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Abstract

This study addresses the problem of learning the optimal structure of a dy-
namic graphical model for video content analysis given sparse data. We pro-
pose a Completed Likelihood AIC (CL-AIC) scoring function that differs
from existing ones by optimisingexplicitly both the explanation and predic-
tion capabilities of a model simultaneously. We demonstrate that CL-AIC is
superior to existing scoring functions including BIC, AIC and ICL in build-
ing dynamic graph models for video content analysis.

1 Introduction
Dynamic graph models, and in particular Dynamic Bayesian Networks (DBNs) including
Hidden Markov Models (HMMs) and their variants, have becomeincreasingly popular
for modelling and analysing space-time visual data [8, 13, 4, 7, 12, 9]. By using a DBN,
we assume that dynamic visual data are generated sequentially by some hidden states of
a dynamic scene evolving over time. Since the hidden states cannot be observed directly,
they can only be inferred from the observed visual data givena learned DBN. Learning
a DBN involves estimating both its structure and parametersfrom data. The structure of
a DBN refers primarily to (1) the number of hidden states of each hidden variable in a
model and (2) the conditional dependence among hidden states of all the hidden variables
of a model, i.e, factorisation of the model state space for determining the topology of a
graph network. There have been extensive studies in the machine learning community on
efficient parameter learning when the structure of a model isknowna priori (i.e. assumed)
[11]. However, much less efforts have been made to tackle themore challenging problem
of learning the optimal structure of an unknown DBN [2, 10, 6]. As a consequence,
most previous DBNs-based visual data modelling approachesavoid the structure learning
problem by setting the structure manually [13, 4, 9]. However, it has been shown that a
learned structure can be advantageous over those that are manually set [12].

Previous automatic structure learning techniques have adopted a search-and-score par-
adigm [10]1, within which one first defines a scoring function consistingof a maximum
likelihood term and a penalty term to penalise complex modelstructures whilst optimis-
ing data fitting. The model structure space is then searched to find the optimal model
structure with the highest score. The most commonly used scoring functions include
Bayesian Information Criterion (BIC) [19] , Minimum Description Length (MDL) [18],
BDe [10], and Akaike’s Information Criterion (AIC) [1]. Theselected models are ‘op-
timal’ in a sense that they can either best explain the existing data (BIC, MDL), or best
predict unseen data (AIC). It has been demonstrated both theoretically and experimentally

1Alternatives include the Bayesian approach to model selection [2] and context-specific independence [5].
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Figure 1: Three different types of graphical models with hidden nodes, among which
HMM and DML-HMM are DBNs. Observation nodes are shown as shaded circles and
hidden nodes as clear circles.

in the case of static models that explanation oriented scoring functions suffer from model
under-fitting while prediction oriented ones suffer from model over-fitting [14, 3, 21]. In
the case of dynamic models, this is also true (see experimental results presented later in
this paper). To address the problems associated with existing scoring functions, espe-
cially in determining the structure of dynamic models, we extend in this work Completed
Likelihood AIC (CL-AIC) for learning an optimal dynamic Bayesian graph model and
demonstrate its effectiveness in video content analysis when only sparse and noisy visual
data are available. CL-AIC was first introduced in the case ofa Gaussian Mixture Model
(GMM) which can be represented as a static graphical model [21] (see Figure 1(a)). In
this paper, we show that CL-AIC can be derived for any graphical models with hidden
variables, with GMMs and DBNs as special cases. In particular, CL-AIC is formulated
for determining the number of hidden states of a HMM and for learning the topology of a
Dynamically Multi-Linked HMM (DML-HMM) (see Figure 1(b)&(c)). The effectiveness
of CL-AIC on DBNs structure learning is demonstrated through comparative experiments
against BIC, AIC and Integrated Completed Likelihood (ICL)[3].

2 CL-AIC for Graphical Models with Hidden Variables
We extend the formulation of Completed Likelihood AIC (CL-AIC) from GMMs to the
more general case of graph models with hidden variables. Consider an observed data
setY modelled by a graphical modelMK with hidden variables.MK can be used to
perform three tasks: (1) estimating the unknown distribution that most likely generatesY,
(2) inferring the values of hidden variable inMK fromY, and (3) predicting unseen data.
Computing (1) and (2) emphasises data explanation while solving (3) concerns with data
prediction and synthesising. In this context, scoring functions based on approximating
the Bayesian Model Selection Criterion [17] such as BIC choose a model that maximises
p(Y|MK), the probability of observingY givenMK . They thus enforce mainly task
(1). AIC, on the other hand, chooses the model that best predicts unseen data, therefore
optimising (3). CL-AIC utilises Completed Likelihood (CL)in order to makes explicit
the task (2) while following a similar derivation procedureas AIC.

Completed Likelihood (CL) was originally derived for mixture models [3]. We wish to
extend the definition of Completed Likelihood (CL) to a general dynamic graphical model
with hidden variables. The complete data, denoted asȲ, for such a model is a combination
of the observed data (Y) and the values of the hidden variables (Z): Ȳ = {Y,Z}, where
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Z is unknown, and must be inferred fromY. The completed log-likelihood of̄Y is:

CL(K ) = log p(Y|MK ,θMK
) + log p(Z|Y,MK ,θMK

)

whereθMK
are the true model parameters andK is the index of the candidate models. In

practice,θMK
are replaced using the ML estimateθ̂MK

and the unknown values of the
hidden variablesZ is replaced byẐ, the values inferred from the observed dataȲ. The
completed log-likelihood is thus rewritten as:

CL(K ) = log p(Y|MK , θ̂MK
) + log p(Ẑ|Y,MK , θ̂MK

) (1)

CL-AIC aims to choose a model that best explains the the observed data and has
the minimal divergence to the true model, which thus best predicts unseen data. The
divergence between a candidate model and the true model is measured using the Kullback-
Leibler information [15]. CL-AIC for dynamic graphical models with hidden variables is
formulated as:

CL−AIC(K) = − log p(Y|MK , θ̂MK
)− log p(Ẑ|Y,MK , θ̂MK

) + CK (2)

whereCK is the dimensionality of the parameter space. The derivation of CL-AIC follows
a similar procedure as that of AIC [1].

Unlike previous scoring functions, CL-AIC attempts to optimiseexplicitly the expla-
nation and prediction capabilities of a model. This makes CL-AIC theoretically attractive.
The effectiveness of CL-AIC in practice is demonstrated through experiments in the fol-
lowing sections. It has been shown that Completed Likelihood can be combined with
BIC which leads to an Integrated Completed Likelihood (ICL)criterion [3]. However, the
experiments reported in [3] indicated that in the case of mixture models, ICL performs
poorly when data belonging to different mixture componentsare severely overlapped.
This is caused by ICL being a combination of two explanation oriented criteria without
considering any prediction capability of a model. Since CL-AIC integrates an explana-
tion criterion with a prediction criterion, it is theoretically better justified than ICL. Our
experiments in the following reinforces this observation.

Let us now consider a specific problem of learning the structure of a Hidden Markov
Model (HMM). A HMM can be represented by one hidden variable and one observation
variable at each time instancet (see Figure 1(b)). The hidden variable is discrete in most
applications. The structure learning problem for a HMM thusrefers to how to determine
the number of hidden states that the hidden variable can assume. Assuming that at each
time instancet, the discrete hidden variableSt can assume K different values (states), the
complete data for the model is̄Y = {Y,Z} whereZ is the true hidden variable values
(i.e. the true hidden state sequence). The completed log-likelihood ofȲ is computed as:

CL(K ) = log

(

∑

S

p(Y|S, θ̂K)p(S|θ̂K)

)

+ log p(S = Ẑ|Y, θ̂K). (3)

whereS = {S1, ..., ST } represents all the possible hidden state sequences,T is the length
of the sequence,̂θK are the ML (maximum likelihood) estimate of the model parameters
of a HMM with K hidden states,̂Z is the most probable state sequence (i.e. the hidden
state sequence amongS that best explains the observation sequence) givenθ̂K andY. θ̂K
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can be computed using the Baum-Welch method andẐ can be obtained using the Viterbi
algorithm (see [16] for details). We thus have:

CL−AIC(K ) = − log

(

∑

S

p(Y|S, θ̂K)p(S|θ̂K)

)

− log p(S = Ẑ|Y, θ̂K) + CK . (4)

We now consider the problem of determining the unknown topology of a Dynamically
Multi-Linked HMM (DML-HMM) [12] from data using CL-AIC as the scoring function.
Instead of being fully connected as in the case of a Coupled HMM (CHMM) [8], a DML-
HMM aims to only connect a subset of relevant hidden state variables across multiple
temporal processes. Given a data set, we assume that at each time instance the temporal
process responsible for each data sample is known and the number of hidden states for
each hidden variable is also known. The unknown structure tobe learned is the topology
of the graph, i.e. the links among different hidden nodes within two consecutive time
instances. CL-AIC can be computed using Eqn. (4) where the subscript K becomes
the index of different topologies. The total number of candidate topologiesKmax is
exponential in the number of temporal processesNt. Each candidate topology can be
represented using aNt×Nt inter-connection matrix whose elements have value1 if there
is a directed link between the corresponding two hidden nodes within two consecutive
time instances and0 otherwise.

3 Experiments
3.1 Synthetic Experiments on Learning HMM Structure
Synthetic experiments were conducted to compare the effectiveness of CL-AIC with that
of BIC, AIC and ICL on determining the number of hidden statesof a HMM given data
of different sample sizes. One-dimensional data were first generated from a 3-state HMM
(i.e. the hidden variable at each time instance can assume 3 states) whose parameters are:
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, (5)

whereA is the transition matrix,π is the initial state probability andB contains the para-
meters of the emission density (Gaussians with the indicated means and variances). The
total number of model parameters is 14 for this HMM. The data were then perturbed by
uniformly distributed random noise with a range of[−0.5 0.5]. HMMs with the number
of hidden statesK varying from 1 to 10 were evaluated. Four different scoring functions
were tested on the data sets with the sample sizeT varying from 25 to 4000. The results
are shown in Figure 2 using the mean and±1 standard deviation of the selected number
of hidden states over 50 trials, with each trial having a different random number seeds.

Figure 2(b) shows the mean of the number of states estimated by different scoring
functions over 50 trials in a single plot. It can be seen that when the sample sizes were
small, all four scoring functions tends to favour under-fitted models, with AIC and CL-
AIC clearly outperforming BIC and ICL. As the sample sizes increased, the number
of hidden states determined using all scoring functions converged to the true number
3. Given densely sampled data sets (T > 400), our results show that both AIC and
BIC tended to slightly over-fit while ICL and CL-AIC yielded accurate estimation of the
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Figure 2: Synthetic data experiment results for determining the number of hidden states
of a HMM using different scoring functions. (a) Selected number of hidden states (mean
and±1 standard deviation over 50 trials); (b) Mean of selected number of hidden states
(The true number of hidden states is 3).

number of hidden states. Figure 2(a) shows variations in thestructure learning results
across different trials, and in particular, that AIC exhibited large variations in the esti-
mated number of states no matter what the sample size was, whilst other scoring functions
had smaller variations given larger sample sizes.

The experimental results show that the performance of CL-AIC on determining the
number of hidden states for a HMM is superior to that of existing popular alternatives
especially when the given dataset is sparse. Similar results were reported in the case
of GMMs in [21]. However, there is a difference in the definition of ‘data sparseness’
for dynamic graph models and for static models such as GMMs. The sparseness of a
dataset is normally measured according to the number of freeparameters of a model. The
experiments reported in [21] show that a sample size smallerthan 5 times of the parameter
number should be considered as sparse while our experimentson HMMs here show that
any sample size smaller than 20 times of the true number of parameters would qualify for
being sparse (see Figure 2).

3.2 Surveillance Video Segmentation
To segment a continuous surveillance video based on activities captured in the video, aL-
dimensional feature vector is first extracted from each image frame. The video content is
thus represented a video trajectory in thisL-dimensional feature space. This feature vec-
tor is then represented as the observational variable of a HMM at each time instance. The
conditional probability distributions (CPDs) of each observation variable are Gaussian for
each of theK states of its parent hidden variable. The video content is then monitored
using the discrete hidden variables in the model. The changes of video content can thus
be detected as the changes of hidden states which correspondto breakpoints on a video
trajectory (N detected change points/breakpoints result in N+1 video segments for a con-
tinuous video). Using a left-to-right HMM model, the numberof hidden states would
correspond to the number of video segments.

Our experiments were conducted on CCTV surveillance videosmonitoring an aircraft
ramp area (see Figure 3(a)). A fixed CCTV analogue camera tookcontinuous recordings.
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After digitisation, the final video sequences have a frame rate of 2Hz. Each image frame
has a size of 320×240 pixels. Our database for the experiments consists of 7 sequences
of aircraft docking lasting from 6470 to 17262 frames per sequence (around 50 to 140
minutes of recording), giving in total 72776 frames (10 hours) of video data. They are
referred as video 1 to video 7 respectively. The 7 videos werefirst manually segmented
into activities to give the ground truth of the breakpoints for segmentation, resulting in
a total of 64 breakpoints and 71 segments. The lengths of these video segments were
within the range of 127 to 3210 frames. In our experiment, a scene event based method
proposed in [20] was adopted for feature extraction, which resulted in each image frames
being represented as a 8 dimensional feature vector. The problem to be solved here is to
automatically determineK, the number of hidden states which corresponds to the number
of video segments.

(a) Different activities captured in video 2
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(b) Ground truth (8 breakpoints) (c) CL-AIC (8 breakpoints) (d) BIC & ICL (6 breakpoints) (e) AIC (10 breakpoints)

Figure 3: Determining the number of video segments for an aircraft docking video (video
2 of the 7 videos) using a HMM with different score functions.(a) Representative frames
of different activities captured video 2. These activitieswere (from left to right): ‘aircraft
arrival’, ‘airbridge connected’, ‘frontal cargo service’, ‘catering service’, ‘airbridge dis-
connected’, and ‘aircraft departure’. (b) Ground truth obtained by manually segmenting
the video. (c)-(e) segmentation results using different scoring functions with the detected
breakpoints shown on the video trajectory. Note that in (b)-(e) the video trajectories are
shown in a 3D PCA space of the original 8D video content feature space just for the
illustration purpose.

BIC AIC ICL CL-AIC
# Det. B. points 49 73 45 62
# True Positives 39 52 37 54
# False Positives 10 21 8 8

Table 1: Comparing scoring functions for video segmentation. True breakpoints was 64.

The performance of different score functions are compared by looking at the number
of detected breakpoints, the number of true positives and the number of false positives.
The results are shown in Table 1 and Figure 32. Given the true number of breakpoints 64,
it can be seen from Table 1 that both BIC and ICL underestimated the number of segments

2due to space limitation, only results on one of the 7 videos areshown in Figure 3
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while AIC overestimated the segment number. In the meantime, the number of segments
estimated using CL-AIC was the closest to the true number. Onthe accuracy of breakpoint
detection, Table 1 shows that CL-AIC yielded the highest true positive number and lowest
false positive number. In the meantime, both BIC and ICL gavelow false positive number
but low true positive number as well. As for AIC, high true positive number was obtained
at the price of high false positive number.
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(a) Selected number of links (mean and±1 standard deviation over 50 trials) (b) Mean of selected number of links
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(c) Hamming distance (mean and±1 standard deviation over 50 trials) (d) Mean of hamming distance

Figure 4: Synthetic data experiment results for determining the topology of a DML-HMM
using different scoring functions. The true number of linksis 5.

3.3 Synthetic Experiments on Learning DML-HMM Structure
Training datasets were generated using a DML-HMM with threetemporal processes
whose topology is shown in Figure 1(c). Both the observationand hidden variables are
discrete with three possible values. One fourth of the observational data were replaced by
random numbers to synthesise noise contained in the observation. The model parameters
are not presented here due to the space limitation. DML-HMMswith Kmax = 64 dif-
ferent topologies were evaluated by four different scoringfunctions using data sets with
sample sizeT varying from 25 to 4000. The performance of different scoring functions
was measured by looking at both the number of links connecting hidden nodes within two
consecutive time instances (the true number is 5) and the hamming distance between the
estimated inter-connection matrices and the true one (the distance is zero if the structure
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is estimated correctly). The former measures complexity ofthe selected models while the
latter measures the accuracy of the learned structures. Theexperimental results, shown in
Figure 4, were obtained over 50 trials.

Figure 4 shows that given sparse data, the optimal models selected using all four
different scoring functions tended to underfit with ICL and CL-AIC outperforming the
other two. As the sample sizes increased, the optimal numberof links among hidden
nodes selected by CL-AIC and ICL converged towards the true number 5, while those
selected by BIC and AIC converged to 4, (i.e. underfitting). In the meantime, the hamming
distance obtained using different scoring functions decreased, with that obtained using
CL-AIC being the smallest.

3.4 Discovering Causal Relationships among Visual Events
A group activity involves multiple objects co-existing andinteracting in a shared com-
mon space. Examples of group activities include ‘people playing football’ and ‘shoppers
checking out at a supermarket’. Group Activity modelling isconcerned with not only
modelling actions executed by different objects in isolation, but also the interactions and
causal/temporal relationships among these actions. Adopting a DML-HMM based activ-
ity modelling approach [12], we consider that a group activity is composed of different
classes of dynamically linked visual events representing significant changes in the image
over time caused by different objects in the scene. An event is represented by a multi-
dimensional feature vector and automatically detected andclassified into different event
classes (see [12] for details). The detected events are thentaken as the observational in-
put to a DML-HMM so that learning causal and temporal relationships among different
classes of events can be achieved by learning the optimal structure of the DML-HMM for
modelling the dynamics of the detected events and the interactions among them. More
specifically, each temporal process of the DML-HMM is used tomodel the dynamics of
one class of events and those links among different processes capture the causal/temporal
relationships of different classes of events.

A simulated ‘shopping scenario’ was captured on a 20 minutesvideo. Some typical
scenes can be seen in Figure 5(a). The scene consists of a shopkeeper sitting behind a
table on the right side of the view. Drink cans were laid out ona display table. Shop-
pers entered from the left and either browsed without payingor took a can and paid for
it. The data used for this experiment were sampled at 5 framesper second with total
number of 5699 frames of images sized320 × 240 pixels. In the 20 minutes video, a
total of 4634 events were automatically detected and classified into 5 event classes, which
corresponded rather well to 5 known key constituents of the shopping activity. They
were labelled ascanTaken, entering/leaving, shopkeeper, browsing and
paying respectively (see Figure 5(a)). It was noted that differentclasses of events oc-
curred simultaneously. It is also true that our event recognition model made errors. Some
of the errors were caused by the occlusion, closeness and visual similarity among different
events. Some others were due to the factor that the causal/temporal relationships among
events were not considered at the level of event detection. For example, when a shopper
stands in front of the shopkeeper, it is impossible to tell whether he/she is going to pay
unless one takes into consideration whether any drink can was taken a moment ago. The
event classifier is therefore expected to make such errors without taking into account the
temporal and causal correlations among different classes of events. Such causal/temporal
relationships are modelled using a DML-HMM.

There are 5 temporal processes in this DML-HMM, each corresponding to one class
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(a) Examples of detected and classified events in a shopping scene
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Figure 5: Discovering causal relationships among visual events in a shopping scene.
In (a), events belonging to 5 event classescanTaken, entering/leaving,
shopkeeper, browsing andpaying are indicated with bounding boxes in magenta,
red, blue, green and cyan respectively. (b)-(d): topologies of DML-HMMs learned us-
ing different scoring functions. (e): The expected causal and temporal structure of the
shopping activity.

of events. We also consider two states for each hidden state variable, i.e. a binary variable
switching between the status ofTrue andFalse, corresponding to whether or not event
of a certain class is truly present in each frame. Each observation variable is continu-
ous and given by a 7-D feature vector representing a event [12]. Their distributions are
mixtures of Gaussian with respect to the states of their discrete parent nodes. For model
learning, the distributions of the detected events are usedto initialise the distributions of
the observation vectors. The priors and transition matrices of states are initialised ran-
domly. The number of candidate topologies for a 5-temporal-process DML-HMM is too
large to be searched exhaustively. The Structural EM algorithm [10] was thus adopted to
search for the optimal structure more efficiently using different scoring functions.

The discovered causal/temporal relationships among different classes of events are
embodied in the learned topologies of the DML-HMMs. For instance, a link pointing from
the canTaken process towards thepaying process indicates the causality between
these two classes of events. Compared with the expected structure of the shopping activity
as shown in Figure 5(e), it can be seen that the causal relationships among different classes
of events and the temporal structure of the activity were discovered correctly by CL-AIC
(Figure 5(b)). In comparison, a over-complicated DML-HMM topology was selected
using AIC ((Figure 5(d))) while both BIC and ICL underestimated the number of inter-
links among different temporal processes, resulting in over-simplified causal relationships
(Figure 5(c)).
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4 Conclusion
We proposed a novel scoring function (CL-AIC) for selectingthe optimal structure of
dynamic graph models, especially DBNs. The effectiveness of CL-AIC was demonstrated
on solving challenging video content analysis problems.
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