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Recognition of Scene Events Without Tracking
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Abstract We present a novel approach to behaviour recognition in visual surveillance under which
scene events and object behaviours are modelled as groups of affiliated autonomous events auto-
matically detected at the pixel-level using Pixel Change Histories (PCHs). The Expectation-Max-
imisation (EM) algorithm is employed to cluster these pixel-level autonomous events into semanti-
cally more meaningful blob-level scene events, with automatic model order selection using modified
Minimum Description Length (MDL). The method is computationally efficient allowing for real-
time performance with ease. Experiments are presented to demonstrate the effectiveness of recog-
nising such scene level events (and behaviours) automatically without matching object trajectories
and manual labelling.

Key words Autonomous event detection, behaviour profiling, expectation maximisation, modi-
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ectory matching

1 Problem statement

Understanding visual behaviour captured in CCTV footage is fundamental in visual
surveillance. We consider that visual behaviours of objects are underpinned by scene e-
vents which in turn are defined by groups of spatio-temporally affiliated pixel-level autono-
mous events-'. By autonomous events, we imply that both the number of these groups of
autonomous events and their whereabout in the scene should be automatically detected bot-
tom-up without top-down manual labelling using predefined hypotheses, as adopted by
most of the existing techniques.

Over the past decade, numerous efforts have been made to model object behav-

5

iours®®~*, Most of which heavily rely upon segmentation and tracking of objects in the
scenel® 1 This is due to the fact that visual behaviours have traditionally been modelled
through matching the trajectories of objects observed in a scene, either statically as tem-
plates or dynamically as state machines. The process relies critically on the accuracy and
consistency of object segmentation and tracking which are unfortunately often ill-posed in a
typical surveillance scenario due to the presence of multiple objects, occlusion, drastic
lighting change and discontinuous motion, all contributing to the fragmentation and incon-
sistent labelling of object trajectories.

More recently, several attempts have been made to circumvent the problems associat-
ed with the trajectory matching based approach for behaviour recognition. They include se-
L2:137and learning localised pixel-level scene change. In particu-
lar, object grouping and segmentation were avoided by either profiling behaviour based on

autonomous pixel-level eventst!'!*

[16]

mantical events correlation

or extracting features for the whole image based on pix-
el-level analysis However, these purely pixel-level based approaches can be sensitive to
noise due to the lack of modelling spatial correlations among neighbouring pixels. They
can also be computationally expensive due to the large number of events to be monitored
simultaneously.

To address this problem, we present in this work a method for learning higher-level
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scene events given pixel-level autonomous events but crucially without the need for matc-
hing object trajectories. In Section 2, Pixel Change History (PCH) is introduced for pixel-
level events detection. PCHs are computed as the local intensity temporal histories of indi-
vidual pixels. Significantly, it can be computed very efficiently in real-time compared to
other techniques such as multi-scale temporal wavelets'!®. PCHs are combined with an a-
daptive mixture background model to form a representation for detecting and classifying
pixel-level events. They also provide the basis for computing higher-level scene events
with clearer semantics. In Section 3, blob-level scene events are computed using unsuper-
vised clustering based on Expectation-Maximisation (EM) with automatic model order se-
lection using a modified Minimum Descriptive Length (MDL) criterion. Experiments are
presented in Section 4 to demonstrate that semantically more meaningful scene events can
be recognised consistently without matching object trajectories. Conclusions are drawn in
Section 5.

2  Detecting pixel-level autonomous events

Our aim here is to define a suitable multi-scale temporal representation that is capable
of distinguishing at the pixel level temporal scene change of different durations. Due to the
large number of pixel-level changes to be monitored in each image frame, the representa-
tion must also be computationally inexpensive for real-time performance. Temporal wave-
lets were adopted for such a multi-scale analysis'*®*’. However, the computational cost for
such multi-scale temporal wavelets at the pixel level is very expensive. Alternatively, Mo-
tion History Image (MHI) was introduced to detect visual changes by keeping a history of
change which decays over time. It has been used to build holistic motion templates for the
recognition of human movement"'”! and moving object tracking*!. An important advantage
of MHI is that although it is a representation of the history of pixel-level changes, only
one previous frame needs to be stored. It is also easy to implement with minimal additional
computational cost. However, at each pixel, explicit information about its past is mostly
lost when current change is updated to the model since a change occurring in the current
frame will make the MHI ‘jump’ to its maximal value. To overcome this problem, Pixel
Energy History was introduced to measure the mean magnitude of pixel-level temporal en-
ergy over a period of time defined by a backward window''. The size of the backward
window determines the number of frames Chistory) needed to be stored. However, this
approach suffers from sensitivity to noise and also being computationally expensive.

2.1 Computing pixel change history (PCH)

Here we propose a new representation, referred to as the Pixel Change History
(PCH), for multi-scale temporal pixel-level change detection based on the principles of
both Motion History Image and Pixel Signal Energy. It is important to point out that this
measurement is different from that computed by multi-scale spatio-temporal filtering wide-
ly adopted for estimating apparent image motion such as optic flow. No spatio-temporal
correspondence is established when computing a PCH for a pixel over time. More precise-
ly, the PCH of a pixel is computed as:

Jmin(P;,,(I,y,t— 1) +%5,255), if D(xoyst) =1

P..(x,y,t) =
11’1’18X<P;.T(Iy_yst7 1) 7@90>7
T

(@Y

otherwise

where P, (x,y,t) is the PCH for a pixel at (x,y), D(x,y,?) is a binary image indicating
the foreground region, ¢ is an accumulation factor and ¢ is a decay factor. When D(x,y,?)
=1, instead of jumping to the maximum value, the value of a PCH increases gradually
through the accumulation factor. When no significant pixel-level visual change is observed
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in the current frame, pixel (x,y) will be treated as part of background and the corre-
sponding pixel change history starts to decay. The speed of decay is controlled by the de-
cay factor . The accumulation factor and the decay factor give us the flexibility of charac-
terising the pixel-level change over time. In particular, large values of ¢ and ¢ imply that
the history of visual change at (x,y) is considered over a longer backward temporal win-
dow. In the meantime, the ratio between ¢ and r determines how much weight is put on
the recent change.

We consider that Motion History Image is a special case of PCHs in that a combined
PCHs of all the pixels over the image frames is equivalent to the Motion History Image of
the image sequence when ¢ is set to 1. Furthermore, similar to that of Pixel Signal Ener-
gy
change over time. In addition, however, it is capable of capturing higher order temporal
changes occurred at a pixel over time including speed, trend (uphill or downhill) and the
phase of a change.

2.2 Pixel-level events detection

The interpretation of scene level events (their semantics) that are associated with
meaningful object activities and behaviours largely depend on the context of the scene. We
ultimately wish to have a completely automated method to extract scene level semantics
from local pixel-level visual change. We begin by considering the problem of detecting and
differentiating pixel-level changes that are caused by scene events of significantly different
semantics. For example, in a busy scene in the public place such as in a supermarket, we

, a PCH also captures a zero order pixel-level change, i. e. the mean magnitude of

are interested in automatically detecting and classifying localised and persistent movement
of objects (e. g. people stop and browse) and changes to the background (e. g. the intro-
duction of new objects into the scene or the removal of existing objects from the scene).
To this end, let us first introduce the notion of pixel-level events and consider the roles of
adaptive Gaussian mixture background models and by computing PCHs.

Adaptive mixture background models are commonly used to memorise and maintain
the background color distribution™"****'. The major strength of such a model is its insensi-
tivity to persistent movements of background objects such as waving tree leaves. Howev-
er, an adaptive mixture background model cannot differentiate, although may still be able
to detect the presence of, pixel-level changes caused by different classes of scene events
with significantly different semantics. Pixel-level change can either be short term caused
by 1) constant moving objects such as the waving tree leaves, or median term caused by 2)
the introduction of novel dynamics (of moving object) or long term caused by 3) the intro-
duction of novel static objects into the scene, or 4) the removal of existing objects from the
scene. We consider that only median and long term changes are of semantical significance
and refer them as pixel-level events.

If the binary image D(x,y,t) in Eq. (1) above is given by the temporal difference be-
tween the current frame and the dynamic background maintained by an adaptive mixture
model, then a PCH based foreground model can be introduced to not only detect the medi-
an and long term pixel-level changes but also filter out the short term changes associated
with dynamic background. More precisely, we delimitate pixel-level events as foreground
pixels that satisfy:

P, . (x,y:t) > Ty (2)
where Ty is a threshold. We can further detect events that are associated median term
change if

| Iz, y,t) —I(x,y,t—1) | > Ty (3
where T, is a threshold. Events that do not satisfy the above condition are caused by long
term changes such as the introduction of static novel objects into the scene or the removal
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of existing objects from the scene. For example, a pixel-level event caused by a browsing
person and a pixel-level event caused by the removal of an object from a shelf in a shopping
mall may have very similar PCH value, but the former event satisfies Condition (3) above
while the latter does not, thus they are detected as different classes of events.

3 Recognising scene events
Recognition of scene level events for behaviour profiling has been attempted directly

based on pixel-level eventst',

However, the large number of events detected and the
noise sensitivity caused by ignoring spatial correlation of pixel-level events limit the suc-
cess of such an approach. To address this problem, we consider unsupervised clustering
(grouping) of pixel-level events not only according to spatial proximity but also by tempo-
ral correlation.
3.1 Grouping of pixel-level autonomous events

Let us first consider grouping pixel-level events spatially. The connected component
method is adopted to group the detected pixel-level events into blobs, represented by
bounding boxes. Small blobs are removed by a size filter. If pixel-level events refer to all
the foreground pixels, only those blobs with an average PCH (of the PCHs for all the pix-
els within each blob) larger than a threshold Ty will be considered as blob-level scene e-
vents and kept for further processing. Each blob-level scene event is given by a feature vector:

[x,y, w,h, R;,R,] 4)

where (x,y) is the central position of the corresponding bounding box in the image, (w,h) is
the bounding box dimension, R, represents the percentage of the bounding box occupied
by pixel-level events and R,, represents the percentage of those pixel-level events which
satisfy Condition (3).
3.2 Scene events recognition using unsupervised clustering

After blob-level (scene) events are recognised, behaviour profiling can be performed
by first clustering the events into different classes. Each class of blob-level event corre-
sponds to a significant phase (such as the starting or ending) of a higher-level activity. In
order to detect the presence of any meaningful events and their whereabout in the scene,
clustering are performed in a 6-D feature space given by the feature vector defined in (4).
Examples of this 6-D feature space are illustrated using the projection of the three largest
principal components shown in Fig. 3. Depending on the representation of events, different
unsupervised clustering methods can be employed. We adopt Expectation-Maximisation
(EM) with automatic model order selection using modified Minimum Description Length
(MDL) principle/**-2

MDL is employed to extend maximum likelihood estimation to the model order un-
known situation. Let us consider there are n independent training data {y,,**,y,}, be-

longing to class w and w={1,++,K}. The estimated model order K by astandard MDL al-
gorithm is given by

K= argmin{— PIEVICRRUNTS SPETES SIRED (5)
i—1
where f(yf/weé(K)) is the class-conditional density function, 0(K) are the mixture pa-
rameters estimated by a maximum likelihood algorithm such as EM and £(K) is the number
of parameters needed for a K-component mixture. If full covariance matrix is used, we have;
() = K—14 413K (6)

where d is the dimensionality of the feature space.
The first term in the bracket of Eq. (5) corresponds to the maximised likelihood,
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measuring the system entropy, while the second term measures the number of bits needed
to encode the model parameters, serving as a penalty term for very complex mixtures (i. e.
very large K). One major problem with the standard MDL lies on the fact that each com-
ponent in the mixture can only ‘see’ the m;n data (m; is the weight for the j, component)
belonging to it, instead of the whole dataset. We adopt a modified MDL measure"'”) with
the model order K estimated as:

Kln(n) 7

) ) B 2
i argmin{— Snf Gy, fwnbK)) + 5 nGn + 4534
i—1

The obtained parameters of the mixture model are used to classify blob-level scene events.
More specifically, each correspondent feature point is classified into a class so that the Ma-
halanobis distance between the feature point and the mean of the class cluster is minimal.

4 Experiments

Experiments were conducted on a simulated ‘shopping scenario” captured on a 20 mi-
nutes video at 25Hz. Some typical scenes and automatically detected pixel-level and scene
events are shown in Figure 1. The‘scene’ consists of a shop keeper sat behind a table on
the right side of the view. Drink cans were laid out on a display table. Shoppers entered
from the left and either browsed without paying or took a can and paid for it. An abnormal
behaviour involves taking a can and leaving without paying. The data used for this experi-
ment were sampled at 8 frames per second with total number of 5699 frames of images
sized 320X 240 pixels.

Fig. 1 Autonomous event detection in a simulated shopping scenario. The figures in the top

two rows from left to right, top to bottom are the typical scenes of the shopping sce-
nario, which were sampled from frame 110 to frame 330 of the 20 minutes video. The
figures in the third and the fourth rows are a number of autonomous events detected u-
sing Approach I and Approach II respectively. Pixel-level events that satisfied Condi-
tion (3) in Section 2. 2 were highlighted in white and those that did not were in grey.
Recognised blob-level scene events were indicated with bounding boxes
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Two different approaches adopted for autonomous events detection are referred as Ap-
proach I and Approach II respectively as follows. For Approach I, only those foreground
pixels that satisfy Condition (2) are detected as pixel-level events and all the blobs formed
are recognised as blob-level scene events. For Approach II, all the foreground pixels are
detected as pixel-level events and only those blobs with average Pixel Change History val-
ues larger than Ty are recognised as blob-level scene events. For the adaptive Gaussian
mixture background model, the parameters were set as: learning rate ¢ =0. 002, back-
ground model threshold T=0. 7, six Gaussian components were maintained and a diagonal
co-variance matrix was adopted. The parameters for pixel-level events detection were cho-
sen as {=12, r=10, Ty =180, Ty,=10 and T =100. Only those Blobs whose sizes were
larger than 40 were considered. It was observed that using both approaches, localised
movements such as “shopper paying” and the removal of background objects such as “can
taken” were recognised automatically as significant events from visual changes, whist the
occurrences of passing-by shoppers were ignored. For the whole 20 minutes scenario, 5019
and 4134 blob-level scene events were recognised using Approach I and Approach II re-
spectively. Some of the results from this events detection process are shown in Fig. 1. The
algorithm was run on an Athelon 1. 5G dual processor platform at an average speed of 6Hz
without optimisation.

Unsupervised learning was performed on the first 3000 frames, where 2459 events and
1922 events were recognised using Approach I and Approach II respectively. EM was em-
ployed to obtain the parameters of the mixture model. It was combined with a modified
MDL to determine the number of the classes of significant events in the scene and their
whereabout. Fig. 2 shows that 5 classes of events were automatically recognised unsuper-
vised using either Approach I or Approach II. For comparison, automatic model order se-
lection using standard MDL is also shown in Fig. 2. Five different event classes were auto-
matically learned in terms of their location and temporal order through unsupervised clus-
tering, but with manual labelling to “can taken”, “entering and leaving”, “shop keeper”,
“browsing” and “paying”.
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Fig.2  Automatic model order selection using MDL and modified MDL. Model orders were considered in
a range of (1,15)

A testing set was composed using the rest of the frames from the 20 minutes video.
The detected and classified autonomous events from this testing set were then projected
onto the three largest principal components of the 6-D feature space (shown in Fig. 3).
The spatial distributions of each class of events were illustrated by only showing their (x,
y) co-ordinates of the central position of the corresponding bounding boxes in Figs. 4 and 5.
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Fig. 3 Autonomous events detection and classification on the testing set
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Fig. 4 Classification of the testing set in the image space using Approach 1. From left to right, top to
bottom, the figures are: 2560 blob-level scene events recognised from the testing set, (among
which) 929 “can taken” events, 283 “entering and leaving” events, 293 “shop keeper” events,
522 “browsing” events and 533 “paying” events
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Fig. 5 Classification of the testing set in the image space using Approach II. From left to right, top to
bottom, the figures are: 2212 blob-level scene events recognised from the testing set, (among
which) 1116 “can taken” events, 33 “entering and leaving” events, 316 “shop keeper” events,
406 “browsing” events and 341 “paying” events

The learned mixture models were also utilised to recognise blob-level scene events on-
line. The computational cost added by recognition was neglectable and the algorithm still
ran at a speed of 6Hz. Although the parameters of mixture models were extracted from the
training set, they were used for recognising events both in the training set and the testing
set. For performance evaluation, the ground truth was labelled manually (see (a) and (b)
of Fig. 6). The events recognition results at each frame are shown in (¢), (d), (e) and (f)
of Fig. 6. To achieve a degree of robustness in events detection and classification, an event
of a particular class was considered as presence if it has been recognised over a number of
consecutive frames. Then, events were counted only once when they happened continu-
ously. The performance of our algorithm was measured using the detection rate and the
false detection, which is the number of results without corresponding ground truth, for
each class of event. Table 1 shows the results of autonomous events detection and classifi-
cation using both approaches.
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Fig. 6 Compare the ground truth with the recognised blob-level scene events. Each “can taken” event

was counted for 100 frames in the ground truth

Table 1 Events detection and recognition results. “N” stands for “number of events”
Testing set

Training set

Events Det. rate False det. Det. rate False det.
App. 1(%) App. 1IC%)  App.1 App. 11 N App. 1(%) App. 1IC%)  App.1 App. 11

Can taken 7 85.7 100 0 0 10 100 100 0 0

“nt. & lev. 18 66. 6 55.6 8 1 18 61.1 5.6 3 0

Shop keeper 12 75.0 66.7 1 0 12 33.3 50.0 1 1

Browsing 10 60.0 100 3 7 8 62.5 100 9 10

Paying 8 100 75.0 6 0 6 100 100 6 1

S Conclusions
Results shown in Table 1 illustrate that scene events of “can taken” and “paying”
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were recognised accurately using both approaches, as was “browsing” using Approach II.
The reason for the low recognition rate of “shop keeper” events was that the movements of
the shop keeper were frequently occluded by the shoppers. Some shoppers entered and left
the view without slowing down, thus no localised movement (median term change) was
recognised in the scene, which resulted in the poor recognition rate of “entering and leav-
ing”. Other errors were mainly in the recognition of “paying” and “browsing” events.
With Approach I, many “browsing” events were mistakenly recognised as “paying”, lead-
ing to low recognition rate for “browsing” and large number of false recognition for “pay-
ing”. With Approach II, the starting and ending phases of “Paying”, as well as some “en-
tering and Leaving” events were frequently recognised as “browsing”, leading to a large
number of false recognition of “browsing”. A fusion of the two approaches could give
more accurate recognition.

It was noticed that quite a lot of “paying” and “browsing” events were spatially very
close and featured similar movements. This will potentially pose a problem for the current
model. For example, when a shopper stands in front of the shop keeper, it is impossible to
tell whether he is going to pay or he is just browsing unless one takes into consideration
whether any drink can was taken a moment ago. Even when the shopper has a can in
hand, he still can walk back and continue browsing without paying. That is normal in any
real shopping scenario. Perhaps one should not expect the system to resolve this ambiguity
unless higher order spatio-temporal correlations among different classes of events can be
fully explored. These correlations could be both spatial and temporal. The explicit model-
ling of such correlations among different classes of scene events provides the means for au-
tomatic extraction of high level semantics. This is our ongoing work.

To summarise, Pixel Change History (PCH) has been introduced as an effective rep-
resentation for modelling autonomous visual events at the pixel-level. These pixel-level e-
vents are then used to automatically detect blob-level scene events. Our experiments show
that such blob-level scene events can be given semantically meaningful interpretations.
This is without the need for object trajectory matching. The work done so far only repre-
sents the first step toward a more comprehensive model for behaviour profiling and recog-
nition. Our future work will be focused on exploiting higher order spatio-temporal affilia-
tions among different classes of events for automatic extraction of higher-level scene se-
mantics based on autonomous pixel-level events.
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