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Abstract

This study addresses the problem of learning the optimattstre of a dy-
namic graphical model for video content analysis givenspdata. We pro-
pose a Completed Likelihood AIC (CL-AIC) scoring functidmat differs
from existing ones by optimisingxplicitly both the explanation and predic-
tion capabilities of a model simultaneously. We demonsttiaat CL-AIC is
superior to existing scoring functions including BIC, AI@ICL in build-
ing dynamic graph models for video content analysis.

1 Introduction

Dynamic graph models, and in particular Dynamic Bayesiatwideks (DBNs) including
Hidden Markov Models (HMMs) and their variants, have becanweeasingly popular
for modelling and analysing space-time visual data [8, 13,42, 9]. By using a DBN,
we assume that dynamic visual data are generated seqlyebyialome hidden states of
a dynamic scene evolving over time. Since the hidden statasat be observed directly,
they can only be inferred from the observed visual data gavéearned DBN. Learning
a DBN involves estimating both its structure and paramédtera data. The structure of
a DBN refers primarily to (1) the number of hidden states afhehidden variable in a
model and (2) the conditional dependence among hidderssiasd the hidden variables
of a model, i.e, factorisation of the model state space feerdgning the topology of a
graph network. There have been extensive studies in theinglgarning community on
efficient parameter learning when the structure of a modelasvna priori (i.e. assumed)
[11]. However, much less efforts have been made to tacklentive challenging problem
of learning the optimal structure of an unknown DBN [2, 10, &{s a consequence,
most previous DBNs-based visual data modelling approaabad the structure learning
problem by setting the structure manually [13, 4, 9]. Howgitehas been shown that a
learned structure can be advantageous over those that atalysset [12].

Previous automatic structure learning techniques havetada search-and-score par-
adigm [10]*, within which one first defines a scoring function consistifig. maximum
likelihood term and a penalty term to penalise complex mesttelctures whilst optimis-
ing data fitting. The model structure space is then searahdid the optimal model
structure with the highest score. The most commonly usedrgcdunctions include
Bayesian Information Criterion (BIC) [19] , Minimum Desption Length (MDL) [18],
BDe [10], and Akaike’s Information Criterion (AIC) [1]. Thselected models are ‘op-
timal’ in a sense that they can either best explain the exjstiata (BIC, MDL), or best
predict unseen data (AIC). It has been demonstrated botindtieally and experimentally

1Alternatives include the Bayesian approach to model sele¢f] and context-specific independence [5].
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Figure 1: Three different types of graphical models withdeid nodes, among which
HMM and DML-HMM are DBNs. Observation nodes are shown as sHadrcles and
hidden nodes as clear circles.

in the case of static models that explanation oriented sgdtinctions suffer from model
under-fitting while prediction oriented ones suffer fromdebover-fitting [14, 3, 21]. In
the case of dynamic models, this is also true (see experahergults presented later in
this paper). To address the problems associated with mgistoring functions, espe-
cially in determining the structure of dynamic models, weeex in this work Completed
Likelihood AIC (CL-AIC) for learning an optimal dynamic Bagian graph model and
demonstrate its effectiveness in video content analyseswamly sparse and noisy visual
data are available. CL-AIC was first introduced in the case Gaussian Mixture Model
(GMM) which can be represented as a static graphical modgl(Eee Figure 1(a)). In
this paper, we show that CL-AIC can be derived for any graghicodels with hidden
variables, with GMMs and DBNSs as special cases. In partic@a-AIC is formulated
for determining the number of hidden states of a HMM and fardéng the topology of a
Dynamically Multi-Linked HMM (DML-HMM) (see Figure 1(b)&€)). The effectiveness
of CL-AIC on DBNSs structure learning is demonstrated thiloagmparative experiments
against BIC, AIC and Integrated Completed Likelihood (1R8],

2 CL-AIC for Graphical Modelswith Hidden Variables

We extend the formulation of Completed Likelihood AIC (CU& from GMMs to the
more general case of graph models with hidden variables.si@enan observed data
set) modelled by a graphical modéi x with hidden variables M g can be used to
perform three tasks: (1) estimating the unknown distrdyuthat most likely generatés,
(2) inferring the values of hidden variable. . from ), and (3) predicting unseen data.
Computing (1) and (2) emphasises data explanation whilergp(3) concerns with data
prediction and synthesising. In this context, scoring fioms based on approximating
the Bayesian Model Selection Criterion [17] such as BIC deom model that maximises
p(Y| M), the probability of observing’ given M. They thus enforce mainly task
(1). AIC, on the other hand, chooses the model that bestqisediseen data, therefore
optimising (3). CL-AIC utilises Completed Likelihood (Cli) order to makes explicit
the task (2) while following a similar derivation procedazAlIC.

Completed Likelihood (CL) was originally derived for mixeumodels [3]. We wish to
extend the definition of Completed Likelihood (CL) to a gexielynamic graphical model
with hidden variables. The complete data, denoted,der such a model is a combination
of the observed datd)) and the values of the hidden variable®){) = {), Z}, where



Z is unknown, and must be inferred fragph The completed log-likelihood Q¥ is:

wheref (. are the true model parameters diids the index of the candidate models. In
practice,d ., are replaced using the ML estimaég/lk and the unknown values of the
hidden variablesZ is replaced byZ, the values inferred from the observed dataThe
completed log-likelihood is thus rewritten as:

CL(K) = logp(¥|Mi, O, ) + log p(Z|V, M, Ortc) 1)

CL-AIC aims to choose a model that best explains the the sbdedata and has
the minimal divergence to the true model, which thus bestlipte unseen data. The
divergence between a candidate model and the true modebisuresl using the Kullback-
Leibler information [15]. CL-AIC for dynamic graphical met$ with hidden variables is
formulated as:

CL-AIC(K) = —log p(¥| Mk, 01, ) — logp(Z|Y, Mk, 001,) + Cxc - (2)

whereC'x is the dimensionality of the parameter space. The derwatii&€L-AIC follows
a similar procedure as that of AIC [1].

Unlike previous scoring functions, CL-AIC attempts to opseexplicitly the expla-
nation and prediction capabilities of a model. This makesXIC theoretically attractive.
The effectiveness of CL-AIC in practice is demonstratedulgh experiments in the fol-
lowing sections. It has been shown that Completed Likekhoan be combined with
BIC which leads to an Integrated Completed Likelihood (ICti)erion [3]. However, the
experiments reported in [3] indicated that in the case oftanexmodels, ICL performs
poorly when data belonging to different mixture componeares severely overlapped.
This is caused by ICL being a combination of two explanatidarded criteria without
considering any prediction capability of a model. Since AIG integrates an explana-
tion criterion with a prediction criterion, it is theoregity better justified than ICL. Our
experiments in the following reinforces this observation.

Let us now consider a specific problem of learning the strectdi a Hidden Markov
Model (HMM). A HMM can be represented by one hidden varialsid ane observation
variable at each time instancésee Figure 1(b)). The hidden variable is discrete in most
applications. The structure learning problem for a HMM thefers to how to determine
the number of hidden states that the hidden variable camreessssuming that at each
time instance, the discrete hidden variablg can assume K different values (states), the
complete data for the model 3 = {), Z} where Z is the true hidden variable values
(i.e. the true hidden state sequence). The completedketiHood of) is computed as:

CL(K) = log (mes, éK>p<S|éK)> +1logp(S = Z|¥,0k). 3
S

whereS = {54, ..., St} represents all the possible hidden state sequefideghe length

of the sequencd) - are the ML (maximum likelihood) estimate of the model parterse

of a HMM with K hidden statesZ is the most probable state sequence (i.e. the hidden
state sequence amolghat best explains the observation sequence) deand). 6 x



can be computed using the Baum-Welch method Zmn be obtained using the Viterbi
algorithm (see [16] for details). We thus have:

CL-AIC(K) = —log <Zp()}|5, éK)p(SéK)> —logp(S = Z|Y,0x) + Ck. (4)
5

We now consider the problem of determining the unknown togypbf a Dynamically
Multi-Linked HMM (DML-HMM) [12] from data using CL-AIC as tle scoring function.
Instead of being fully connected as in the case of a CoupledHRHMM) [8], a DML-
HMM aims to only connect a subset of relevant hidden state variables acrokiple
temporal processes. Given a data set, we assume that airaadhgtance the temporal
process responsible for each data sample is known and thbemwhhidden states for
each hidden variable is also known. The unknown structubetearned is the topology
of the graph, i.e. the links among different hidden nodesiwitwo consecutive time
instances. CL-AIC can be computed using Eqn. (4) where thscsipt K becomes
the index of different topologies. The total number of calatie topologiesk, ... IS
exponential in the number of temporal procesags Each candidate topology can be
represented using/s; x N, inter-connection matrix whose elements have valifehere
is a directed link between the corresponding two hidden sadthin two consecutive
time instances an@d otherwise.

3 Experiments

3.1 Synthetic Experimentson Learning HMM Structure

Synthetic experiments were conducted to compare the pfeetss of CL-AIC with that
of BIC, AIC and ICL on determining the number of hidden staitéa HMM given data
of different sample sizes. One-dimensional data were fasegated from a 3-state HMM
(i.e. the hidden variable at each time instance can assuta¢e3swhose parameters are:

1/3 1/6 1/2 1/3 m=102=05
A=| 0 1/3 2/3 |, 7=|1/3 |,B={ pn=3,02=05 5, (5
/2 1/2 0 1/3 g3 =5,02 =05

whereA is the transition matrixy is the initial state probability anB contains the para-
meters of the emission density (Gaussians with the indicateans and variances). The
total number of model parameters is 14 for this HMM. The dagsenthen perturbed by
uniformly distributed random noise with a range[ef0.5 0.5]. HMMs with the number
of hidden stated varying from 1 to 10 were evaluated. Four different scorimgctions
were tested on the data sets with the sample’Bizarying from 25 to 4000. The results
are shown in Figure 2 using the mean aht standard deviation of the selected number
of hidden states over 50 trials, with each trial having aedédht random number seeds.
Figure 2(b) shows the mean of the number of states estimatetifferent scoring
functions over 50 trials in a single plot. It can be seen thia¢mvthe sample sizes were
small, all four scoring functions tends to favour undeefitmodels, with AIC and CL-
AIC clearly outperforming BIC and ICL. As the sample sizesrgased, the number
of hidden states determined using all scoring functionsveayed to the true number
3. Given densely sampled data s€$ & 400), our results show that both AIC and
BIC tended to slightly over-fit while ICL and CL-AIC yieldedceurate estimation of the
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Figure 2: Synthetic data experiment results for deterngiive number of hidden states
of a HMM using different scoring functions. (a) Selected tnemof hidden states (mean
and=+1 standard deviation over 50 trials); (b) Mean of selected memof hidden states

(The true number of hidden states is 3).

number of hidden states. Figure 2(a) shows variations irsthesture learning results
across different trials, and in particular, that AIC extebli large variations in the esti-
mated number of states no matter what the sample size wast wthier scoring functions
had smaller variations given larger sample sizes.

The experimental results show that the performance of OC-éth determining the
number of hidden states for a HMM is superior to that of ergstpopular alternatives
especially when the given dataset is sparse. Similar seswdte reported in the case
of GMMs in [21]. However, there is a difference in the defioitiof ‘data sparseness’
for dynamic graph models and for static models such as GMM® Sparseness of a
dataset is normally measured according to the number opfiemeters of a model. The
experiments reported in [21] show that a sample size snthber5 times of the parameter
number should be considered as sparse while our experiroetidIMs here show that
any sample size smaller than 20 times of the true number ahpaters would qualify for
being sparse (see Figure 2).

3.2 Surveillance Video Segmentation
To segment a continuous surveillance video based on aesiviaiptured in the video,/a
dimensional feature vector is first extracted from each efagme. The video content is
thus represented a video trajectory in thislimensional feature space. This feature vec-
tor is then represented as the observational variable of MHl/each time instance. The
conditional probability distributions (CPDs) of each ohsion variable are Gaussian for
each of theK states of its parent hidden variable. The video contentds thonitored
using the discrete hidden variables in the model. The clwaofyeideo content can thus
be detected as the changes of hidden states which corregpbnelakpoints on a video
trajectory (N detected change points/breakpoints resiiil video segments for a con-
tinuous video). Using a left-to-right HMM model, the numh#rhidden states would
correspond to the number of video segments.

Our experiments were conducted on CCTV surveillance videmsitoring an aircraft
ramp area (see Figure 3(a)). A fixed CCTV analogue cameradmatinuous recordings.



After digitisation, the final video sequences have a frante 0d2Hz. Each image frame
has a size of 320240 pixels. Our database for the experiments consists ofjTesees
of aircraft docking lasting from 6470 to 17262 frames perusgge (around 50 to 140
minutes of recording), giving in total 72776 frames (10 l)wf video data. They are
referred as video 1 to video 7 respectively. The 7 videos \iiessemanually segmented
into activities to give the ground truth of the breakpoints $§egmentation, resulting in
a total of 64 breakpoints and 71 segments. The lengths oé thidgeo segments were
within the range of 127 to 3210 frames. In our experiment,emeevent based method
proposed in [20] was adopted for feature extraction, whitulted in each image frames
being represented as a 8 dimensional feature vector. Tlepndo be solved here is to
automatically determiné&’, the number of hidden states which corresponds to the number
of video segments.

Figure 3: Determining the number of video segments for asrairdocking video (video
2 of the 7 videos) using a HMM with different score functio(e) Representative frames
of different activities captured video 2. These activitie=re (from left to right): ‘aircraft
arrival’, ‘airbridge connected’, ‘frontal cargo servigétatering service’, ‘airbridge dis-
connected’, and ‘aircraft departure’. (b) Ground truthadted by manually segmenting
the video. (c)-(e) segmentation results using differeatiag functions with the detected
breakpoints shown on the video trajectory. Note that in(@))the video trajectories are
shown in a 3D PCA space of the original 8D video content feaspace just for the
illustration purpose.

BIC | AIC | ICL | CL-AIC
#Det. B.points | 49 | 73 | 45 62
# True Positives| 39 52 37 54
# False Positives 10 21 8 8

Table 1: Comparing scoring functions for video segmentatioue breakpoints was 64.

The performance of different score functions are compaydddking at the number
of detected breakpoints, the number of true positives aadhtimber of false positives.
The results are shown in Table 1 and Figute@Given the true number of breakpoints 64,
it can be seen from Table 1 that both BIC and ICL underestididte number of segments

2due to space limitation, only results on one of the 7 videoshosn in Figure 3



while AIC overestimated the segment number. In the meantineenumber of segments
estimated using CL-AIC was the closest to the true numbeth®accuracy of breakpoint
detection, Table 1 shows that CL-AIC yielded the highes prasitive number and lowest
false positive number. In the meantime, both BIC and ICL dawefalse positive number

but low true positive number as well. As for AIC, high true jlive number was obtained
at the price of high false positive number.
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Figure 4: Synthetic data experiment results for deterngittie topology of a DML-HMM
using different scoring functions. The true number of lirks§.

3.3 Synthetic Experimentson Learning DML-HMM Structure
Training datasets were generated using a DML-HMM with thiemporal processes
whose topology is shown in Figure 1(c). Both the observating hidden variables are
discrete with three possible values. One fourth of the olagienal data were replaced by
random numbers to synthesise noise contained in the oltiggrvihe model parameters
are not presented here due to the space limitation. DML-HMMB K,,,,, = 64 dif-
ferent topologies were evaluated by four different scofungctions using data sets with
sample sizel" varying from 25 to 4000. The performance of different scgfianctions
was measured by looking at both the number of links conngtiiiden nodes within two
consecutive time instances (the true number is 5) and theniregrdistance between the
estimated inter-connection matrices and the true one (gterde is zero if the structure



is estimated correctly). The former measures complexith@&elected models while the
latter measures the accuracy of the learned structuresexifezimental results, shown in
Figure 4, were obtained over 50 trials.

Figure 4 shows that given sparse data, the optimal modedstsel using all four
different scoring functions tended to underfit with ICL ant-&IC outperforming the
other two. As the sample sizes increased, the optimal numwibknks among hidden
nodes selected by CL-AIC and ICL converged towards the tumber 5, while those
selected by BIC and AIC converged to 4, (i.e. underfitting)thle meantime, the hamming
distance obtained using different scoring functions desed, with that obtained using
CL-AIC being the smallest.

3.4 Discovering Causal Relationships among Visual Events

A group activity involves multiple objects co-existing aimderacting in a shared com-
mon space. Examples of group activities include ‘peoplgiptafootball’ and ‘shoppers
checking out at a supermarket’. Group Activity modellingc@ncerned with not only
modelling actions executed by different objects in isolatibut also the interactions and
causal/temporal relationships among these actions. AapptDML-HMM based activ-
ity modelling approach [12], we consider that a group atiis composed of different
classes of dynamically linked visual events representigigificant changes in the image
over time caused by different objects in the scene. An ewergpresented by a multi-
dimensional feature vector and automatically detectedctassified into different event
classes (see [12] for details). The detected events argidken as the observational in-
put to a DML-HMM so that learning causal and temporal relsgitps among different
classes of events can be achieved by learning the optiriatste of the DML-HMM for
modelling the dynamics of the detected events and the ktters among them. More
specifically, each temporal process of the DML-HMM is usedhtmdel the dynamics of
one class of events and those links among different prosesggure the causal/temporal
relationships of different classes of events.

A simulated ‘shopping scenario’ was captured on a 20 minithso. Some typical
scenes can be seen in Figure 5(a). The scene consists of leespep sitting behind a
table on the right side of the view. Drink cans were laid outaodisplay table. Shop-
pers entered from the left and either browsed without paginok a can and paid for
it. The data used for this experiment were sampled at 5 frgmeesecond with total
number of 5699 frames of images siz&2D) x 240 pixels. In the 20 minutes video, a
total of 4634 events were automatically detected and ¢iedsnto 5 event classes, which
corresponded rather well to 5 known key constituents of tieppging activity. They
were labelled asanTaken, ent eri ng/ | eavi ng, shopkeeper, br owsi ng and
payi ng respectively (see Figure 5(a)). It was noted that diffed#agses of events oc-
curred simultaneously. Itis also true that our event reitmgnmodel made errors. Some
of the errors were caused by the occlusion, closeness amal gisilarity among different
events. Some others were due to the factor that the causpbtal relationships among
events were not considered at the level of event detectioneXample, when a shopper
stands in front of the shopkeeper, it is impossible to telethier he/she is going to pay
unless one takes into consideration whether any drink cartaken a moment ago. The
event classifier is therefore expected to make such errdnoutitaking into account the
temporal and causal correlations among different cladsegents. Such causal/temporal
relationships are modelled using a DML-HMM.

There are 5 temporal processes in this DML-HMM, each comadimg to one class



(a) Examples of detected and classified events in a shopping scene
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Figure 5. Discovering causal relationships among visuah&yin a shopping scene.
In (a), events belonging to 5 event classeanTaken, enteri ng/| eavi ng,
shopkeeper, br owsi ng andpayi ng are indicated with bounding boxes in magenta,
red, blue, green and cyan respectively. (b)-(d): topomgeDML-HMMs learned us-
ing different scoring functions. (e): The expected causa &mporal structure of the
shopping activity.

of events. We also consider two states for each hidden stateble, i.e. a binary variable
switching between the statusf ue andFal se, corresponding to whether or not event
of a certain class is truly present in each frame. Each obSernvvariable is continu-
ous and given by a 7-D feature vector representing a eveint [Iir distributions are
mixtures of Gaussian with respect to the states of theirelisgparent nodes. For model
learning, the distributions of the detected events are tsattialise the distributions of
the observation vectors. The priors and transition matrafestates are initialised ran-
domly. The number of candidate topologies for a 5-temppratess DML-HMM is too
large to be searched exhaustively. The Structural EM algor[10] was thus adopted to
search for the optimal structure more efficiently usingedi#t scoring functions.

The discovered causal/temporal relationships amongrdifteclasses of events are
embodied in the learned topologies of the DML-HMMSs. Foramste, a link pointing from
the canTaken process towards thpayi ng process indicates the causality between
these two classes of events. Compared with the expectedistwf the shopping activity
as shown in Figure 5(e), it can be seen that the causal red&ijes among different classes
of events and the temporal structure of the activity werealisred correctly by CL-AIC
(Figure 5(b)). In comparison, a over-complicated DML-HMBpblogy was selected
using AIC ((Figure 5(d))) while both BIC and ICL underestima the number of inter-
links among different temporal processes, resulting in-si@plified causal relationships
(Figure 5(c)).
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4 Conclusion

We proposed a novel scoring function (CL-AIC) for selectthg optimal structure of
dynamic graph models, especially DBNs. The effectivené€4 eAIC was demonstrated
on solving challenging video content analysis problems.
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