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Abstract to find since different image features seem to be relevant at

different poses. For example, the shape of a silhouette helps

Visual perception of facesisinvariant under many trans- distinguish poses between 3/4 view and profile view (see the
formations, perhaps the most problematic of which is pose last 3 frames in Figure 1) but is not of much relevance in dis-
change (face rotating in depth). We use a variation of Ga- tinguishing poses between frontal view and 3/4 view (see the

bor wavelet transform (GWT) as a representation frame- first 3 frames in Figure 1). The reverse can be said about the
work for investigating face pose measurement. Dimension- relative position of the nose with regard to the eyes and the

ality reduction using principal components analysis (PCA) distance between the two eyes.

enables pose changes to be visualised as manifoldsin low-

dimensional subspacesand provides a useful mechanismfor
investigating these changes. The effectiveness of measur-
ing face pose with GWT representations was examined us- -

ing PCA. We discuss our experimental results and draw a
few preliminary conclusions.

Figure 1. A face rotates in depth.

A more plausible [4] and robust [3] approach for repre-
. senting face images of all poses requires the extraction of

1 Introduction pose relevant information in a manner which is somehow
holistic and independent of any judgement of specific fea-

Techniques for computer vision-based automated facetures. However, this does not necessarily mean exhaustive
recognition can be largely divided into three categories: 3D representation. Appearance-based face recognition need not
model-based [2], 2D geometric feature-based [5, 7, 12], andrequire every view of every person to be stored. Rather, a
2D appearance-based matching [13, 20, 23]. We subscribecanonical view can be generalised from a range of views and
to the view that the appearance-based approach is moréhe pose sphere could be represented by only a few canon-
promising whilst neither 3D models nor 2D geometric fea- ical views [1, 4, 14, 21]. Itis unclear though how an im-
tures can be extracted and matched robustly under changingge representation can be chosen which would give the best
viewing conditions, in particular, face pose changes [3, 9, measurable pose distribution of faces.

26]. We use a Gabor wavelet transform to examine face repre-

Face models must exhibit invariance under changes insentation. This can be regarded as part of the normalisation
viewing conditions if robust recognition is to be performed. Process and allows us to elegantly obtain invariance under
Although it is possible that invariance under changes in il- scaling as well as changes in illumination conditions, skin
lumination, scale, translations and small rotations in the tone and hair colour. It is also used to investigate the role of
image-plane can be achieved through a procesermhal- locally oriented features at a range of spatial frequencies in
isation of face images, changes in face pose (rotation in Selecting face pose (see Figure 3). Although similar results
depth) cannot be easily “normalised”. A representation could be obtained with Gaussian derivative filters as used by

based on specific features for all face poses may be difficultRao and Ballard [23], the formulation of the GWT is better
unified and consequently more convenient to apply.

* This research was funded by EPSRC Grant No. GR/K44657 and EC
Grant No. CHRX-CT94-0636.



Principalcomponentanalysis(PCA) is widely usedfor
reducingthe dimensionalityof the representatiospacein
orderto enableefficientmatching[13]. Howeverfacesrep-
resentedy principalcomponentsresensitiveto illumina-
tion conditions,scale translationor rotationin the image-
plane.Whilst otherstudieshavebeenconcernedvith these
problemd6, 20], MuraseandNayar[18] haveusedtheprin-
cipal component®f manyviews of a singleobjectto visu-
alisethe high-dimensionamanifold describedoy changes
dueto rotationin depthandilluminationconditions.Theob-
ject’s posecouldthenbe determinedy its positionon this
manifold. We usePCA in a similar way to investigatethe
distributionof faceposein high-dimensionatepresentation
spaces.In particular we investigatewhetherGWT repre-
sentationsrehelpful for distinguishingooses.

2 GWT Face Representation

A Gaborwavelettransform(GWT) enableausto obtain
imagerepresentationshicharelocally normalisedn inten-
sity anddecomposeth spatialfrequencyandorientation.It
thusprovidesa mechanisnior obtaining(1) invarianceun-
derintensitytransformationglueto illumination, skin tone
andhair colour, (2) selectivityin scaleby providingapyra-
mid representatiogndmoreimportantlyfor ourstudies(3)
it permitsinvestigationinto therole of locally orientedfea-
tureswith regardto posechanges.
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Figure 2. GWT kernels for 4 orientations (only
real parts are shown).

We performa GWT of animageby filtering it with a
setof sinusoidallymodulatedGaussiarfunctionsof differ-
ent spatial frequenciesand orientations,known as Gabor
functions[8] (seeFigure 2). We usea schemeproposed
by Wurtz [26] in which convolutionswith Gaborkernels
areperformedefficiently in the Fourierdomain. In this ap-
proach,a singleGaborfunction (the motherwavelet)is pa-
rameterisedby avectorkz(’;;) , definingvariationsin scale
andorientation. ThenaGWT in [-7 < w = (¥) < 7] is
givenby [26]:

2 2 2 2 2
Firw) =exp (— %) —exp (— %)

Thesecondermresultsn “admissibility”i.e. zero-response
to spatiallyconstantntensity Figure2 showsGWT kernels
in theimagedomainat 4 orientationsvarying by 45° from
0° to 135°.

Figure 3. GWT faces are both scale and ori-
entation sensitive . The top row shows the 4
orientational responses at a low center fre-
quency whilst the middle and bottom rows
give responses from higher frequencies.

In our studies,the GWT usedwas parameterisethy 3
spatialfrequenciesand4 orientationsvarying by 45° from
0° to 135°. A GWT imagerepresentationvas comprised
of a setof 12 responsesAt lower frequenciesimagesare
“smoothed"to alargerextentresultingin lesssensitivityto
small translationsin the image-planeand greatercorrela-
tion betweemearbyimagesn asequenceHowever using
excessiveljow frequenciecouldresultin lossof relevant
spatialstructure(seeFigure3).

The real and imaginary parts of the kernel responses
oscillate with their characteristidrequencymaking them
highly sensitiveto image-plandranslationsand therefore
ill-suited to matching. This undesirableproperty can be
avoidedbytakingthemagnitudeof theresponsetherebyre-
movingphasednformation[25]. Figure4 showsanexample
of themagnitudeesponsesftheGWT. All theexperiments
donein this work arebasedn magnituderesponses.
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Figure 4. GWT magnitude responses of the
face image shown in Figure 3.

3 Face Pose Eigenspace

Given an n-framesequences =[Sy, Si, . .., Sn1] of a
headrotatingin depth,a PoseEigen-SpacdPES)canbe
calculatedoy applyingPCA to the setof n frames.Projec-
tion of eachframe onto the first few eigenvectoryields a
“low-dimensionalpatternvector’ representationln partic-
ular, projectiononto thefirst threeeigenvectorpermitsvi-
sualisatiorof the distributionof posedn therepresentation
spacegseeFigureb).
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Figure 5. The PES of a face sequence of 60
frames rotating from profile-to-pr ofile. Only
20 frames from the sequence are shown here.

The poseof a novel face image of the personcan be
estimatedby projectingit into this PES.For example,us-
ing Euclideandistancein the PES as an approximation
of Euclideandistancein the image space,the commonly
usedmethod=f minimisingthe sum-of-squared-diérerce
(SSD)or maximisingthecorrelationbetweenmagescanbe
efficiently approximatedy minimising Euclideandistance
in the PES[19].

4 Face Representationsfor PCA

It is perhapsnappropriateo performPCA onrepresen-
tationswhich arenot invariantto changesn viewing con-
ditions. We examinethreeformsof facerepresentationtor
PCA. They are (1) normalisedintensityfacesI, (2) GWT
facesR(I), and(3) compositeGWT facesG(I) (seeFig-
ure6).
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Figure 6. Left: a normalised intensity face I.
Centre: a GWT face R(I). Right: a composite
GWT face G(I) of equal dimensionality .

An imageis normalisedby subtractingthe meaninten-
sity anddividing by its standarddeviation. This corrected
variationsin overallillumination intensity cameragainand

imagingaperturé. A GWT face? R(I) is obtainedby su-
perimposingthe GWT responses.The resultis similar to
the original intensity image exceptthat intensity distribu-
tionsarelocally normalised. A compositeGWT faceG(I)
of equaldimensionalityto R(I) is formedby concatenating
four “oriented” 1/4 sizedGWT faces,eacha sub-sampled
(by afactorof four) Gaborrespons#o adifferentorientation
(seeFigure6). Now, a principal componentderivedfrom
this representatiosanbevisualisedasa composité‘eigen-
image” consistingof, four orientedsub-images.The mag-
nitudeof eachpixel in suchaneigen-images a measuref
thevariability of theresponsef oneGaborkernelcentrechat
the correspondingpositionin the originalimage. Themag-
nitudesof thefirst eigen-imagéndicatewhere in theimage-
planewhich orientationencodeghemostinformationabout
pose.

5 Experiments
5.1 DataPreparation

Two typesof imagesequenceavere capturedusing Dat-
acubehardware.Firstly, severalsequencesf headsrotat-
ing from profile-to-profile under different lighting condi-
tions were obtainedasoutputfrom a headtrackingsystem
describecelsewherd15, 16]. Thesewere 60 frameslong
andwereautomaticallynormalisedwith respecto transla-
tion and scaleby the tracker An examplecanbe seenin
Figure5. Secondlyasetof labelledsequencesf 12 people
wereobtainedundercontrolledconditionsin whichsubjects
wereaskedo look at markerson thewall positionedat an-
glesfrom 0° (frontalview) to 90° (right profile view) in 10°
increments Profile-to-profilesequenceweregeneratedy
mirroringthesequencesachlabelledsequenceherefore,
consistedof 19 framesof known pose. Figure 1 shows6
framesfrom sucha sequenceThe sequencewerecropped
manuallyand illumination varied betweensequencesAll
imageswveresub-sampledvith spatialsmoothingo 64 x 64
pixels.

In orderto measurahe effectsof pose,otherdegreesf
freedomsuchasimage-plandranslationandscalechanges
shouldberemoved.An importantpointto noteis thatrota-
tion of aheadresultsin ahorizontaltranslatiorof thefacein
theimage-planeThisraisegheproblemof howto alignim-
agesof differentposes Alignmentof facial featuregesults
in asequencén whichthe“centroid” of the headtranslates
horizontallyasthe headrotatesin depth. Alignmentbased
on establishingcorrespondencdsecomegproblematicdue
to occlusions. In the experimentsescribedhere,images

IThisis anapproximatiorsincefactorssuchasskintoneandhair colour
alsoinfluencethefirst andsecondnomentsof intensity

2A “GWT face’™like representatiorzould also be obtainedby using
symmetricfilters.



arealignedapproximatelyaroundthe visual centroidof the
head eitherautomaticallyby thetrackeror manuallyfor the
labelledsequences.

5.2 Pose Manifold of Face Sequences

Initially, n-framesequencew/ererepresentedsingim-
agesnormalisedfor overallintensity A PESwasthencal-
culatedby applyingPCAto thesetof n frames.Threeunla-
belledsequencesf thesamepersorunderdifferentlighting
conditionswereprojectedontothe poseeigenspacederived
from only one of thesesequencesPlottedon a 3D graph
in Figure7 aretheresulting3D patternvectors. Thethree
curvesform afairly smoothmanifoldparameterisetly pose
andillumination. In particular the 3rd PC seemdo capture
changegausedy lighting conditions.Thisis similarto the
manifoldsobtainedby Muraseand Nayar[18] for various
non-face3D objectsunderroboticallymanipulategoseand
illuminationconditions.In contrastthefacesequencegsed
herewereproduceddy anautomaticvisualtrackingsystem
with left, right andambientlighting. As aresult,the mani-
fold shownhereis lesssmoothyeflectingmorerealisticcon-
ditions.

left lighting <—
ambient lighting —+-
right lighting -&--

Figure 7. Manifold formed by three face se-
quences under diff erent lighting conditions
rotating from profile-to-pr ofile (—90° to +90°).

5.3 PESof Mean Intensity Faces

A straightforwardvayto deriveagenericPESis to usea
mearsequencé = (Iy, I1,. .., I, ;) formedbytakingthe
mearof normalisedntensityimagesateachposeangleover
manydifferentfacesequencesTheplot in Figure8 shows
the posedistribution of a meansequencdormed using 11
facesequencesf differentpeople.Also plottedarethepro-
jectionsinto this meanPESof a novelfacesequencanda

non-facesequencef a fan rotating similarly from profile-
to-profile. Now, the poseof thenovelfacesequenceanbe
estimatedimplyby findingthenearespointalongthemean
curve.Thisis anefficientapproximatiorto minimisingSSD
or maximisingcorrelationbetweera novelfaceandamean
faceof known pose.The distanceof the non-faceobjectto
thefacesin this PESis distinctivelylargefor mostposean-
gles.Furthermoreit is interestingto notethatwhile the 1st
PC separatethe left andright posesthe 2ndand3rd PCs
jointly discriminatebetweenposesfrom profile to frontal
viewsreasonablyvell. This canalsobe observedrom the
eigen-imageshownabovetheplot. It is worth pointingout
thatalthoughwedid notplot higherorderPCsiit is clearthat
the 4th and5th PCscapturefiner changesn poseangles.

mean face <—
novel face -+-
non-face -8--

Figure 8. (1) Top row: the first 5 PC's (PCs)
of the mean faces. (2) Plot: Projections onto
the first 3 PC’s of the mean face sequence, a
novel face sequence and a non-face object (a
fan) rotating from —90° to +90°.

54 PESof Mean GWT Faces

We alsoderiveda PESbasedon GWT face sequences.
Thesecondicturein Figure6 showsanexampleof aGWT
face. Similarly to the lastexperimentwe obtaineda mean
sequenceS, = (Ro, Ri,...,R,_1) by taking the mean
GWT faceat eachposeangleover 11 sequencesf differ-
ent people. Figure 9 showsthe posedistribution curve of
this meanGWT sequenceandthe projectionsof two GWT
facesequencemito this PES.Comparedvith the PESof the
meanintensityfaces the posedistributionsin both2ndand
3rd PCdimensionsaremorelinear. This maybedueto the
factthatthe GWT facesarelesssensitiveto changesn il-
luminationanddifferencesn local features However PES



of GWT facesis moresensitiveto translationsn theimage-
plane.

mean GWT face —<—
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Figure 9. Pose distrib ution curves of (1) the
mean GWT face representation of 11 face se-
quences (2)two test GWT face sequences. All
3 are projected into the mean GWT PES.

5,5 PESof Composite GWT Faces

We performedP CA similarly to thelasttwo experiments
with the compositeGWT representationHere,only a sin-
gle spatialfrequencywasusedto simplify thecomputation.
FigurelOshowshefirst5 principalcomponentsfthemean
compositeGWT sequence.lt is interestingto notice that
while thesub-imagef the1stPCcorrespondingo horizon-
tal orientationplaysanimportantrole in dividing the pose
anglesinto two groups,the sub-imageof the 1st PC corre-
spondingto vertical orientationhasrelatively little signifi-
cance. However vertical orientationbecomesa dominant
factorin separatingposeanglesin all the otherPCs. This
is dueto the fact thatall the sequencesisedin our exper
imentsare strictly basedon face rotation from profile-to-
profile. Thissuggestthatwhenfacesequencesontainpose
changesrisingfrom diagonalrotations,the sub-image®f
PCsthat correspondo 45° and135° orientationsmay be-
comemoresignificantin separatingposes.Figure 10 also
showsposedistributioncurvesin the PESof themeancom-
positeGWT faces.This plot reinforcesour observationse-
gardingthe eigen-images.Comparedto both PES of the
meanintensityandGWT facesthe posedistributioncurves
arewell linearised.As aresult,the poseanglesareclearly
divided into two groupsat the frontal view andare almost
symmetricallydistributedalongtwo lines,clearlyseparable
andeasilymeasurable.
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Figure 10. (1) The first 5 PC’s of the mean com-
posite sequence . The 4 sub-ima ges corre-
spond to Gabor responses at 0° (horizontal),
45°, 90° (vertical) and 135°. (2) Projections of
the mean composite GWT face sequence and
two test face sequences into the mean PES.

6 Conclusions

In this paper we addressedhe issue of measuring
face pose. We introduceda compositeface representation
schemebasedon a Gaborwavelettransformin order to
both normaliseintensity and scaleand to investigatethe
role of locally orientedfeaturesin regularisingposedistri-
butions.We usedposeeigenspacesasecon principalcom-
ponentanalysido represenandinterpretthedistributionof
posechange$rom continuoudacesequencesf rotationsin
depth.

In particular we haveshownthatposechange®f acon-
tinuousfacerotationin depthform a smoothcurvein pose
eigenspace.Whilst the first principal componentPC) of
this eigenspacdividesall posedrom profile-to-profileinto
two symmetricpartscentredatthefrontal view, theremain-
ing PCsdifferentiateposedetweerprofile to frontal views.
Thethird PCalsoseemso capturechangesn illumination.

Furthermorejt seemshat the posedistribution curves
of facesin the poseeigenspacare distinctively different
from thoseof non-faceobjects.AlthoughGWT representa-



tion reduceghe complexityof posedistributions,it is sen-
sitive to translationathangesn theimage-planeMore in-
terestinglythough thecomposit€sWT representatiogives
a highly linear posedistribution. It appearghatthe Gabor
kernelsof differentorientationplay somerolein “regularis-
ing” posedistributions. This is computationallyattractive
for determiningposesof novel faces. With further study
sucharepresentationouldbeusedo constructasimplebut
generidaceposeeigenspacehichin turncanbeusedo es-
timateposeof unknownfaces.Thiscanbedoneby project-
ing novelfaceimagesinto the eigenspacanddetermining
their positionsalongthe posedistributionmanifold by sim-
ply measuringeuclideandistanceo the manifold[18]. Al-
ternativelythemanifoldcouldbemodelledprobabilistically
by asetof covariancenatricesat differentposeseforebe-
ing usedo measurg@osedasedncomputingMahalonobis
distancq17, 24].

As a final note, it is worth mentioningthatin this pa-
per, poseestimationhasbeentreatedessentiallyas a pat-
tern recognitiontask. Thereclearly exist, however a va-
riety of spatialandtemporalcontextualcuessuchasbody
poseand continuity of posechangewhich could be used
[1, 10, 12, 22]. Thiswill be oneof the mainfocusesof our
futurework.
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