probabilities.

It is desirable for a DBN to be insensitive to parame-
ter initialisation [7]. Since the parameters of a DBN are
estimated using EM, the estimated parameters correspond

1Unless otherwise stated, experiment results illustrated in this paper
were obtained using unloading sequences in training set 1. Similar results
were obtained using other training sets.
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Figure 6: Inferred activity states of MOHMM on one cargo
unloading sequence. The physical meaning of each state
can be discovered by comparing (b) with (a).

to a local minimum on the error surface in the optimisa-
tion space. Being sensitive to initialisation indicates that
there are many local minimal on the error surface. Figure
5 shows an example of how the initialisation of parameters
affected the learning of the activity state transition matrices
( . � 
 � 7 
 ��� - � for MOHMM, . � 
 ��4 �� 7 
 ��4����� - � for Hierarchical

MOHMM, . ��
 � � �� 7 
 � � ���� - � for Hierarchical DML-HMM and

. ��
 � � �� 7 
 � � ���� - � for Hierarchical 2L-DML-HMM.). Figures
5(c), (d), and (e) show that when the numbers of activity
states were set to 4 and the activity state transition matrices
were randomly initialised, parameter estimated for Hierar-
chical MOHMM, Hierarchical DML-HMM and Hierarchi-
cal 2L-DML-HMM did not move far from their initialised
values. This indicates that these three models are sensitive
to parameter initialisation and thus unable to discover the
temporal structure of activity. In contrast, a sparse activity
state transition matrix was obtained for MOHMM (Figure
4(b)) which was found to be independent of the initialised
parameters. Figure 6(b) shows the inferred activity states
when the learned model was applied on one cargo unloading
sequence. Comparing these states with the detected events
(see Figure 6(a)), it is clear that state 3 in Figure 5(b) cor-
responded to ’no activity’, while states 1, 2, and 4 corre-
sponded three important activity stages in the cargo unload-
ing activity respectively.

Our experiments demonstrate that only MOHMM is able
to perform meaningful factorisation in the activity state
space and to extract the deterministic temporal structure of
activities occurred in a complex dynamic scene. As shown
in [9, 19], MOHMM, DML-HMM and 2L-DML-HMM
are capable of extracting the correlations among events to-
wards activity recognition. Why cannot factorisation be
performed correctly in the activity state space when a sep-
arate activity layer is added to the topology of these three
models? We consider that there are two possible expla-
nations. Firstly that adding more hidden state variables
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in a DBN means that more parameters are needed to de-
scribe the model. The DBN is thus more likely to suffer
the “curse of dimensionality” problem [1]. Consequently,
the model tends to both under-fit, being unable to capture
the structure of the system, and over-fit, being sensitive to
the initialisation of parameters and the noise in the data.
Secondly that for MOHMM the activity state space is built
directly on top of the continuous observation space, rather
than the discrete event state space as in the case of Hierar-
chical MOHMM, Hierarchical DML-HMM and Hierarchi-
cal 2L-DML-HMM. Although the errors in event detection
and recognition could have a direct influence on the fac-
torisation of the activity state space, continuous child nodes
(event observations) put more constraints on the transition
structure of their parent nodes (activity state variables) com-
pared to discrete child nodes (event state variables), pre-
venting the factorised activity state space from being misled
by the parameter initialisation.

4. Conclusions

In this paper, we introduce the idea of constructing Dy-
namic Bayesian Networks (DBNs) with hierarchical struc-
tures for complex scene modelling. Object temporal events
are detected and labelled with automatic model order se-
lection. Hierarchical DBNs are then constructed to model
complex scenes at both the event level and the activity
level simultaneously. Practical issues regarding the struc-
ture design of a DBN with multiple hidden processes and
hierarchical structure are identified and discussed. Experi-
ments are presented to compare a Multi-Observation Hid-
den Markov Model (MOHMM), a Hierarchical MOHMM,
a Hierarchical Dynamically Multi-Linked Hidden Markov
Model (DML-HMM), and a Hierarchical 2-layer DML-
HMM (2L-DML-HMM) for complex scene modelling. It
is demonstrated that only the Multi-Observation Hidden
Markov Model is able to perform meaningful factorisation
in the activity state space and to extract the deterministic
temporal structure of activities occurred in a complex dy-
namic scene. Our analysis shows that scalability should be
a major concern for designing the structure of a hierarchical
DBN for complex scene modelling.
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