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Abstract
We develop a novel visual behaviour modelling ap-

proach that performs incremental and adaptive behaviour
model learning for online abnormality detection. Three key
features make our approach advantageous over previous
ones: (1) unsupervised learning, (2) online and incremental
model construction, and (3) model adaptation to changes in
visual context. In particular, we formulate an incremen-
tal EM algorithm with added model adaptation capacity for
online behaviour model learning. These features are not
only desirable but also necessary for processing large vol-
ume of unlabelled surveillance video data with changes of
visual context over time. It has been demonstrated by our
experiments that our incrementally learned behaviour mod-
els are superior to those learned in batch mode in terms of
both performance in abnormality detection and computa-
tional efficiency.

1. Introduction
Abnormal behaviour detection in video is one of the

most critical issues in visual surveillance. Although its im-
portance has long been recognised and much effort has been
made [3, 13, 10, 7, 5, 20, 14, 8, 17, 19, 2], the problem
remains largely unsolved for cluttered busy scenes outside
the well-controlled laboratory environment. This is not only
due to the complexity and variety of behaviours in a realistic
and unconstrained environment, but also because of the am-
biguous nature in the definition of normality and abnormal-
ity, which is highly dependent on the visual context and can
change over time. A behaviour can be considered as either
being normal or abnormal depending on when and where it
takes place. Furthermore, abnormality is likely to be both
unexpected and rare therefore providing little if any well
defined training samples for model built offline. In this pa-
per, we develop a novel behaviour modelling approach that
performs incremental and adaptive behaviour model learn-
ing for online abnormality detection. Our approach has the
following key features:

1. Unsupervised learning.Our behaviour model learning
is based on unlabelled data without knowing whether

each training behaviour pattern is normal and to which
class it belongs. Compared to existing supervised
learning based approaches [13, 10, 7, 5], our approach
is intrinsically more difficult but also offering a num-
ber of significant advantages: (a) The laborious, often
impractical and unreliable process of manual labelling
is avoided. (b) Abnormal behaviour patterns are com-
monly rare and unexpected, therefore difficult to de-
fine. Our approach lifts the burden off defining and
selecting abnormal training samples.

2. Online and incremental model construction.At each
time step a model is updated according to whether
any behaviour pattern has been observed whilst ab-
normality detection is performed simultaneously. This
enables a system to bootstrap behaviour models from
sparse observations. This is in contrast with most pre-
vious behaviour modelling techniques that operate on
a batch-mode basis where observing (and collecting)
sufficiently large samples of behaviour patterns is nec-
essary before model training. In particular, online in-
cremental learning is not only desirable but also neces-
sary for processing large volume of unlabelled surveil-
lance video data when batch-mode methods are both
computationally and logistically too expensive.

3. Model adaptation to changes in visual context.
Whether a behaviour pattern is normal is highly de-
pendent on the visual context. Existing methods as-
sume what was considered to be normal/abnormal in
the training dataset would continue to hold true regard-
less the inevitable circumstantial changes over time.
Our approach enables model adaptation according to
changes of visual context. This is achieved through
online model updating and a bias towards more recent
observations. When an unfamiliar behaviour pattern is
observed, it is initially considered to be an abnormal-
ity. However, if similar patterns were to appear repeat-
edly thereafter, a model would adapt to this change of
context and be constructed to represent a new class of
normal behaviour.



Early work on abnormal behaviour detection took a su-
pervised learning approach [13, 10, 7, 5] based on the as-
sumption there exist well-defined and knowna priori be-
haviour classes (both normal and abnormal). However, in
reality abnormal behaviours are both rare and far from be-
ing well-defined, resulting in insufficient clearly labelled
data required for supervised model building. Furthermore,
manual labelling of training data is also subject to consid-
erable inconsistency depending on human operator experi-
ence. This can result in a supervised model giving inferior
abnormality detection performance compared to that of an
unsupervised model [17].

More recently, a number of techniques have been pro-
posed for unsupervised learning of behaviour models [20,
8, 2, 17]. They can be further categorised into two dif-
ferent types according to whether an explicit model is
built. Approaches that do not model behaviour explic-
itly either perform clustering on observed patterns and la-
bel small clusters as abnormal [20, 8] or build a database
of spatio-temoral patches using only regular/normal behav-
iours (manually labelled) and detect those patterns that can-
not be composed from the database as being abnormal [2].
The approach proposed in [20] cannot be applied to any pre-
viously unseen behaviour patterns therefore is only suitable
for postmortem analysis but not for on-the-fly abnormal-
ity detection. This problem is addressed by the approaches
proposed in [8] and [2]. However, in these approaches all
the previously observed normal behaviour patterns must be
stored either in the form of sequences of discrete events [8]
or ensembles of spatio-temporal patches [2] for detecting
abnormality from unseen data, which jeopardises the scala-
bility of these approaches. Alternatively, an explicit model
based on a mixture of Dynamic Bayesian Networks (DBNs)
can be constructed to learn specific behaviour classes for au-
tomatic detection of abnormalities on-the-fly given unseen
data [17]. However, since the model is trained in a batch
mode, it cannot cope with changes of visual context.

There is also another approach that differs from both the
supervised and unsupervised techniques above. A semi-
supervised model was introduced by [19] with a two-stages
training process. In stage one, a normal behaviour model is
learned using labelled normal patterns. In stage two, an ab-
normal behaviour model is then learned unsupervised using
Bayesian adaptation.

In this work, we propose a fully unsupervised learning
approach that differs from previous techniques [3, 13, 10, 7,
5, 20, 14, 8, 17, 19, 2] in that our model is learned incre-
mentally online given an initial small bootstrapping train-
ing set. Furthermore, our model adapts to changes in visual
context over time therefore catering for the need to reclas-
sify what may initially be considered as being abnormal to
be normal over time, and vice versa. Our work is closely
related to [17] especially in the aspect of behaviour repre-

sentation. However, in addition to the key feature of online
incremental learning, we develop a more principled crite-
rion for abnormality detection based on a Likelihood Ratio
Test (LRT) originally proposed for key-words detection in
speech recognition [15]. This makes our method more ro-
bust to noise compared to the one proposed in [17] which
uses a trivial thresholding strategy based on the Maximum
Likelihood (ML) principle. It is also worth pointing out that
both the approaches proposed in [8] and [2] are claimed to
be incremental and online. Nevertheless, in [8] online ab-
normality detection only takes place after the model is built
in a batch mode, while in [2] the incremental model learning
process requires human intervention (i.e. manually defining
a new class of normal behaviour and adding it to the data-
base). In our approach, model learning/adaptation and ab-
normality detection are carried out simultaneously as new
data are presented without human intervention.

2. Incremental Behaviour Modelling

A continuous videoV is segmented intoN video seg-
mentsV = {V1, . . . ,Vn, . . . ,VN} so that each segment
contains a single behaviour pattern that does not necessar-
ily restrict to a single object (i.e. may consist of a group
or interactive activity). Depending on the nature of the
video sequence to be processed, various segmentation ap-
proaches can be adopted. Since we are focusing on sur-
veillance video, the most commonly used shot change de-
tection based segmentation approach is not appropriate. In
a not-too-busy scenario, there are often non-activity gaps
between two consecutive behaviour patterns which can be
utilised for activity segmentation. In the case where obvious
non-activity gaps are not available, an on-line segmentation
algorithm proposed in [16] can be adopted. Alternatively,
the video can be simply sliced into overlapping segments
with a fixed time duration [20].

Then-th video segmentVn consists ofTn image frames
represented asVn = {In1, . . . , Int, . . . , InTn

} whereInt is
thet-th image frame. Adopting a discrete scene event based
behaviour representation method (see [17] for details), a be-
haviour pattern captured by theVn is represented as a fea-
ture vectorPn, given as

Pn = {pn1, . . . ,pnt, . . . ,pnTn
}, (1)

where thet-th elementpnt is aKe dimensional event prob-

abilistic variable:pnt =
{

p1
nt, ..., p

k
nt, ..., p

Ke

nt

}

. pnt corre-

sponds to thet-th image frame ofVn andpk
nt is the poste-

rior probability that an event of thek-th class has occurred
in the frame.

An outline of our incremental behaviour learning algo-
rithm is shown in Fig. 1 and each stage of the algorithm is
explained in details as follows.



Model initialisation (Section 2.1): Constructing an initial behaviour model given a small bootstrapping training set;
for an unseen behaviour patternPnew do

Abnormality Detection (Section 2.2):Detecting whetherPnew is abnormal using both a normal behaviour model
Mn and an approximated abnormal behaviour modelMa based on Likelihood Ratio Test (LRT);
Model Parameter Updating (Section 2.3):Updating the parameters ofMn andMa usingPnew according to the
abnormality detection result;

end

Figure 1: Outline of our incremental behaviour modelling algorithm.

2.1. Model Initialisation

2.1.1 Behaviour Affinity Matrix

Consider a small datasetD for model initialisation, con-
sisting ofN feature vectorsD = {P1, . . . ,Pn, . . . ,PN}
wherePn represents the behaviour pattern captured by the
n-th video segmentVn (see Eqn. (1)). The problem to be
addressed is to discover the natural grouping of the training
behaviour patterns upon which an initial behaviour model
can be built. We treat this as an unsupervised temporal
string clustering problem. There are two aspects that make
this problem challenging: (1) Each feature vector as a mul-
tivariate string can be of different length (Tn) representing
variable temporal duration. Conventional clustering algo-
rithms such as K-means and mixture models require that
each data sample is represented as a fixed length feature
vector, therefore cannot be applied readily to our problem.
(2) A definition of a distance/affinity metric among these
strings of variable length is nontrivial [12].

Dynamic Bayesian Networks (DBNs) provide a solution
for overcoming the above-mentioned difficulties. Each be-
haviour pattern in the training set is modelled using a DBN.
To measure the affinity between two behaviour patterns rep-
resented asPi andPj , two DBNs denoted asBi andBj are
trained onPi andPj respectively using the EM algorithm
[4, 6]. The affinity betweenPi andPj is then computed as:

Sij =
1

2

{

1

Tj

log P (Pj |Bi) +
1

Ti

log P (Pi|Bj)

}

, (2)

whereP (Pj |Bi) is the likelihood of observingPj given
Bi, andTi andTj are the lengths ofPi andPj respectively.
DBNs of different topologies can be used for modelling
each behaviour pattern. In this work we adopt a Multi-
Observation Hidden Markov Model (MOHMM) [7]. Given
anN×N affinity matrixS = [Sij ], all behaviour patterns of
variable length in the training set are then grouped readily
into Ki clusters using an existing spectral clustering algo-
rithm, e.g. that of Yu and Shi [18].

2.1.2 Bootstrapping Behaviour Models

Now each ofN behaviour patterns in the initial training set
are labelled as one of theKi behaviour classes. To build an

initial model using theN behaviour patterns, we first model
thek-th (1 ≤ k ≤ Ki) behaviour class using a MOHMM
denoted asBk with its parametersθBk to be estimated us-
ing all the patterns in the training set that belong to thek-th
class. Second, each of theKi behaviour classes is labelled
as being either normal and abnormal according to the num-
ber of patterns within the class. More specifically, theKi

classes are ordered according to the number of class mem-
berships and the firstKn classes are labelled as being nor-
mal, where

Kn = arg min
b

(

b
∑

k=1

Nk

N
> Q

)

(3)

whereNk is the number of members in thek-th class andQ
corresponds to the minimum portion of the behaviour pat-
terns in the initial training set which should be accounted
as being normal. Third, a normal behaviour modelMn is
then initialised as a mixture of theKn MOHMMs for the
Kn normal behaviour classes. An approximated abnormal
modelMa is also initialised using theKa = Ki − Kn ab-
normal behaviour classes in the bootstrapping dataset. Let
P be a sample ofMn. The probability density function
(pdf) of Mn can be writen as:

P (P|Mn) =

Kn
∑

k=1

wnkP (P|Bnk) (4)

where wnk is the mixing probability/weight of thek-
th mixture component with

∑Kn

k=1 wnk = 1 and Bnk

are MOHMMs corresponding to normal behaviour classes.
Similarly for Ma, we have:

P (P|Ma) =

Ka
∑

k=1

wakP (P|Bak) (5)

The parameters of the normal behaviour modelMn after
bootstrapping are

θMn
=
{

Kn, wn1, ..., wni, ..., wnKn
, θBn1

, ..., θBni
, ..., θBnKn

}

.

Similarly, the parameters of the abnormal behaviour model
Ma are

θMa
=
{

Ka, wa1, ..., waj , ..., waKa
, θBa1

, ..., θBaj
, ..., θBaKa

}

.



In model initialisation, given a very small bootstrap-
ping training set with poor statistics, we essentially per-
form abnormal behaviour detection for the initial training
set simply according to the rarity of behaviours as there is
no other meaningful discriminative information availablein
the small initial training set. For further abnormality de-
tection as more data becomes available online, we formu-
late a more elaborated approach. The approach takes into
consideration the generalisation capacity of mixture models
learned using incremental EM with model adaptation when
sufficient statistics can be established from data.

2.2. Online Abnormality Detection

Beyond the initial bootstrapping step, we address both
the problems of model updating and abnormality detection
with a single hypothesis test using the Likelihood Ratio Test
(LRT) method [15]. Given a newly observed behaviour pat-
tern represented asPnew and current modelsMn andMa,
firstly thei-th mixture component ofMn (corresponding to
the i-th normal behaviour class) is identified as being most
likely to generatePnew among the components ofMn us-
ing the Maximum Likelihood (ML) criterion. Similarly, the
j-th mixture component ofMa is identified among the com-
ponents ofMa. Secondly, we consider a hypothesis test
between:

Hi : Pnew is fromMn and belongs to
the i-th normal behaviour class

Hj : Pnew is fromMa and belongs to
the j-th abnormal behaviour class

If Hi is accepted,Pnew is detected as being normal and be-
longs to thei-th normal behaviour class; otherwise,Pnew is
abnormal and belongs to thej-th abnormal behaviour class.
This hypothesis test is achieved through a likelihood Ratio
Test (LRT). More specifically, the likelihood ratio is com-
puted as

Λ(Pnew) =
P (Pnew;Hi)

P (Pnew;Hj)
=

P (Pnew|Bni)

P (Pnew|Baj)
(6)

whereBni andBaj correspond to the most likely respon-
sible normal and abnormal behaviour classes respectively,
andHi is accepted if

Λ(Pnew) ≥ ThΛ (7)

whereThΛ is a threshold.
2.3. Incremental EM Learning with Model Adap-

tation

Now given abnormality testing for each newly observed
behaviour patternPnew, the model parametersθMn

and
θMa

are updated accordingly as follows:

Initialisation:

• set iteration counterp = 0;

• setθ[0]
Bni

= θ
[old]
Bni

, the parameters ofBni before
seeingPnew;

while no convergencedo
E Step:

• givenPnew andθ
[p]
Bni

, compute the sufficient

statistics ofPnew, S
[p+1]
Pnew

using the
forward/backward procedure overPnew;

• compute the sufficient statistics for the
complete data (i.e. all the behaviour patterns
observed so far that belong toBni) as
S[p+1] = S[p] + S

[p+1]
Pnew

− S
[p]
Pnew

;

M Step:

• setθ[p+1]
Bni

to theθBni that with maximum
likelihood givenS[p+1];

• setp = p + 1;

end

Figure 2: Incremental EM learning of behaviour mod-
els given a matched MOHMM observation. Details on
the forward/backward procedure and sufficient statis-
tics can be found in [9] and [1]. Convergence is reached

when P
(

Pnew|θ
[p+1]
Bni

)

− P
(

Pnew|θ
[p]
Bni

)

< Thp

whereThp is a threshold.

(1) If Pnew was detected as being normal and matched by
thei-th componentBni (Pnew ∈ Bni) using LRT, the para-
meters ofBni (denoted asθBni) is updated using an incre-
mental EM algorithm. The general principle of incremental
EM was originally introduced in [11]. Here we formulate
an algorithm for online incremental learning of a matched
MOHMM (Bni), as outlined in Fig. 2. Stable convergence
is guaranteed for our algorithm (see [11]). Note that the E
step of the algorithm only looks at a single data itemPnew.
Furthermore, both the E step and the M step take constant
time, regardless of the number of behaviour patterns ob-
served so far. AfterθBni are updated, the weight of thei-th
mixture component is updated as:

w
[new]
ni = w

[old]
ni + α

(

1 − w
[old]
ni

)

(8)

wherew
[old]
ni is the weight before seeingPnew andα with

0 ≤ α ≤ 1 is a learning rate for determining the speed
at which a model would adapt to new observations. The
weights for the components ofθMn

are then renormalised.



(2) If Pnew was detected as being abnormal, we need to es-
tablish whetherPnew belongs to one of the existing abnor-
mal behaviour classes. Specifically, the similarity/distance
betweenPnew and the best matchedj-th component ofMa

is measured as the normalised log-likelihood of observing
Pnew givenBaj :

d (Pnew,Baj) =
1

LPnew

log P
(

Pnew|θBaj

)

where LPnew
is the length ofPnew (total number of

frames). If
d (Pnew,Baj) > Thd, (9)

Pnew is determined to be a member ofBaj andθBaj
and

waj are updated in a similar way asθBni
and wni (see

Fig. 2 and Eqn. (8)).

(3) Otherwise (i.e.Pnew was detected as being abnormal
and Eqn. (9) was not satisfied), a new abnormal behaviour
class is added toMa whose parameters are estimated using
Pnew and its weight is set to the smallest weight of the
existing components ofMa. Weight renormalisation is
then performed.

(4) Model adaptation to reflect changes in visual context
is important for continuous online observation (e.g. 7/24
surveillance). We achieve model adaptation through com-
ponent trimming which is performed for bothMn andMa.
Here we introduce two task specific thresholding parame-
ters determined by the complexity of a scene and avail-
able computing resources during model implementation.
More specifically, when a normal behaviour class has not
been supported by new observations, its weight is decreased
gradually. If its weight is smaller than a thresholdThw1,
it becomes abnormal and the corresponding mixture com-
ponent would be regrouped into the abnormal behaviour
mixture modelMa. In the meantime, when an abnormal
behaviour class is matched repeatedly by new observations
so that its weight becomes greater than a thresholdThw2,
it becomes normal and the corresponding mixture compo-
nent would be regrouped into the normal behaviour mixture
Mn. The abnormal classes whose weights are smaller than
Thw1 would then be discarded in order to impose a limit
on the total number of abnormal behaviour classes a model
is designed to cope. This is because that in realistic situa-
tions, the total number of abnormal behaviour classes can
potentially be infinite. After component trimming, the mix-
ture weights ofMn andMa also need to be renormalised.
Component trimming makes our behaviour model adaptive
to changes in visual context, resulting in that the number of
mixture components/behaviour classes for both the normal
and abnormal models can be changed during model incre-
mental learning and adaptation.

A number of issues deserve further discussions:

1. Two mixtures of MOHMMs,Mn and Ma are ini-
tialised and updated for modelling normal and ab-
normal behaviours respectively. Having two separate
models for normal and abnormal behaviours is neces-
sary and critical because (a) It makes robust abnormal-
ity detection possible based on LRT, which is advanta-
geous over the conventional ML method. (b) It makes
our behaviour model adaptive to changes in visual con-
text (i.e. normal behaviours can become abnormal and
vice versa). Note that it is impossible to build an exact
model for abnormal behaviour patterns because they
are rare and unpredictable. However, it is possible to
build an approximated one using the abnormal patterns
detected so far (i.e.Ma in our approach) which is ca-
pable of capturing the randomness and unexpectedness
of unseen abnormal behaviour patterns.

2. Although It has been shown by Neal and Hinton [11]
that stable convergence is guaranteed for each mixture
component ofMn andMa, no theoretical proof can
be given for the convergence of our behaviour model
as a whole. In particular, our behaviour model is based
on mixture models with changing component numbers
and the incremental EM algorithm thus cannot be im-
plemented directly to the two mixture models. In our
solution, the mixture weight updating (Eqn. (8)) and
component trimming parts of the algorithm are based
on online approximation and therefore is slightly ad-
hoc. Nevertheless, experimental results presented in
Section 4 demonstrate empirically that our model con-
verges to a satisfactory solution.

3. Although a discrete event based behaviour representa-
tion is adopted here, other behaviour representations
can also be used for our method provided that a behav-
iour pattern can be represented as a feature vector.

3. Experiments
Dataset and behaviour representation —A CCTV cam-
era was mounted on the ceiling of an office entry corri-
dor, monitoring people entering and leaving the office area
(see Fig. 3). The office area is secured by an entrance-door
which can only be opened by scanning an entry card on the
wall next to the door (see the middle frame of Fig. 3(b)).
Two side-doors were located at the right hand side of the
corridor. People from both inside and outside the office area
have access to those two side-doors. Typical behaviours oc-
curring in the scene would be people entering or leaving
either the office area or the side-doors, and walking towards
the camera. Most captured behaviour patterns involved 1-
2 people. Each behaviour pattern would normally last a
few seconds. For this experiment, a dataset was collected



(a) C1 (b) C2

(c) C3 (d) C4

(e) C5 (f) C6

(g) A1 (h) A2

Figure 3: Behaviour patterns in a corridor scene. (a)–(f) show image frames of commonly occurred behaviour patterns
belonging to the 6 behaviour classes listed in Table 1. (g)–(h) show examples of rare behaviour patterns captured in the
video. (g): One person entered the office following another person without using the entry card. (h): Two people left the
corridor after a failed attempt to enter the door. Events detected during each behaviour pattern are shown by colour-coded
bounding boxes in each frame.

over 5 different days consisting of 6 hours of video totalling
432000 frames captured at 20Hz with320×240 pixels per
frame. This dataset was then automatically segmented into
sections separated by any motionless intervals lasting for
more than 30 frames. This resulted in 142 video segments
of actual behaviour pattern instances. Each segment has on
average 121 frames with the shortest 42 and longest 394.
Examples of behaviour patterns captured in the 6 hour video
are shown in Figure 3. Discrete events were detected and
classified using automatic model order selection in cluster-
ing, resulting in four classes of events corresponding to the
common constituents of all behaviours in this scene: ‘enter-
ing/leaving the near end of the corridor’, ‘entering/leaving
the entrance-door’, ‘entering/leaving the side-doors’, and
‘in corridor with the entrance-door closed’. Examples of de-
tected events are shown in Fig. 3 using colour-coded bound-
ing boxes. It is noted that due to the narrow view nature of
the scene, differences between the four common events are
rather subtle and can be mis-identified based on local in-
formation (space and time) alone, resulting in large error
margin in event detection. The fact that these events are
also common constituents to different behaviour patterns
reinforces our early observation that local events treatedin

isolation hold little discriminative information for behav-
iour profiling. All experiments were conducted on an 3GHz
platform.

C1 From the office area to the near end of the corridor
C2 From the near end of the corridor to the office area
C3 From the office area to the side-doors
C4 From the side-doors to the office area
C5 From the near end of the corridor to the side-doors
C6 From the side-doors to the near end of the corridor

Table 1: Six classes of commonly occurred behaviour pat-
terns in the corridor scene.

Model initialisation — A dataset consisting ofN video
segments was randomly selected from the overall 142 seg-
ments for model initialisation.N was set to either 20 or 60
in our experiments. The remaining segments (142 − N in
total ) were used for incremental model learning and online
abnormality detection later. This model initialisation exer-
cise was repeated 20 times each forN = 20 andN = 60 re-
spectively and in each trial a different model was initialised
using a different random dataset. This is in order to test the
effect of the size of initial training set and avoid any bias in
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Figure 4: Examples of model initialisation. Spectral cluster-
ing results were illustrated using the clustered affinity ma-
trices. Discovered clusters were in descending order in size
from top-right to bottom-right. The affinity matrices were
plotted such that “white” corresponds to the highest affinity
value while “black” represents the lowest value.

the abnormality detection results. The number of initial be-
haviour classes to be established through model bootstrap-
ping Ki was set to 10 in our experiments.Q (see Eqn. (3))
was set to0.7 and on average the numbers of normal behav-
iour classes discovered automatically through model initial-
isation were 5 whenN = 20 and 6 whenN = 60 over
20 trials. Fig. 4 shows examples of the model initialisa-
tion process. It is noted that given a small random initial
training set (N = 20), mixture components inMn often
corresponded to only some of the 6 commonly occurred be-
haviour classes (Table 1). In this case, those that were not
included inMn were either labelled as being abnormal be-
haviour classes and modelled byMa or did not form any
cluster due to their rare occurrence in the small training set.
It is also observed that given a large initial training set, all
6 commonly occurred behaviour classes can find the cor-
responding components inMn. It can be seen in Fig. 4
that there were fair amount of similarities among different
clusters even between the normal and abnormal ones. This
was because (1) different behaviour classes share the same
events as constituents and often differed only in temporal
orders of the occurrence of those events, and (2) there were
considerable amount of noise in event detection.

Online abnormality detection and incremental learning
— After model initialisation, online abnormality detection
and incremental model parameter updating were performed.
Parameters for incremental model learning were set as:
learning rateα = 0.1, convergence threshold for matched
mixture component updatingThp = 0.0001, threshold
for matching abnormal behaviour classesThd = −0.5,
and for mixture component trimming:Thw1 = 0.05 and
Thw2 = 0.25. It is noted that our results were not sensitive
to these parameters.

To evaluate the performance of the learned models on ab-
normality detection, ground truth was extracted by indepen-
dently labelling the testing/incremental-learning datasets
such that each behaviour pattern was labelled as being nor-
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Figure 5: The performance of abnormality detection mea-
sured by detection rate and false alarm rate. (a)–(d) show
the mean and±1 standard deviation of the ROC curves ob-
tained over 20 trials under different experimental settings.

mal if there were similar patterns that have been seen before
and abnormal otherwise. The performance of the model is
measured using the detection rate and false alarm rate in
abnormality detection which are functions ofThΛ. Varying
ThΛ gave us a ROC curve in each trial. The averaged ROC
curves forN = 20 andN = 60 are shown in Fig. 5(a)
and (b) respectively. Comparing Fig. 5 (a) with (b), it is
clear that better performance was obtained using larger ini-
tial training sets. This was expected due to: (1) the models
were initialised poorly given smallN because the spectral
clustering algorithm used for model initialisation requires
sufficient data samples; (2) Some commonly occurred be-
haviour patterns were not present in the initial training set.
Therefore, when they were observed after model initialisa-
tion, it took time for the model to integrate the correspond-
ing behaviour classes intoMn. Nevertheless, it is observed
that even with small initial training sets, our models were
able to discover all the normal behaviour classes and reach
convergence when sufficient observations became available
after model initialisation. The experiments thus demon-
strated that our incremental learning model can cope with
changes of visual context (in this case, abnormal behaviour
patterns becoming normal).

Comparative evaluation against batch-mode offline
learning — We compared the performance of our incre-
mental behaviour modelling algorithm with a batch-mode
offline model as follows. GivenN behaviour patterns, a
behaviour models were built following the same procedure
as model initialisation for incremental learning (see Section
2.1). N was set to either 20 or 60 in our experiments. The



remaining behaviour patterns (142−N in total ) were used
for testing with the model parameters fixed during testing
and abnormality detection performed using LRT (see Sec-
tion 2.2). The experiment was repeated for 20 times each
for N = 20 andN = 60 respectively and in each trial a
behaviour model was trained with a different random train-
ing set. The averaged ROC curves obtained using mod-
els trained in batch mode are shown in Fig. 5(c) and (d).
Comparing Fig. 5(a)&(b) with Fig. 5(c)&(d), it is evident
that the incrementally learned models are superior to those
learned in batch mode. The performance of the batch-mode
behaviour models withN = 20 was especially poor (see
Fig. 5(c)). This was mainly due to the fact that these mod-
els cannot cope with the changes of visual context. It is also
noted that the ROC curves obtained using our incrementally
models exhibited smaller variations across different trials.
This again can be explained by the model adaptation fea-
ture of our method which makes the model less sensitive to
the choice of initial training data.
Computational cost —After model initialisation, the com-
putational cost for incremental learning is significantly
lower compared to the offline batch-mode method since
only one behaviour pattern is used to update one mixture
component ofMn or Ma at each time (see Table 2). More
importantly, since our algorithm is online, it can run in real
time.

computational cost(second per frame)
incremental 0.025
batch-mode 0.165

Table 2: Comparing the computational cost of incremental
learning with that of a batch-mode learning method. These
were for Matlab implementations.

4. Conclusion

We proposed a fully unsupervised approach for visual
behaviour modelling and abnormality detection. Our ap-
proach differs from previous techniques in that our model
is learned incrementally online given an initial small boot-
strapping training set. Furthermore, our model adapts to
changes in visual context over time therefore catering for
the need to reclassify what may initially be considered as
being abnormal to be normal over time, and vice versa.
It has been demonstrated by our experiments that our in-
crementally learned behaviour models are superior to those
learned in batch mode in terms of both performance in ab-
normality detection and computational efficiency.
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