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Abstract
In this work we present a framework for robust people de-
tection in highly cluttered scenes with low resolution im-
age sequences. Our model utilises both human appearance
and their long-term motion information through a fusion
formulated in a Bayesian framework. In particular, peo-
ple appearance is modeled by histograms of oriented gra-
dients. Motion information is computed via an improved
background modeling by spatial motion constrains. Exper-
iments demonstrate that our method reduces significantly
the false positive rate compared to that of a state of the art
human detector under very challenging conditions.

1 Introduction
Pedestrian detection in a busy public scene is an important
yet challenging task in visual surveillance. The difficulties
lie in modelling both object and background clutter con-
tributed by a host of factors including changing object ap-
pearance, diversity of pose and scale, moving background,
occlusion, imaging noise, and lighting change. Usually
pedestrians in public space are captured by two dominant
visual features: appearance and motion. There is a large
body of work in human detection, see [2] and [3] for a
survey. They can be categorized into two groups: static
and dynamic people detectors. Static people detectors rely
mainly on finding robust appearance features that allow
human form to be discriminated against a cluttered back-
ground using a classifier such as SVM or AdaBoost search-
ing through a set of sub-images by a sliding window. Typi-
cal features include rectified Haar wavelets [4], rectangular
features [5], and SIFT (Scale Invariant Feature Transform)
like features such as histogram of oriented gradients [1]. Pa-
pageorgiou et al. [4] described a pedestrian detector based
on SVM using Harr wavelet features. Gavrila and Philomin
[6] presented a real-time pedestrian detection system by uti-
lizing silhouettes information extracted from edge images.
The candidate of the silhouettes is selected as the one with

the smallest chamfer distance to a set of learned human
shape examples. On the other hand, there is little progress
on dynamic detectors, although the idea of using pure mo-
tion information for human pattern recognition is not new
[7, 8, 9]). Most existing work utilises optic flow. Viola et al.
[5] proposed a very efficient detector using Adaboost that
can achieve real-time performance. The rather simple rect-
angular features and the cascade structure account for the
efficiency of this approach. Motion information was also
taken into account through a coarse estimation of optic flow
between two consecutive frames. To achieve satisfactory
performance, this approach assumes that the human motion
information in the test sequences is similar to those in the
training set. Other related work using motion information
includes human behavior recognition by distribution of 3D
spatial-temporal interest points [10, 11], 3D volumetric fea-
tures [12], or through 3D correlation [13]. Overall, existing
methods for computing motion assume mostly that the mo-
tion is locally smooth. However this is untrue especially in
busy public scenes when measuring optic flow is sensitive
to noise and unreliable due to lighting change, reflection,
moving background such as tree leaves (see Figure 2).

To date, work on utilising both motion and appearance
information remains in its infancy. To our best knowledge,
there is no work performing direct people detection using
both appearance and long-term motion information. In this
work, we present a robust framework for people detection
in highly cluttered public scenes by utilizing both human
appearance and their long-term motion information whilst
reliable optic flow cannot be estimated. Our method does
not require the estimation of continuous motion such as op-
tic flow in training thus reduces the number of features re-
quired for training a classifier. It allows for any detected ap-
pearance hypothesis to be verified using a long-term motion
history analysis. We show experimental results that demon-
strate the efficacy and robustness of the proposed approach
against that of a state of the art static people detector.



2 Methodology
In contrast to video sequences captured under well-
controlled environment at frame rate, our task for people
detection requires to work in highly cluttered public scene
(underground)given low resolution data and low frame rate.
The scene also suffers from 1) significant lighting changes,
which makes the motion estimation unstable and noisy; 2)
heavy occlusions, which requires the people detector to han-
dle partial match; 3) extensive background clutters, which
can cause high false alarms. To this end, we propose a ro-
bust people detection method for video sequences by fusing
static appearance feature based detector with a long-term
motion based attention confidence measure. An overview
of our method is shown in Figure 1.

2.1 Generating static appearance hypothesis
We adopt the static people detector proposed by Dalal and
Triggs [1] to generate static human presence hypothesis in
each frame. To achieve scale invariance, this detector uti-
lizes a multi-scale sliding window approach, i.e., scanning
each frame at each scale level through a pyramid decompo-
sition. Each sub-window image patch centered at location
i (denoted by vi, where i = 1 : n and n is the number of
patches) is transformed into a feature vector before classi-
fied into either human foreground or scene background by
a classifier. The feature vector used here is a SIFT [14]
like feature based on histogram of gradient orientation. The
basic idea is that local object appearance and shape can of-
ten be characterized rather well by the distribution of local
intensity gradients or edge directions, even without any pre-
cise knowledge of corresponding gradient or edge positions
(similar work can be found in [15] using histograms of scale
normalized, oriented derivatives to detect and recognize ar-
bitrary object classes). The size of the detection window
is 32×64 including 8 pixels of margin beyond the window
size. A linear SVM is used as the classifier and the output of
the classifier serves as the confidence measure for our static
human appearance hypothesis. This approach has achieved
very good detection rate in static images of outdoor scene
[1], e.g. image samples from the MIT pedestrian dataset
[4]. However, the lack of motion information makes this
detector less robust to background clutters. This problem
becomes severe in cluttered scenes with poor lighting, such
as in public underground, when such a static human detector
gives unacceptable false alarm rate, as shown by examples
in Figures 5 and 6. Simply increasing the threshold of the
score for generating the hypothesis does not result in reduc-
ing the false alarms because in such cluttered scenes, re-
gions in background have very similar appearance to that of
people, e.g. as shown in Figure 5 (e). Here the false alarms
on the wall have very high scores produced by the classifier

and do indeed look like standing people. Similar observa-
tions can be found in the example shown in Figure 6 (b).
Given that in any public scene, people exhibit inevitably
long-term-moving patterns instead of just a static pattern,
we consider a detection model based on fusing detected
static human presence hypothesis with their long-term mo-
tion history information as follows.

2.2 Motion confidence map
One way to utilize motion information is to compute optic
flow [16, 17, 18]. However, optic flow estimation makes
a strong assumption that motions are only caused by either
relative movement between the camera and the object of in-
terest or ego-motion. The accuracy of flow estimation is
based on well sampled data, i.e. local smoothness. How-
ever, both assumptions are not usually satisfied. First, large
lighting changes usually result in noisy flow field. Sec-
ond, relatively fast action w.r.t the camera, i.e. low frame
rate, also results in highly discontinuous motion which is
far from smooth. Examples of estimating optic flow in a
underground scene are shown in Figure 2. The optic flow
was computed using a robust method proposed by Gautama
et al. [18]. However, it is evident that the resulting flow
field is very noisy and unstable. To address this problem, in
this work we adopt an alternative long-term motion estima-
tion approach using background extraction and subtraction,
given that most surveillance CCVT systems are based on
fixed views. More precisely, we utilise a Gaussian mixture
background model of [19]:

b(x, y) =
∑

i

αig(f(x, y), θi,x,y, σi,x,y), (1)

where x, y is the location of each pixel, (θi,x,y, σi,x,y) are
the model parameters of each individual Gaussian compo-
nents g, and f(x, y) is the local pixel intensity. The vari-
ation of one frame f(x, y) with respect to the background
model is estimated as the probability distance given by

v(x, y) =
∑

i

αiexp
(

−1/2 (f(x, y)− θi,x,y)2/σi,x,y
2
)

(2)
This type of motion information is very effective at high-
lighting changes in motion in the scene. However, this is
also an undesirable property since the noisy motion caused
by lighting changes is inevitably augmented. See Figure 5
(b) as an example. To suppress the noisy motion caused
by lighting changes, we further take the spatial motion con-
trast into consideration in the Gaussian mixture model as
follows:

v(x, y) = exp

(

−
1

2

(f(x, y) − b(x, y))2

σ2
s

)

(3)
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Figure 1: Flow chart of our method for pedestrian detection. An appearance based detector is used to create the initial hypoth-
esis and long-term motion is computed by background modeling. The above cues are combined in a Bayesian framework.
The final candidates are selected by thresholding.

In the background model of Eq.(1), σi,x,y is the strength
of the motion of each pixel at (x, y), we calculate σs here
as the mean or median of σi,x,y. Examples of motion ex-
traction using this model are shown in Figure 5 (b) and
(c), where in (b) motion was estimated using the Gaussian
mixture background model without considering spatial mo-
tion contrast whilst in (c), it was taken into account. This
demonstrates clearly the effectiveness of utilising the spatial
motion contrast measure given by Eq.(3) for removing mo-
tion noise as compared to existing Gaussian mixture mod-
els.

2.3 Bayesian verification
For each hypothesis created by the static people detector,
we verify its truthfulness using the obtained motion infor-
mation. More precisely, for each detected bounding box
hypothesis, we first calculate a Gaussian weighted accumu-
lated motion score. Suppose that we have a hypothesis lo-
cated as (x0, y0), the motion score of this hypothesis is cal-
culated as:

m(x0, y0) =

∫ ∫

x,y∈Ω(x0,y0)

v(x, y)g(x, y)dxdy (4)

where Ω(x0, y0) is the neighborhood of the hypothesis loca-
tion. Here we set it as the window size of the hypothesis cre-
ated by the static human detector. g(x, y) is an anisotropic
Gaussian envelope given as:

g(x, y) =
exp

(

1
2 ([x, y] − [x0, y0])Σ

−1([x, y]T − [x0 − y0])
T
)

(5)
where Σ is the spatial correlation matrix, we set as
[

1/2w 0
0 1/2h

]

, where w, h are the width and height of

the hypothesis window. Thus we give higher weight to
the contribution of motion near the centre of the hypothe-
sis window, whilst less emphasis to further away from the
centre. This is aimed to improve the robustness of the cal-
culation of the motion score for each hypothesis against any
error in the location of the hypothesis. Examples of measur-
ing the Gaussian weighting mask against the corresponding
bounding boxes are shown in Figure 7.

We further define the total score for detecting the pres-
ence of a person as the product of the motion score and
static hypothesis confidence measure

s(x0, y0) = m(x0, y0) c(x0, y0) (6)

where c(x0, y0) is the confidence measure of the static hu-
man detector at (x0, y0).

The verification process can be formulated by the
Bayesian rule. For a bounding box hypothesis, we wish to
find the probability of the presence of an object given mo-
tion confidence m and appearance measure c, p(o|c, m, h),
which is given by the Bayesian rule as follows:

p(o|c, m, h) = p(m|h, o) p(c|h, o) (7)

Here we assume that the motion m and the appearance c
are conditionally independent. p(m|h, o) is the motion con-
fidence within the hypothesis bounding box given the ob-
ject, which is computed using Eq.(3). p(c|h, o) is the ap-
pearance confidence measure generated by the static object
detector. The final candidates are selected by thresholding
p(o|c, m, h).
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Figure 2: Optic flow estimation comparison in different sequences. (a) regular flow on well-captured outdoor sequence; (b)
noisy flow on a real underground sequence. Note that in (b), the upper-right corner has some distinct noisy optic flow caused
by lighting changes and object reflections.

3 Experimental results
3.1 Data set
Training set: We use the challenging INRIA 1 image
dataset for training, which is totally independent to our test
video data. The INRIA dataset also does not contain any
motion information. It contains 607 positive training im-
ages, together with their left-right reflections (1214 images
in all). A fixed set of 12180 patches are randomly sampled
from 1218 person-free training images. Examples of these
images are shown in Figure 3.
Test set: Out test set contains image frames from CCTV
video sequences taken from underground stations and plat-
forms by fixed cameras. One set of images is from a train
platform containing 3710 frames. The other set is from a
ticket office area containing 160 frames. In contrast to other
video sequences captured under well-controlled environ-
ment, these sequences present significant lighting changes
and background clutter. Many frames contain multiple peo-
ple under severe occlusions. Figure 4 shows 6 consecutive
example frames from the platform scene.

3.2 Detection results
Examples of detections at the ticket office area scene from
our dynamic detector are compared and shown against those
from a static people detector [1] in Figure 5. The detected
boxes are displayed on each frame. Figure 5 (d) shows de-
tection results from the static detector whilst Figure 5 (e)
and (f) show the detections of our dynamic detector. Fig-
ure 5 (f) is an improved version of Figure 5 (e) by increas-

1The dataset may be downloaded from http://lear.inrialpes.fr/data.

ing the robustness of motion estimation using spatial con-
trast measure given in Eq.(3). Thus it further removes ad-
ditional false alarms. Another detection examples from the
sequences of the underground ticket office are shown in Fig-
ure 6. The dataset presents a lot of background clutters
where ticket machines appear to be similar to the appear-
ance of people standing there. So it is reasonable for the
static detectors to produce false detections at where some
ticket machines are located, as shown in Figure 6 (b). Our
dynamic detector has shown to be able to remove those false
alarms.

To quantify the detection performance, we also perform
an quantitative evaluation of both the dynamic detector and
static detector on the ticket-office scene from which man-
ually labelled ground truth was available. By varying the
threshold of the detection scores one at a time, we ob-
tain the Receiver Operating Characteristics (ROC) curves of
those detectors, showing false positive rate versus true pos-
itive rate (see Figure 8). When comparing with the ground
truth annotation, we measured the overlap score between
the detected bounding box and ground true bounding box.
A detection with overlap score larger than 50% is labeled
as a ’match’. For further explaining the role of motion in-
formation played in improving the detection rate, we also
plotted the ROC curve of a pure motion detector, i.e. the
bounding boxes are weighted only by their motion infor-
mation as computed by Eq.(3). From this experiment, it
is clear that the motion information plays a critical role in
accurate detection. Simply using the motion information
alone also gave good detection as shown by the ROC curve.
This is because most of the motions in this particular scene
were caused actually by human movement. The ROC curve
shows that our dynamic detector improves significantly the
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Figure 3: Positive and negative training examples used in our experiments.

Figure 4: Six consecutive frames from the test sequences.

performance of the static detector by Dalal and Triggs [1].
The false alarms rate has been greatly reduced. For exam-
ple, to achieve a detection rate of 70% on the ticket-office
scene, our detector produces 130 false alarms whilst the de-
tector by Dalal and Triggs generated 370 false alarms, over
3 times more.

4 Discussion and conclusions
In this paper, we presented a framework for robust people
detection in highly cluttered scenes with low resolution im-
age sequences. Our model utilises both human appearance
and their long-term motion information through a fusion
formulated in a Bayesian framework. In particular, peo-
ple appearance is modeled by histograms of oriented gra-
dients. Motion information is computed via an improved
background modeling by spatial motion constrains. This is
an extension of the static detector proposed by Dalal and
Triggs. Experiments demonstrate that our method reduces
significantly the false positive rate compared to that of the
state of the art static human detector under very challenging
conditions. At present, our model is based on the long-term
motion information, and requires fixed camera viewpoint
during detection. Building a hybrid model of both long-
term and short-term motion information could possibly give
more robust detections and also be adaptive to some back-

ground and viewpoint change.
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Figure 5: Examples of human detection in each step. (a) the original slice; (b) initial motion confidence map only using
Gaussian mixture; (c) refined motion confidence map; (d) initial hypothesises by using pure static human detector; (e)
detection results by using the motion map of (b); (f) refined detection results by using the motion map of (c).
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Figure 6: Examples of human detection in the ticket office with heavy background clutter. (a) the original slice; (b) initial
hypothesises use pure static human detector; (c) motion confidence map; (d) detection results using the motion map of (c).
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Figure 7: Gaussian weighting masks corresponding to the hypothesises bounding box. (a) corresponds to Figure 5(e); (b)
corresponds to Figure 6(d).
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