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Abstract

We present a multi-camera system based on Bayesian
modality fusion to track multiple people in an indoor en-
vironment. Bayesian networks are used to combine multi-
ple modalities for matching subjects between consecutive
image frames and between multiple camera views. Unlike
other occlusion reasoning methods, we use multiple cam-
eras in order to obtain continuous visual information of
peoplein either or both cameras so that they can be tracked
through interactions. Results demonstrate that the system
can maintain peopl€e's identities by using multiple cameras
cooperatively.

1. Introduction

Tracking moving people in an indoor environment is of
interest in a number of applications such as visual surveil-
lance, human-computer interface and video conferencing.
Occlusion is a significant problem which can not be ignored
because identities of people can become ambiguous. An ex-
ample of an occlusion scenario is shown in Figure 1. This
paper attempts to solve the occlusion problem in human
tracking by using multiple uncalibrated static and widely-
separated cameras.

Figure 1. People viewed from two widely sep-
arated cameras. The taskis to track them with
identities even when occlusion is present.

Different solutions to the occlusion problem in human
tracking have been proposed. Rosales and Sclaroff [16]
used Kalman filters and Khan and Shah [11] used colour.

However, neither of these methods work for all cases. Re-
cently, Haritaoglu et al. [6] implemented a real-time human-
tracking system W* and suggested using a multi-camera
system to analyse the occlusions.

Using multiple cameras to solve the occlusion problem,
the cameras are separated widely in order to obtain visual
information from wide viewing angles and offer a possi-
ble 3D solution [12]. The system needs to pass the sub-
jects identities across cameras when the identities are lost
in a certain view by matching subjects across camera views.
Therefore, the system needs to match subjects in consec-
utive frames of a single camera and also match subjects
across cameras in order to maintain subject identities in as
many cameras as possible. Although this cross view corre-
spondence is related to wide baseline stereo matching, tra-
ditional correlation based methods fail due to the large dif-
ference in viewpoint [14]. Because the variation is large
between two camera views, the features used for match-
ing should be view-independent or transformed to a suit-
able value for different cameras. To this end, Collins et
al. [3] use the trajectory and normalised colour histogram of
an object. Chang et al. [2] estimate the subjects’ apparent
height and apparent colour across cameras. This matching
can also be done by employing the geometry of multiple
views such as epipolar geometry [1] and homography [12]
or scene knowledge such as landmarks [2]. However, these
feature-based matching methods can be unreliable due to
the ambiguous positions of the extracted features resulting
in inconsistencies over time or conflict with each other. A
framework is required to combine multiple visual modali-
ties, or cues, to make the matching more reliable. Bayesian
Networks [13, 10] provide such a framework which enable
the full set of possible matching assignments to be simul-
taneously considered in a consistent and probabilistic man-
ner. This Bayesian modality fusion method is related to the
work of Toyama and Horvitz [17]. We also apply this fusion
method to match subjects between consecutive frames from
a single camera. Note that the method we present in this pa-
per also can be used to track and follow multiple people as
they move through the Field Of Views (FOVs) of different
cameras.

In order to track individuals continuously, the system as-
signs an identity to a new detected subject and keeps track-
ing it with this identity. If this subject has already appeared
in the other cameras or loses the identity during tracking,



the system then passes identity and re-assigns it to this sub-
ject by matching subjects across camera views. Thus, the
tracking has two different modes: Single Camera Tracking
(SCT) matching subjects between consecutive frames and
Multiple Camera Cooperative Tracking (MCCT) matching
subjects across cameras.

2. Bayesian Networks for Building Correspon-
dence

In this section, we first define our problem. Then we ex-
plain the use of Bayesian networks to fuse multiple modal-
ities to solve the correspondence problem. Firstly, we con-
strain the maximum number of subjects in each image to
be m. To match subjects between 2 images, I; and I, in-
stead of matching each single subject independently which
might result in conflicting results, we evaluate the matching
globally, i.e. consider the matching for all subjects simul-
taneously. In each combination of assignments, every sub-
ject in I; is assigned a corresponding subject in I;. After
applying the uniqueness constraint, i.e. a subject in I; is
allowed to be assigned to one and only one subject in I;,
there could be m! possible assignment combinations, 4, =
{41,---, Ap}. Given the visual evidence e from all cam-
eras which might be uncertain and incomplete, our goal is
to find a most appropriate assignment combination which
maximises the posterior:

ac{lmt} p(Agle) (1)

We employ Bayesian networks to probabilistically in-
fer the correspondence of people in two images. The net-
works can capture the dependencies between the correspon-
dence of the subjects between two images and multiple vi-
sual evidences in two images. A Bayesian Belief Network
(BBN), also known as a Bayesian Network, is a graphi-
cal representation of a joint probability distribution over
a set of random variables [10, 13]. A BBN is a directed
acyclic graph in which each variable is represented by a
node, and directed edges between nodes represent condi-
tional dependencies. The dependencies can represent the
causal influences among variables. Given a set of N vari-
ables V = {V1,...,Vx}, the joint probability distribution
P(V) can be factored in any number of ways using Bayes’
rule. A BBN exploits independencies between variables
to specify the joint distribution over V via a sparse set of
conditional probabilities: P(V) = Hfil P(V;|I1(3)) where
T1(%) is the set of parent nodes of node i.

To perform inference, the user observes a subset e of V,
the IV variables, referred to as evidence. After incorporating
this evidence into the network, the distribution represented
is P(V|e), that is the distribution of all variables given the
available evidence. Note that not all variables need to be
observed for inference to take place. Given the distribu-
tion P(V|e), marginalisation yields the distribution of each
variable given the evidence, P(V;|e). Thus, the matching
problem defined by Equation (1) can be probabilistically

inferred by obtaining a probability distribution over the as-
signment combinations. If the network is a poly-tree, i.e.
there is only one path connecting any two nodes, inference
can be performed on the original network structure using
the method introduced by Pearl [13]. If the network con-
tains undirected cycles, this inference algorithm becomes
intractable because the messages can cycle forever. The net-
work must first undergo a series of transformations to obtain
a junction tree in which inference can be performed using
message passing [10].
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Figure 2. The Bayesian Network for inferring
the correspondence of subjects between two
images based on a single modality.

In the discrete-variable BBN (Figure 2) used to match
subjects between two images based on a single modality,
there are four different types of nodes: (1) Correspon-
dence node which represents a multi-values variable and
each value corresponds to a possible assignment combina-
tion {A4;,---, A}, The m is the maximum number of
subjects in an image. (2) Comparison node. There are m
comparison nodes and each node compares one subject in
I; against all m subjects in I;. Thus, each subject in an
image is compared to all subjects in the other image. (3)
Modality confidence node which represents the confidence
of the modality and constrains the influence of this modality
on the correspondence. (4) Indicator node which indicates
the modality confidence. Both correspondence and modal-
ity confidence nodes are the variables to be inferred. Com-
parison and indicator nodes are the variables representing
the visual evidence. All the observed continuous values of
observations are discretised. The conditional probability ta-
bles for the observation nodes can be learnt from a training
set of data, either through statistical sampling in the case of
complete data, or using the Expectation-Maximisation al-
gorithm when some variables are unobservable [8]. From
the observed evidence in indicator nodes, the modality con-
fidence is inferred. This confidence and the computed com-
parison results are considered in inferring a probability dis-



tribution over the m! assignment combinations. Note that
the maximum number of subjects in an image is m. To
obtain the distribution when the number of subjects in two
images is less than m, the distribution can be marginalised
from the inferred probability distribution over m! assign-
ment combinations. When the number of the subjects are
different in two images say p and ¢ in I; and I; with p > g,
the p—g subjects in I; are replaced with null subjects. Thus,
the less likely subjects in I; will not be assigned any sub-
jects in I;. In order to generalise the BBN for multiple
modalities, we define a Matching Unit (MU) as the union
of all comparison, modality confidence and confidence in-
dicator nodes.

3. Single Camera Tracking

To track people with a single camera, the system per-
forms two major tasks: detecting the moving people and
matching the subjects between consecutive frames. To take
advantage of the fact that the camera is stationary, the mov-
ing subjects are segmented using a simple frame differenc-
ing method. After thresholding and noise cleaning, con-
nected component analysis is applied to the foreground pix-
els to find the moving blobs, though it is not always correct.
Each detected blob is then circumscribed by a bounding box
and the system assigns an identity to this new detected blob.

To reliably maintain the identities of the detected people,
the system integrates multiple modalities based on motion
continuity and the apparent colour (Figure 3). A second-
order Kalman filter is attached to each subject to estimate
the motion vectors, Z,(k) = [z,4,#]T and Z,(k) =
[y,9,%]T , of the blob centroid. Furthermore, the colour
data is sampled from the subject image and the distribution
is modelled as Gaussian mixture models in hue and satura-
tion space [18]. The conditional probability of a measured
pixels, A, being the subject, S, modelled as a mixture with
m components is given by:

m

p(AS) = p(Ai) P(i) 2

i=1

where P(3) is the prior probability of the component, the
it" component is a Gaussian with mean y and covariance
matrix X, and:

PN = gsgear{— 50 - W S 0= ) @

The normal method to define the closest match based
on Kalman filter is by searching the minimum of M,, =
vT S u where the v is the innovation, the error between
the predicted measurement and the true measurement, and
S represents the covariance of the innovation. The closest
match based on colour can be found as the blob with the
minimum M, = Y0 ST [ = ) TSTEH = w)lp(i)
where n is the number of pixels sampled from the blob.
These M,,, and M, are the Mahalanobis Distance (MD)

for each individual blob used to quantify the likelihood and
decide the match in the comparison node. Experiments per-
formed show that the reliability of both modalities degrades
when the features are not extracted accurately. In order to
address this problem, we define the confidence indicators
for motion as the status of the size of the detected blobs,
the aspect ratio of the blob bounding box and the motion
continuity based on the centroid displacement. Similarly,
we use the status of the blobs as the confidence indicator of
the colour. Moreover, we define 3_, 5", d;,; where d is
the distance between means, p, of the dominant Gaussian
of each subject in the subsequent frame. This value is used
as another confidence indicator and can causes the system
to rely less on colour information when the colours between

subjects are similar.
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Figure 3. The general representation of
Bayesian Network used to integrate multi-
ple modalities for matching subjects between
two consecutive frames in Single Camera
Tracking (SCT). (MU see Figure 2)

After detection and identity assignment, the system
tracks people in each single camera independently. When
the status of segmented blobs change suddenly or the
matching becomes ambiguous, the system performs MCCT
(see Section 4) to pass identities between cameras. To de-
termine the matching ambiguity, we apply the X2 test to the
MD of each pair of the inferred assignment combination be-
cause the MD is X2 distributed [4]. In general, this statisti-
cal test has a corresponding critical value which defines the
probability that a true match with MD larger than this value.
We chose the critical value corresponding to 5% probability
to decide the matching is ambiguous. Therefore, when any
corresponding pair with MD of either modality greater than
the critical value, the system will perform MCCT.

One important issue can not be ignored in tracking is
the computational complexity of the correspondence prob-
lem [15]. In order to cope with this problem, different
methods were proposed to reduce the number of candidate
matches before matching is performed, such as small ve-
locity change, smooth motion constraints and the bucket
method [15]. This step is sometimes referred to as feature
validation [4]. The X2 test we used to decide the matching
ambiguity can also be used for feature validation.



4. Multi-Camera Cooper ative Tracking

Our system performs SCT in each single camera contin-
uously. Once the tracking becomes ambiguous in a cam-
era, the system performs MCCT to resolve the ambiguity
by matching subjects across cameras. To do this match-
ing, system employs BBN to integrate five modalities as
shown in Figure 4. In the following, we first introduce 3
geometry-based and 2 recognition-based modalities to be
used for Bayesian modality fusion. Then, we describe how
the system integrates multiple modalities.
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Figure 4. The general representation of
Bayesian Networks to integrate multiple
modalities for matching subjects across cam-
era views in Multi-Camera Cooperative Track-
ing (MCCT).(MU see Figure 2)

4.1. Geometry-based modalities

For geometrically constraining the image positions of

corresponding subjects, we use the multiple view geometry
and a landmark method. The geometry of multiple views is
well understood and has had a rapid increase in application
to computer vision in last decade [7]. For two views, there
exist constraints that relate the 3D corresponding points in
two views to the camera geometry. Given a set of coplanar
points, the constraints take the form of the homography. For
a set of 3D general points, the constraints are the epipolar
geometry.
Epipolar geometry: To apply epipolar geometry for match-
ing, the topmost point of segmented blob in the first camera
image I; is used to compute its associating epipolar line
in the second camera image I,. The distance between the
epipolar line and topmost point of the subject in image I is
used as a match score. We assume that such a distance is a
Gaussian variable with zero mean and a probability density
function defined as:

1 z?

The likelihood of the subject in I being the correspond-
ing subject in I; is determined by the value of the density

function for the measured distance. We define M, = jﬁ—z
and use it to compare the candidate matches. The modal-
ity confidence indicator is defined by the mean distance be-
tween affine epipolar lines. Moreover, we also use the seg-
mentation status of the topmost point to indicate the confi-
dence.

Homography: The general method to apply homography
for tracking is to assume that people move on the ground
plane and the bottom points lying on the planes are used to
match subjects across camera views [12]. However, in some
indoor environments, the lower part of subjects are not vis-
ible due to occlusion or being chopped by the lower view
boundary. We use the topmost point of a person’s head and
assume this point lies on the same virtual plane when he/she
is moving. Once a person is matched in two views, the top-
most point pairs are used to estimate the homography for
this particular person. Then for different people with differ-
ent heights the system estimates different homographies to
deal with different virtual planes.

To match the subjects between two camera images I; and
I,, we first transform the feature point (x,y) of a blobin I;
to a point (z',y') in I,. This projected point is then used
to compute X' = (z',y', ', y'), called the kinematic vector,

where (2/,y') is the spatial displacement between consecu-
tive frames of I,. The matching is based on the comparison
of this kinematic vector. We again apply a Gaussian vari-
able with zero mean to model the difference between the
projected kinematic vector and the observed kinematic vec-
tor, X, of its corresponding subject in I5. Thus, the matching
likelihood of a subject in I is given by:

100 = Grrmrgrmerpl=3l0c-X)TE " x=x)]} 9

We define M, = [(x —x")TE~1(x — x’)] and use it to com-
pare the candidate matches. We also define the confidence
indicator for homography modality in terms of the segmen-
tation status of the topmost point again, and mean distance
between subjects’ topmost points in .

Landmark modality: Here, we utilise the scene knowledge
based on multiple vertical line landmarks to constrain the
image positions of the corresponding subjects. The verti-
cal lines can be easily found from the man-made objects
in an indoor environment. From this knowledge, the posi-
tion of a subject with respect to the landmarks in an image
, called Vertical Area (VA), can be used to constrain the po-
sitions of its corresponding subject in the other image (Fig-
ure 5). The modality confidence indicator is defined as the
segmentation status of the topmost point used to determine
the VA position of a subject. Moreover, the mean distance
between the topmost point and the closest line landmarks
is also used. This is because the VA position might not be
reliable when a subject’s topmost point is too close to the
landmark due to wrong segmentation. However, geometric
modalities alone do not provide enough constraints to match
subject across cameras. In the next section, recognition-
based modalities are described.
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Figure 5. Top view of the FOVs of two cam-
eras. From the Vertical Area (VA) position, n,
of the subject in image 1, it can be inferred
that the VA of its corresponding subject in
image 2 is equal to or less than n, assuming
people in the overlapping FOVs.

4.2. Recognition-based modalities

This matching method is based on the the similarity test
of the subjects’ image patterns. We use the apparent height
and apparent colour of the subject. Since the appearance is
view-variant, the system should estimate the appearance of
the corresponding subject across camera views and use this
“corrected” value for matching. To learn the mapping of
the appearance, we fist partition the room into small virtual
vertical volumes based on the vertical line landmarks and
each volume is represented as (z1,x2) where z; is the sub-
ject’s VA position in image 7;. Then, we estimate this map-
ping by employing Support Vector Regression (SVR) [5]
for each different small virtual vertical volumes in the world
assuming the mapping is the same in each single volume.
More detail about this mapping estimation and the landmark
method discussed in previous paragraph can be found in [2].
Apparent height; The apparent height of a subject is de-
fined as the longest distance in the vertical direction of a
blob. This height is determined by a person’s height and
viewing geometry. Since our system is stationary, the corre-
lation between the apparent height of a person in two views
is fixed and can be used as a subject feature for matching.
For a subject with VA z1 in Iy, the apparent height of its
corresponding subject in I, can be estimated from the learnt
mapping. Since we do not know which is the corresponding
subject in Iz, the system uses the mapping corresponding to
the volume (x;,22) to estimate the apparent height 4’ for
each subject in I, according to its VA z5. Again, we model
this difference h— h' as a Gaussian variable with zero mean.
Thus, the matching likelihood of a subject in I is given by:

f(h) = (h=H)7y (6)

We define My, = ”‘;—’;)2 and use it to compare the
candidate matches. We defined the confidence indicator in

terms of the segmentation status of the feature points used
for computing apparent height and the mean difference of
subjects’ heights in I5.

Apparent colour: As mentioned in SCT, apparent colour
of a subject clothes image is modelled as Gaussian mixture
models. Similar to the apparent height, for a subject in I,
the apparent colour of its corresponding subject in I, can be
estimated from the learnt mapping. The estimation is done
for each single Gaussian model of the apparent colour. The
mapping between colours in two views is learnt for differ-
ent colours and this mapping can generalise to an “unseen”
colour. Then, the match likelihood, similar to SCT, can be
obtained based on the estimated colour models for subjects
in I>. The MD and confidence indicator for this modality
is defined as the same as those used for colour modality in
SCT.

4.3. Matching subjects across cameras

Having discussed the multiple modalities, we shall now
describe details of the use of Bayesian modality fusion for
matching subjects across cameras as shown in Figure 4. To
fuse multiple modalities for matching, our system use the
accumulated evidence in order to make the matching more
reliable and smooth. We define -7 j aM(k — 4) and use
it to compare subjects where k is the frame index and « is
the weight to set more recent evidence with higher weights.
Note that if a modality is not reliable, the comparison will
be based on the accumulated errors. In this case, the modal-
ity confidence indicator can adjust the influence lower.

To obtain consistency, the network is coupled indirectly
over time through the specification of prior probability for
correspondence node. As a consequence, the correspon-
dence at each time instant is affected by the previous match-
ing history. However, the matching might be incorrect when
the visual information is not reliable. The system needs a
method to prevent using the wrong information from the
previous results. We apply X2 test, similar to SCT, to each
pair of the assignment combination obtained from previous
frame. If any pair with more than one modalities larger
than the critical value, the system does not use the previous
matching results in the correspondence node. Moreover, the
number of frames of accumulated evidence used in compar-
ison node is set as ¢ = 0 for all modalities to prevent using
wrong evidence. Thus, ¢, aM(k — i) = M(k) and the
system compares subjects based on the current frame im-
ages. Once the system continues to infer the same assign-
ment combination, it stops performing MCCT and assigns
the identities to the matched subjects.

Here, we discuss our method to reduce the complexity
for MCCT based on the homography. Generally the bucket
method or some other constrains, such as smooth motion
constraints, do not apply to this problem without assump-
tion. One possible method is to apply homography and as-
sume ground plane is viewed in both views. In this case, the
system can perform the bucket method on the ground plane.
When the bottom points are not viewed, the topmost point
can be used if the homography induced by the virtual plane



of each individual’s topmost point has been estimated. First,
the topmost points of all subjects in the unambiguous image
I, are used to transform to ambiguous image I. Then, for
each subject in I, compute M, for all subjects in I; and
apply the X2 test on these M,. Only the subjects in I; with
M, smaller than the critical value need to be considered for
mating this subject in I>. From this feature validation, the
system can eliminate the less likely subjects before match-
ing based on other modalities. Compared to other modali-
ties homography is a powerful constraint which ideally can
obtain a corresponding point across cameras. Another pos-
sible method to reduce the candidate matches is to use the
domain knowledge such as our landmark method or the spa-
tial relationship of the FOVs [9]. This knowledge based
method can constrain the image positions of corresponding
subjects in both views. The system can eliminate some less
likely subjects before matching.

5. Results

Our multi-camera system was implemented on a SGI
workstation with two uncalibrated cameras: a SGI digital
camera and a SONY EVI-D31. The experiment is con-
ducted by using these widely separated static cameras to
monitor a room. In the following, a tracking example is
used to demonstrate how the system match subjects across
cameras in order to maintain the identity and solve the oc-
clusion problem. Note that only part of the floor can be
viewed by the cameras, so the homography based on ground
plane does not apply. Since a large room is unavailable to
test our theory of feature validation based on the homog-
raphy related to the topmost point, the system considers all
subjects in two views. We also demonstrate that Kalman fil-
ters follow the wrong people due to direction change during
occlusion. Finally, we demonstrate the performance evalua-
tion of our Bayesian modality fusion for matching subjects
across cameras.

5.1. A tracking example

The tracking example, in Figure 6, consists of 450
frames with three people interacting with each other. In
order to test our system, all three people are wearing red
clothes such that the algorithm can not distinguish them
based on colour alone. The bounding box corresponding
to each blob is the segmented region based on background
subtraction. The label on top of a bounding box is the iden-
tity assigned by the system when the person first appear in
either view. The white cross is the topmost point of a blob.
Figure 6 shows during the whole sequence, the system can
maintain identities consistently based on Bayesian modal-
ity fusion even the occlusion is present in a view. To il-
lustrate the working of our modality fusion approach, we
highlight a section of this sequence beginning from when
person 1 is in both views and person 2 just enters the room
imaged by the right camera but not the left (Figure 6.a). As
person 2 enters the left FOV, both people are in the over-

lapping FOVs (Figure 6.b) and the system performs MCCT
to obtain the identity from the other camera assuming the
subjects in two views correspond to the same people. From
the topmost points of two subjects in the right view, I, the
epipolar line (black) is used for searching subjects in the
left, I;. The topmost point of person 1 is also transformed
to I; (black dot on top of person 1) based on the on-line
learnt homography to compare with the observed kinematic
vector of two subjects in I;. The system can not use ho-
mography related to person 2 for since person 2 just enter
the room and his/her related homography has not been es-
timated yet. It also can be seen that the topmost point of
person 2 was incorrectly segmented. During matching, the
epipolar geometry , colour and height modalities are less re-
liable, and the homography and landmark methods are dom-
inant. Note that although the information is incomplete and
less reliable, the BBN can still effectively collect evidence
and make a right match.

After entering, person 2 continues to walk towards the

room centre and person 1 towards the door. These subjects
meet in I; and are segmented as one region, but not in I,
(Figure 6.c). The system interprets that I; is ambiguous and
relies on the tracking results from I to disambiguate. The
black dots in I; are the transformed points from the topmost
points (white dots) of two subjects in I based on its own
stored estimated homography. From modality fusion, the
merged blob in I; is matched to and interpreted as person 1
due to the top point of this blob corresponding to person 1.
Occlusion resolved by MCCT: Here, we demonstrate that
the system can successfully maintain the identities after
occlusion by using two cameras cooperatively where the
Kalman filter may fail. When the merged blob splits into
two blobs, the system detects that the number of blobs
changes and performs MCCT as shown in Figure 6.d. Af-
ter matching, the system passes the identifier of two people
from the I5 to I;. Person 2 keeps walking to the right corner
and person 1 turns and faces person 2. At this moment, an-
other person enters the room and is assigned a new identity
(Figure 6.e). Person 1 then turns around and walks toward
person 3 (Figure 6.f). Similar to Figure 6.c, occlusion hap-
pens in I; as shown in Figure 6.g, but two people change
direction during occlusion. To resolve the occlusion, the
homography is more reliable than the other modalities. It
can be seen that in Figure 6.h, the transformed points in I,
can be reliably used to search for corresponding people and
the epipolar geometry is less reliable.
Kalman filter failure: Note that tracking with a single cam-
era can correctly resolve the ambiguity in the event of Fig-
ure 6.c, but can not maintain correct identities for the event
Figure 6.9. Figure 7 illustrates the tracking failure with
a single camera based on motion continuity for the latter
event. It shows the measured (ground truth) and the pre-
dicted positions of the blob centroids of person 1 and 3 in
I,. During occlusion, the position estimation is based on
a constant velocity assumption and the acceleration is not
used because it is unreliable. The Kalman filters can follow
people before occlusion, but fail to estimate correct posi-
tions of people after occlusion.



Figure 6. The system can track people with identities using two cameras cooperatively even when

occlusion is present.
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Figure 7. The measured (ground truth) and
predicted blob centroids of person 1 and 3
in the left view of the tracking example (Fig-
ure 6). Occlusion is present at frame 343-395
as shown in Figure 6.(f-h). The Kalman filter
fails to estimate the positions after occlusion
due to change direction during occlusion.

5.2. Performance evaluation

To highlight the strength of Bayesian modality fusion for
combining multiple cues, we compare it with a popular fu-

sion method for tracking. This method assumes all modal-
ities are independent, often called the naive Bayes, and the
match resultis given by M (S, S') = [,_, P(ax|a},) where
Sand S represents two subjects to be matched with n dif-
ferent features ay, and aj, respectively. In order to compare
the robustness of these two methods, we collected 20 se-
quences of two people interacting with each other in the
overlapping FOVs. The people had a wide range of heights,
colour of clothes and various motions and the sequences
were captured under various lighting conditions. Figure 8
illustrates the results of matching two people between two
camera views. The accuracy rate of each sequence is the
overall matching accuracy of all frames. The ground truth
of matching is generated by hand. The average accuracy of
all 20 sequences is about 99.1% with deviation 1.2% for the
Bayesian modality fusion and 96.5 % with deviation 2.4%
for the naive Bayes method. We found that using BBN is
better in combining multiple visual evidences for matching
subjects across cameras.

6. Discussion

We now discuss the strength and weakness of our system
and future improvement directions. We have demonstrated
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Figure 8. The accuracy rate of matching sub-
jects between two camera views based on
Bayesian modality fusion and a naive Bayes
method for 20 image sequences.

that our multi-camera tracking system can handle occlusion
and maintain identities of multiple people. Handling oc-
clusion using appearance and motion is in general hard be-
cause the image pattern of the subject appearance can ex-
perience severe variation during occlusion and the motion
model might be violated during the estimating stage (as in
Figure 7). The former situation is inherently difficult be-
cause there is no strong temporal model to predict the ap-
pearance. For example, the colour constancy problem in
our tracking example can result in a wrong match and it
might be more serious in an environment with multiple il-
luminants. Moreover, the limited indoor space confines the
location of the camera which can in turn prevent using some
domain knowledge to resolve the matching ambiguity such
as ground plane constraints or a world model of the tracking
environment.

To apply homography related to the topmost point for
matching subjects across cameras is restricted to people
with upright pose. At this moment, we use this method
when the image position of this point does not change sud-
denly assuming the person is in the same pose and the top
point of his/her head keeps lying on the same virtual plane.
We would like to be able to recognise the people’s poses in
order to apply this method more reliably. Another limita-
tion is that the position of the camera must be high enough
such that the homography does not degenerate as the plane
projected as a line.

From our experiments, we also found that wrong seg-
mentation, such as shadow, causes the system to fail. This
problem can cause the system match wrong people. It also
can cause the system to miss some people or cause a false
alarm. This problem can be alleviated by using multiple
cameras. For example, the false target can be “deactivated”
by using multiple cameras since the shadow might not be
imaged in the other cameras. This is one of the advan-
tages of using a multi-camera system: the system has more
chances of obtaining unambiguous information.
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