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Abstract

Modelling events is one of the key problems in dynamic
scene understanding when salient and autonomous visual
changes occurring in a scene need to be characterised as
a set of different object temporal events. we propose an
approach to understand complex outdoor scenarios which
is based on modelling temporally correlated events using
Dynamic Bayesian Networks (DBNs). A Partially Coupled
Hidden Markov Model (PCHMM) is exploited whose topol-
ogy is determined automatically using Bayesian Informa-
tion Criterion (BIC). Causality discovery and events mod-
elling are also tackled using a Multi-Observation Hidden
Markov Model (MOHMM).

1. Introduction

Modelling visual behaviour for dynamic scene under-
standing has received increasing attention from computer
vision researchers for decades. Different sub-areas of com-
puter vision research such as visual surveillance and mon-
itoring, facial behaviour modelling, gesture modelling and
multiple object tracking are essentially solving the same un-
derlying problem, although they may adopt seemingly very
different representations. Consequently, same or very simi-
lar modelling approaches are utilised in different sub-areas.
For example, Hidden Markov Models (HMMs) and their ex-
tensions have been widely used in human interaction mod-
elling [8], gesture modelling [11] and traffic monitoring [3].

Instead of modelling the behaviour of only a single ob-
ject/person in isolation, it has become increasingly neces-
sary that visual behaviour involving multiple objects/people
either in interaction or as a group must be modelled simul-
taneously. We consider that a complex dynamic scene con-
sists of activities which are often composed of spatially and
temporally structured autonomous visual events and activity

units. By autonomous events, we imply that both the num-
ber of meaningful events and their whereabouts in the scene
are automatically learned and detected rather than manually
labelled or hypothesised as usually reported in the literature.
At a higher level, spatio-temporally correlated events form
activities. In some cases, the temporal structure of events
follows a certain temporally repeated pattern, which is re-
ferred as an activity unit. On top of activities, we define
a scene level, which is composed of temporally correlated
activities. For example, if human behaviour is the dynamic
scene we want to model, gestures such as ‘clapping hands’
can be modelled as activities. The ‘clapping hands’ activity
is composed of temporally ordered events ‘hands move to-
wards each other’ and ‘hands leave each other’. An activity
unit in this case corresponds to a ‘hands move towards each
other’ event followed by a ‘hands leave each other’ event.

The work presented in this paper focuses on modelling
events towards activity understanding in a complex outdoor
scene. In a typical outdoor scenario, there are multiple mov-
ing objects. The movements of these objects can be simul-
taneous with the number of objects changing constantly. To
avoid the difficulties associated with tracking multiple ob-
jects, we detect automated visual events and classify them
into classes which correspond to different movement pat-
terns. We believe that the semantics to be extracted from
dynamic scenes are encoded in the evolution of events and
the temporal correlations among them. A realistic outdoor
scenario in general offers more challenges than a well con-
trolled indoor scenario due to factors such as the unstable
lighting conditions. As a consequence, the detected vi-
sual events are often contaminated by noise. It becomes
critical to take into account of these errors when mod-
elling the temporal relationships among events. Dynamic
Bayesian Networks (DBNs) [6, 7] are ideally suited to as-
sociate correlated temporal events in a complex outdoor
scene which deal with the errors in the observed data ex-
plicitly under a probabilistic framework by introducing hid-
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den states. We exploit the use of a Partially Coupled Hid-
den Markov Model (PCHMM) to model temporal events
whose topology is determined automatically by the result of
event causality discovery using Bayesian Information Cri-
terion (BIC) [9]. Multi-Observation Hidden Markov Model
(MOHMM) is also employed to perform causality discov-
ery and events modelling using a single network. Experi-
ments are conducted on an airport cargo unloading scenario
to demonstrate that meaningful event modelling can be per-
formed for the application of abnormality detection using
our approach.

2. Event Detection and Recognition

We adopt the approach proposed in [12] to detect and
recognise events. Pixel Change History (PCH) [12] and
adaptive Gaussian mixture background model [ 10] are com-
bined to detect pixel level visual changes. Pixel level events
are then grouped into blobs represented by bounding boxes
to form autonomous events.

Figure 1. Event detection and classification
during an aircraft cargo unloading activity.
(a) Detected and classified events with the
cargo service area highlighted. (b) Highly
overlapped events were detected over time,
including movingTruck, movingCargo, mov-
ingTruckCargo and movingCargoLift, il-
lustrated using green, blue, red and cyan
bounding box respectively.

Each event needs to be represented using a feature vector
before the classification in the feature space is performed.
Usually four types of features can be extracted from im-
ages based on location, shape, colour and motion respec-
tively. The selection of features is largely dependent on the
context of the particular scenario to be modelled which de-
termines the stability of available features. In this paper,
we consider the outdoor scenarios with large field of view
such as the cargo unloading scenario depicted in Figure 1.
Although colour is widely believed to be a stable feature,
we found that for typical outdoor scenarios, colour infor-
mation can be highly unstable. The lose of colour informa-
tion can be caused by far away camera and the conversion
from composite analogue videos into RGB digital image se-
quences. Consequently, the final features we have chosen

are: (1) centroid of the location of pixel level events (Z, ),
(2) width and height of the bounding box (w, h), (3) filling
ratio 2y, representing the percentage of the bounding box
occupied by pixel-level events and (4) first order moments
of the PCH image within each bounding box (M,x, M,y).
Among these features, (1) are location features; (2) and (3)
are shape features; and (4) are motion features which aim
to capture the direction of the movement. Considering that
all these features are computed based on the detected pixel
level visual changes, even the location and shape features
contain motion information. A seven dimensional feature
vector is then used to represent each event as follows:

V= [j,gawah,RfaMpx,Mpy] (1)

In order to detect the presence of meaningful events and
their whereabout in the scene, clustering is performed in
a 7-D feature space. For clustering, we adopt a Gaussian
Mixture Model (GMM) [1] classification with automatic
model order selection using modified Minimum Descrip-
tion Length (MDL) principle [4]. The obtained parameters
of the mixture model are used to classify events into differ-
ent classes.

3. Modelling Temporal Relationships among
Events

Event detection in a busy outdoor scene can be subject to
large errors due to object occlusion and trajectory disconti-
nuities, as well as a great degree of sensory noise and poor
resolution in outdoor scenes. To address this problem, we
wish to model groups of events as observational input to a
Dynamic Bayesian Networks (DBN).

3.1. Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) are BBNs that
have been extended to model time series data [6, 7]. More
specifically, hidden nodes have been introduced in the
topology of DBNs to represent hidden temporal states. This
is similar to that of a sequential graph model like HMMs.
A DBN B is described by two sets of parameters (m, ®).
The first set m represents the structure of a DBN which
includes the number of hidden state variables and observa-
tion variables per time instance, the number of states for
each hidden state variable and the topology of the network
(set of directed arcs connecting nodes). The ith hidden
state variable and the jth observation variable at time in-
stance ¢ are denoted as St(i) and O,Ej ) respectively where
i€ {l,..,Ny}and j € {1,...,N,} and N}, and N, are
the number of hidden state and observation variables re-
spectively. The second set of parameters ® quantifies the

state transition models P(St(i)|Pa(St(i)), the observation
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models P(Ogj ) |Pa(0t(j )) and the initial state distributions
P(Sy)) where Pa(St(i)) are the parents of St(i) and simi-
larly, Pa(Ot(Z) ) for observations. In this paper, unless oth-
erwise stated, St(i) are discrete and Ot(j ) are continuous ran-
dom variables. Each observation variable has only hidden
state variables as parents and the conditional probability
distributions (CPDs) of them are Gaussian for each state of
their parent nodes.
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Figure 2. Graphical representations of Hidden
Markov Models and their extensions. Obser-
vation nodes are represented as shaded cir-
cles and hidden nodes clear circles.

As shown in Figure 2(a), a standard HMM has only one
hidden state node and one observation node at each time
instance modelling a single temporal process, which often
results in the high dimensionality of both the state space
and observation space and requires large number of param-
eters if it is to model multiple temporal processes simulta-
neously. Unless the training data set is very large and rela-
tively ‘clean’, poor model learning is expected. To address
this problem, various topological extensions to the standard
HMMs can be considered to factorise the state and obser-
vation space by introducing multiple hidden state variables
and multiple observation variables. Vogler and Metaxas
[11] proposed Parallel Hidden Markov Models (PaHMMs).
The hidden state space is factorised into ‘state channels’
corresponding to multiple independent temporal processes.
Figure 2(c) shows a PaHMM of three independent pro-
cesses. Clearly this assumption is invalid in most cases,
especially when dealing with group or interactive activities.
Brand et al. [2, 3] proposed Coupled Hidden Markov Mod-
els (CHMMs) to take into account the temporal causal re-
lationships among hidden state variables (Figure 2(d)). It
is assumed that each hidden state variable is conditionally
dependent on all hidden state variables in the previous time

instance. Both PAHMMs and CHMMs require the observa-
tion space to be factorised by its corresponding processes.

3.2. Partially Coupled Hidden Markov Models

Instead of being fully connected as in the case of
a CHMM, a Partially Coupled Hidden Markov Models
(PCHMM) aims to only connect a subset of relevant hidden
state variables across multiple temporal processes. This re-
duces the number of unnecessary parameters and caters for
better network structure discovery.

We wish to learn the causal and temporal relationships
among events simultaneously by finding a DBN B =
(m, ®) that can best explain the observed events D. Such a
best explanation is quantified by the minimisation of a cost
function. For a Maximum Likelihood Estimation (MLE),
the cost function is — In P(D|m, ®y,), the negative loga-
rithm of the probability of observing D by model m where
®,, are the parameter settings for the candidate structure
m that maximise the likelihood of the data. ®,, are es-
timated through Expectation-Maximisation in order to de-
termine the distribution of the hidden states. A MLE of the
structure of B in the most general case results in a fully con-
nected DBN, which implies that any class of events would
possibly cause all classes of events in the future. Therefore
adding a penalty factor in the cost function to count for the
complexity of a network is essential for extracting meaning-
ful and computationally tractable causal relationships. To
this end, we adopt Schwarz’s Bayesian Information Crite-
rion (BIC) [9] to measure the goodness of one hypothesised
network model against that of another in describing a given
dataset. For a model m; parameterised by a K;-dimensional
vector ©, the BIC is defined as:

BIC = {L(Om,) — L(Omy)} —

B (1 - ko) @
where L(®p;) and L(®y,,) are the maximal likelihoods
under m; and a reference model my respectively, Ky and
K; are the dimension of the parameters of my and m; and
N is the size of the dataset. For our case of an activity
consisting of a group of events, the BIC can be rewritten as

o

BIC = —1n ﬁp (s") I P (01Pato))
i=1

j=1
T Nn . .
[TTI P (s1Pa(s))
t=2i=2
T No . .
[I1I P (0 1Pa(of))
t=2 j=2
—thTKi +C 3
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where S are hidden states, OU) are events as observa-
tions, Pa(S™) and Pa(OY) are the parents of S() and
OU) respectively, T is the length of a training sequence and
C is a constant. We consider that the number of hidden
processes is the number of event classes extracted through
automatic model order selection in the event detection pro-
cess (see Section 2 for details on event detection and classi-
fication). We also consider two states for each hidden state
variable, i.e. a binary variable switching between true and
false. A model B estimated using a structured EM [5] that
produces the minimal BIC value gives the desired PCHMM
topology.

Compare PCHMM with CHMM, it is clear that PCHMM
will always consist of more optimised factorisation of the
state transition matrices and most likely have less connec-
tions. This allows for more tractable computation when rea-
soning about complex group activities. In addition, a more
subtle but perhaps also more critical advantage of PCHMM
over CHMM is its ability to cope with noise. Given suffi-
ciently noise-free data, it is possible for CHMM to learn the
correct relationships between coupled hidden temporal pro-
cesses. However, with noisy data, probability propagation
travels freely among all the hidden state variables during the
EM parameter estimation, the CHMM can be led to capture
structures heavily biased by noise, especially when there are
large number of hidden processes.

3.3. Multi-Observation Hidden Markov Models

A Multi-Observation  Hidden  Markov ~ Model
(MOHMM) (Figure 2(b)) can also be adopted to model
temporal events and learn the causal relationships among
events simultaneously. If there are K event classes, we have
2K states which correspond to the occurrences of events of
different classes. We wish that the state transition matrix
of MOHMM can provide us with information on the causal
relationships among events of different classes. It has been
shown in [3] that the transition matrix of a standard HMM
trained using Expectation-Maximisation (EM) is heavily
affected by initialisation and is unable to capture accurately
the true structure of the data. However, our experiments
(presented in Section 4) suggest that when the observation
space is factorised, the state transition matrix learned
by EM is insensitive to initialisation and reveals useful
information on the data structure. However, compared with
PCHMM, MOHMM needs more parameters and is thus
more likely to become computationally intractable when
modelling complex scenarios.

4. A Case Study

Experiments were conducted on an outdoor cargo un-
loading scenario occurred at one particular ramp area of

an airport. A fixed CCTV analogue camera took contin-
uous image sequences over two weeks period. The video
was sub-sampled by a factor of 8. After digitisation, the
final video sequences have the frame rate of 2Hz. Each
image frame has a size of 320x240 pixels. Various ac-
tivities were happening in the busy ramp area (Figure 1).
Our experiments were concentrated on one particular ac-
tivity, the frontal cargo unloading activity, because this is
perhaps one of the most significant activities in the entire
aircraft turn around circle and it usually occurs over rela-
tively long time span in the ramp sequence and thus can
provide rich and plenty of modelling data for us. We have
manually segmented 13 complete frontal cargo unloading
sequences, whose lengths range from 1000 to 3000 frames
(12-25 minutes). Fast moving clouds were common in the
daytime, which resulted in very unstable lighting condi-
tion. The low frame rate made the unstable lighting condi-
tion even worse and could also cause discontinuous object
motion. The camera was very far away from the observed
scene which means low resolution of the observed objects,
especially in the region where frontal cargo unloading ser-
vice took place (Figure 1). All the experiments were con-
ducted on an Athelon 1.5G dual processor platform.

Six of the 13 frontal cargo unloading sequences were
chosen as training set and the rest of the sequences as test
set. There were 5197 and 5315 blob-level events detected
from the training and test sets respectively. GMM classifica-
tion was performed on the training set to obtain the parame-
ters of the mixture model. It was combined with a modified
MDL method to determine the number of the classes of sig-
nificant events in the scene. Figure 1(a) shows that 4 classes
of events were automatically detected unsupervised. By
observation, the four different event classes correspond to
the important stages of the frontal cargo unloading service,
and hereafter labelled to movingTruck, movingCargo,
movingCargoLift and movingTruckCargo. As re-
flected by the labels for these events, the first three classes
of events correspond to the movements of the three objects,
truck, cargo and cargo lift. The last class of events corre-
sponds to the overlapped movements of truck and cargo. It
is observed that our classification made mistakes. It is also
noted that different classes of events did occur simultane-
ously.

A PCHMM was constructed to model the temporal cor-
relations among these four event classes and the optimal
topology of the PCHMM that can best explain the observed
temporal event data was searched using the Bayesian Infor-
mation Criterion. The discovered causal relationships are
illustrated in Figure 3(a) with the directed arcs representing
the directed causal relationships. To verify these results,
by observation we summarise the temporal orders of differ-
ent classes of events in the most general cases, as shown
in Figure 3(b). It can be observed that most of the causal
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relationships among events were discovered correctly.

movingTruckCargo S\

(a) A PCHMM
movingTruck 0v1ngC¢rg0L1fl
(truck comes)
movingTruckCargo —> movingCargo_, movingCargoLift
(towards lift) (down)
movingCargo movingTruck
(towards truck) truck leaves)

(b) The true event temporal order by observation

Figure 3. Modelling the airport cargo unload-
ing activity using a PCHMM.

The frontal cargo unloading activity is obviously com-
posed of repeated activity units—the process of ‘the truck
comes, picks the cargo and goes’ (see Figure 3(b)) repeats
several times in a completed service sequence. Each process
corresponds to an activity unit. Between activity units there
are non-activity intervals whose durations can vary signifi-
cantly. Non-activity intervals also exist within each activity
unit which make it difficult to segment the activity unit. We
ultimately wish to develop an automated system which can
detect the starting and ending stage of activity units and thus
segment them. In the experiments reported here, we manu-
ally segmented the frontal cargo unloading activity into ac-
tivity units. We obtained 47 and 46 activity units from the
training and test sets respectively. Each unit was manually
labelled as normal or abnormal unit based on the temporal
order of events. There are in general different criteria for
labelling normal and abnormal units. The temporal evolu-
tion of events can follow different patterns. From the point
of view of a safety monitoring officer, all patterns observed
in our data are normal because nobody was injured and no
cargo was stolen. However, an operational officer may think
some of the patterns are abnormal because events following
certain orders can cause delay and affect arrangement for
other activities occurred in the scene or at other unseen ramp
areas. Here we simply choose the most commonly occurred
pattern as normal and treat all other patterns as abnormal.
Normal activity units account for about half of the activity
units in both the training and test set. Each unit contains
about 100-300 frames.

We compare four DBNs models for the abnormal activity
unit detection task. They are PAHMM, CHMM, PCHMM
and MOHMM. For the MOHMM, we have one hidden state
node with 16 states at each time instance. The four obser-
vation variables for each models are 7-D continuous obser-

vation vectors expressed by Equation (1). Their distribu-
tions are mixtures of Gaussian with respect to the states of
their discrete parent nodes. The parameters of the GMM
classifier were used to initialise the distribution of the ob-
servation vectors. The priors and transition matrices of
states were initialised randomly. The normal activity units
from the training set were employed to train the model. It
took roughly 40 seconds to train the PAHMM, CHMM and
PCHMM and 90 seconds to train the MOHMM on about
6000 frames using MATLAB. The experiments show that
the learned parameters of all the models were insensitive to
initialisation. The learned models were then applied to the
test set to detect abnormal activity units. We use Receive
Operating Characteristic (ROC) curve to measure the per-
formance of our abnormal activity unit detectors. Figure 4
shows the ROC curves for the four DBNs models we tested.
Figure 5 shows the initial and the EM learned transition ma-
trices of the MOHMM.
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Figure 4. ROC curves for different DBNs.
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Figure 5. The transition matrix at initialisation
(left), and sparsified by EM learning (right).
Each row represents the transition probabili-
ties from a single state (black represents one
and white represents zero).

Comparing the ROC curves obtained, it appears that
CHMM, PCHMM and MOHMM had similar performances
which were slightly better than that of PAHMM as expected.
This verifies our argument that since the arcs cut in the
topology of PCHMM represent those weak correlations,
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they have little influence on the selectivity of the model.
The frontal cargo unloading scenario is relatively simple in
terms of the number of event classes. The scalability prob-
lem is thus not severe which can probably partially explain
why there was no big difference among the performances
of CHMM, PCHMM and MOHMM. We expect that the
strength of PCHMMs would be more clear when a more
complex scene is being modelled. Overall, all the models
gave modest performances. The main reason for the low
detection rate and high false alarm rate is due to the nature
of the data— some of the abnormal activity units in the test
set has only subtle difference from the normal activity units
used for training. Figure 5 shows that even being initialised
randomly which means no prior knowledge on the possible
state transition was employed, a very sparse states transition
matrix was obtained. Each state corresponded to the simul-
taneous occurrences of the four event classes and the state
transitions embodied the temporal correlations among dif-
ferent event classes. It is argued in [3] that states transitions
learned by standard EM can hardly capture the meaning-
ful structure of data. Our experiment shows that when the
observation space is factorised meaningfully, the states and
their transitions of a MOHMM can capture the hidden reg-
ularities and structure of data.

DBNs can also be used to perform event prediction and
explanation. Here we show a simple example of how the ex-
planation characteristic of DBNs can be used to improve the
event detection and recognition results. Figure 6(a) shows
the ground truth of event occurrences for a normal activity
unit from the test set. The event recognition result contains
errors, as can be seen in Figure 6(b). We inferred the hidden
states of PCHMM which corresponded to the occurrences
of the four classes of events. Figure 6(c) shows that the
improved event detection and recognition results.

G0
Frame number

(a) Ground truth

Mcargo
MTruck
MTruckGargo ' /.\A /.\
o

20 i

Y 50 700 20
Frame number

(b) GMM classifier result

20 a5 6o B0 160 20
aaaaaaaaaaa

(c) PCHMM result
Figure 6. Improving event detection and

recognition accuracy using a PCHMM.

5. Conclusions

In this paper, an approach is proposed to understand
complex outdoor scenes which is based on modelling tem-
porally correlated events using Dynamic Bayesian Net-
works (DBNs). A Partially Coupled Hidden Markov Model
(PCHMM) is proposed to remove the unnecessary arcs in
the topology of Coupled Hidden Markov Models (CHMMs)
in order to reduce the number of parameters. The topology
of PCHMM is determined automatically by event causal-
ity discovery using Bayesian Information Criterion (BIC).
Causality discovery and temporal events modelling are also
tackled using a Multi-Observation Hidden Markov Model
(MOHMM). Experiments are conducted on an airport cargo
unloading scenario to demonstrate that meaningful event
modelling can be performed for the application of abnor-
mality detection using our approach.
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