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Abstract. Discovering rare categories and classifying new instances of
them is an important data mining issue in many fields, but fully super-
vised learning of a rare class classifier is prohibitively costly. There has
therefore been increasing interest both in active discovery: to identify
new classes quickly, and active learning: to train classifiers with mini-
mal supervision. Very few studies have attempted to jointly solve these
two inter-related tasks which occur together in practice. Optimizing both
rare class discovery and classification simultaneously with active learn-
ing is challenging because discovery and classification have conflicting
requirements in query criteria. In this paper we address these issues with
two contributions: a unified active learning model to jointly discover new
categories and learn to classify them; and a classifier combination algo-
rithm that switches generative and discriminative classifiers as learning
progresses. Extensive evaluation on several standard datasets demon-
strates the superiority of our approach over existing methods.

1 Introduction

Many real life problems are characterized by data distributed between vast yet
uninteresting background classes, and small rare classes of interesting instances
which should be identified. In astronomy, the vast majority of sky survey image
content is due to well understood phenomena, and only 0.001% of data is of inter-
est for astronomers to study [12]. In financial transaction monitoring, most are
ordinary but a few unusual ones indicate fraud and regulators would like to find
future instances. Computer network intrusion detection exhibits vast amounts
of normal user traffic, and a very few examples of malicious attacks [16]. Finally,
in computer vision based security surveillance of public spaces, observed activi-
ties are almost always people going about everyday behaviours, but very rarely
may be a dangerous or malicious activity of interest [19]. All of these classifi-
cation problems share two interesting properties: highly unbalanced frequencies
– the vast majority of data occurs in one or more background classes, while
the instances of interest for classification are much rarer; and unbalanced prior
supervision – the majority classes are typically known a priori, while the rare
classes are not. Classifying rare event instances rather than merely detecting any
rare event is crucial because different classes may warrant different responses,
for example due to different severity levels. In order to discover and learn to



classify the interesting rare classes, exhaustive labeling of a large dataset would
be required to ensure sufficient rare class coverage. However this is prohibitively
expensive when generating each label requires significant time of a human ex-
pert. Active learning strategies might be used to discover or train a classifier
with minimal label cost, but this is complicated by the dependence of classifier
learning on discovery: one needs examples of each class to train a classifier.

The problem of joint discovery and classification has received little atten-
tion despite its importance and broad relevance. The only existing attempt to
address this is based on simply applying schemes for discovery and classifier
learning sequentially or in fixed iteration [16]. Methods which treat discovery
and classification independently perform poorly due to making inefficient use
of data, (e.g., spending time on classifier learning is useless if the right classes
have not been discovered and vice-versa). Achieving the optimal balance is crit-
ical, but non-trivial given the conflict between discovery and learning criteria.
To address this, we build a generative-discriminative model pair [11,4] for com-
puting discovery and learning query criteria, and adaptively balance their use
based on joint discovery and classification performance. Depending on the ac-
tual supervision cost and sparsity of rare class examples, the quantity of labeled
data varies. Given the nature of data dependence in generative and discrimi-
native models [11], the ideal classifier also varies. As a second contribution, we
therefore address robustness to label quantity and introduce a classifier switch-
ing algorithm to optimize performance as data is accumulated. The result is a
framework which significantly and consistently outperforms existing methods at
the important task of discovery and classification of rare classes.

Related Work A common unsupervised approach to rare class detection is out-
lier detection: building an unconditional model of the data and flagging unlikely
instances. This has a few serious limitations: it does not classify; it fails with
non-separable data, where interesting classes are embedded in the majority dis-
tribution; and it does not exploit any supervision about flagged outliers, limiting
its accuracy – especially in distinguishing rare classes from noise.

Iterative active learning approaches are often used to learn a classifier with
minimal supervision [14]. Much of the active learning literature is concerned
with the relative merits of different query criteria. For example, querying points
that: are most uncertain [14]; reduce the version space [17]; or reduce direct
approximations of the generalization error [13]. Different criteria may be suited to
different datasets, e.g, uncertainty criteria are good to refine decision boundaries,
but can be fatal if the classes are non-separable (the most uncertain points may
be hopeless) or highly multi-modal. This has led to attempts to select dataset
specific criteria online [2]. All these approaches rely on classifiers, and do not
generally apply to scenarios in which the target classes are themselves unknown.

Recently, active learning has been applied to discovering rare classes using
e.g., likelihood [12] or gradient [9] criteria. Solving discovery and classification
problems together with active learning is challenging because for a single dataset,
good discovery and classification criteria are often completely different. Consider
the toy scenarios in Figure 1. Here the color indicates the true class, and the



symbol indicates the estimated class based on two initial labeled points (large
symbols). The black line indicates the initial decision boundary. In Figure 1(a) all
classes are known but the decision boundary needs refining. Likelihood sampling
(most unlikely point under the learned model) inefficiently builds a model of the
whole space (choosing first the points labeled L), while uncertainty sampling
selects points closest to the boundary (U symbols), leading to efficient refine-
ment. In Figure 1(b) only two classes are known. Uncertainty inefficiently queries
around the known decision boundary (choosing first the points U) without dis-
covering the new classes above. In contrast, these are the first places queried
by likelihood sampling (L symbols). Evidently, single-criterion approaches are
insufficient. Moreover, multiple criteria may be necessary for a single dataset at
different stages of learning, e.g., likelihood to detect new classes and uncertainty
to learn to classify them. A simple but inefficient approach [16] is to simply iterate
over criteria in fixed proportion. In contrast, our innovation is to adapt criteria
online so as to select the right strategy at each stage of learning, which can dra-
matically increase efficiency. Typically, “exploration” is automatically preferred
while there are easily discoverable classes, and “exploitation” to refine decision
boundaries when most classes have been discovered. This ultimately results in
better rare class detection performance than single objective, or non-adaptive
methods [16].

U U

L

L(a)

U

U

LL(b)

Fig. 1. Sample Problems.

Finally, there is the issue of what base classifier to use in the active learning
algorithm of choice. One can categorize classifiers into two broad categories: gen-
erative and discriminative. Discriminative models directly learn p(y|x) for class
y and data x. Generative models learn p(x, y) and compute p(y|x) via Bayes
rule. The importance of this for active learning is that for a given generative-
discriminative pair (in the sense of equivalent parametric form – such as naive
Bayes & logistic regression), generative classifiers typically perform better with
few training examples, while discriminative models are better asymptotically
[11]. The ideal classifier is therefore likely to be completely different early and
late in the active learning process. An automatic way to select the right classi-
fier online as more labels are obtained is therefore key. Existing active learning
work focuses on single generative [13] or discriminative [17] classifiers. We intro-
duce a novel algorithm to switch classifiers online as the active learning process
progresses in order to get the best of both worlds.



2 Adaptive Active Learning

2.1 Active Learning

In this paper we deal with pool-based uncertainty sampling and likelihood sam-
pling because of their computational efficiency and clearly complementary na-
ture. Our method can nevertheless be easily generalized to other criteria. We
consider a classification problem starting with many unlabeled instances U =
(x1, .., xn) and a small set of labeled instances L = ((x1, y1), .., (xm, ym)). L
does not include the full set of possible labels Y in advance. We wish to learn
the posterior conditional distribution p(y|x) so as to accurately classify the data
in U . Active learning proceeds by iteratively: i) training a classifier C on L; ii) us-
ing query function Q(C,L,U)→ i∗ to select unlabeled instances i∗ to be labeled
and iii) removing xi∗ from U and adding (xi∗ , yi∗) to L.

Query Criteria Perhaps the most commonly applied query criteria are uncer-
tainty sampling and variants [14]. The intuition is that if the current classification
of a point is highly uncertain, it should be informative to label. Uncertainty is
typically quantified by posterior entropy, which for binary classification reduces
to selecting the point whose posterior is closest to p(y|x) = 0.5. The posterior
p(y|x) of every point in U is evaluated and the uncertain points queried,

pu(i) ∝ exp

(
β
∑
yi

p(yi|xi) log p(yi|xi)

)
. (1)

Rather than selecting a single maxima, we exploit a normalized degree of pref-
erence pu(i) for every point i can be expressed by putting the entropy into a
Gibbs function (1). For non-probabilistic SVM classifiers, an approximation to
p(y|x) can be derived from the distance to the margin from each point [14].

A complementary query criteria is that of low likelihood p(x|y). Such points
are badly explained by the current model, and should therefore be informative
to label [12]. This may involve marginalizing over the class or selecting the
maximum likelihood label,

pl(i) ∝ exp
(
−βmax

yi

p(xi|yi)
)
. (2)

The uncertainty measure in (1) is in spirit discriminative (in focusing on
decision boundaries), although p(y|x) can obviously be realized by a generative
classifier. In contrast, the likelihood measure in (2) is intrinsically generative,
in that it requires a density model of each class y, rather than just the deci-
sion boundary. The uncertainty measure is generally unsuitable for finding new
classes, as it focuses on known decision boundaries, and the likelihood measure
is good at finding new classes, while being poorer at refining decision boundaries
between known classes (Figure 1). Note that the likelihood measure can still be
useful to improve known-class classification if the classes are multi-modal – it
will explore different modes. Our adaptation method will allow it to be used in
both ways. Next, we discuss specific parametric forms for our models.



2.2 Generative-Discriminative Model Pairs

We use a Gaussian mixture model (GMM) for the generative model and a sup-
port vector machine (SVM) for the discriminative model. These were chosen
because they may both be incrementally trained (for active learning efficiency),
and they are a complementary generative-discriminative pair in that (assuming
a radial basis SVM kernel) they have equivalent classes of decision boundaries
[4], but are optimized with very different criteria during learning.

Incremental GMM Estimation For online GMM learning, we use the incremental
agglomerative algorithm from [15]. To summarize the procedure, for the first n =
1..N training points observed with the same label y, {xn, y}Nn , we incrementally
build a model p(x|y) for y using kernel density estimation with Gaussian kernels
N (xn, Σ) and weight ωn = 1

n . d is the dimension of the data x.

p(x|y) =
1

(2π)d/2 |Σ|1/2
N∑
n=1

ωn exp−1
2
(
(x− xn)TΣ−1(x− xn)

)
. (3)

To bound the complexity, after some maximal number of Gaussians Nmax is
reached, merge two existing Gaussians i and j by moment matching [7].

ω(i+j) = ωi + ωj ,
µ(i+j) =

ωi
ω(i+j)

µi +
ωj

ω(i+j)
µj , (4)

Σ(i+j) =
ωi

ω(i+j)

(
Σi + (µi − µ(i+j))(µi − µ(i+j))T

)
+

ωj
ω(i+j)

(
Σj + (µj − µ(i+j))(µj − µ(i+j))T

)
. (5)

The components to merge are chosen by the selecting the pair of Gaussian kernels
(Gi, Gj) whose replacement G(i+j) is most similar, in terms of the Kullback-
Leibler divergence. Specifically, we minimize the cost Cij ,

Cij = ωiKL(Gi||G(i+j)) + ωjKL(Gj ||G(i+j)). (6)

Importantly for iterative active learning online, merging Gaussians and updating
the cost matrix requires constant O(Nmax) computation every iteration once the
initial cost matrix has been built. In contrast, learning a GMM with latent vari-
ables requires multiple expensive O(n) expectation-maximization iterations [12].
The initial covariance parameter Σ is assumed uniform diagonal Σ = Iσ2, and
is estimated a priori by leave-one-out cross validation on the (large) unlabeled
dataset U :

σ̂ = argmax
σ

∏
n∈U

σ−
d
2

∑
x 6=xn

exp− 1
2σ2

(x− xn)2

 . (7)

Given the learned models p(x|y), we can classify ŷ ← fgmm(x), where



fgmm(x) = argmax
y

p(y|x), p(y|x)∝
∑
i

wiN (x;µi,y, Σi,y)p(y). (8)

SVM We use a standard SVM approach with RBF kernels, treating multi-class
classification as a set of 1-vs-1 decisions, for which the decision rule [4] is given
(by an equivalent form to (8)) as

fsvm(x) = argmax
y

 ∑
vi∈SVy

αkiN (x;vi) + αk0

 , (9)

and p(y|x) can be computed via an optimization based on the binary posterior
estimates [18].

2.3 Combining Active Query Criteria

Given the generative GMM and discriminative SVM models defined in Sec-
tion 2.2, and their respective likelihood and uncertainty query criteria defined
in Section 2.1, our first concern is how to adaptively combine the query criteria
online for discovery and classification. Our algorithm involves probabilistically
selecting a query criteria Qk according to some weights w (k ∼ Multi(w)) and
then sampling the query point from the distribution i∗ ∼ pk(i) ((1) or (2)).1
The weights w will be adapted based on the discovery and classification perfor-
mance φ of our active learner at each iteration. In an active learning context,
[2] shows that because labels are few and biased, cross-validation is a poor way
to assess classification performance, and suggest the unsupervised measure of
binary classification entropy (CE) on the unlabeled set U instead. This is espe-
cially the case in the rare class context where there is often only one example of
a given class, so cross-validation is not well defined. To overcome this problem,
we generalize CE to multi-class entropy (MCE) of the classifier f(x) and take it
as our indication of classification performance,

H = −
ny∑
y=1

∑
i I(f(xi) = y)
|U|

logny

∑
i I(f(xi) = y)
|U|

. (10)

Here I is the indicator function that returns 1 if its argument is true, and ny
is the number of classes observed so far. Importantly, we explicitly reward the
discovery of new classes to jointly optimize classification and discovery. We define
overall active learning performance φt(i) upon querying point i at time t as,
1 We choose method because each criterion has very different “reasons” for its pref-
erence. An alternative is querying a product or mean [2] of the criteria. That risks
querying a merely moderately unlikely and uncertain point – neither outlying nor
on a decision boundary – which is useless for either classification or discovery.



φt(i) = αI(yi /∈ L) + (1− α)
(
(eHt − eHt−1)− (1− e)

)
/(2e− 2). (11)

The first right hand term above rewards discovery of a new class, and the second
term rewards an increase in MCE (as an estimate of classification accuracy) after
labeling point i at time t. The constants (1− e) and (2e− 2) ensure the second
term lies between 0 and 1. The parameter α is the mixing prior for discovery
vs. classification. Given this performance measure, we define an update for the
future weight wt+1 of each active criterion k,

wt+1,k(q) ∝ λwt,k + (1− λ)φt(i)
pk(i)
p(i)

+ ε. (12)

Here we define an exponential decay (first term) of the weight in favor
of (second term) the current performance φ weighted by how strongly crite-
ria k recommended the chosen point i, compared to the joint recommendation
p(i) =

∑
k pk(i). λ is the forgetting factor. The third term encourages exploration

by diffusing the weights so every criterion is tried occasionally. In summary, this
approach adaptively selects more frequently those criteria that have been suc-
cessful at discovering new classes and/or increasing MCE, thereby optimizing
both discovery and classification accuracy.

2.4 Adaptive Selection of Classifiers

As discussed in Section 1, although we broadly expect the generative GMM clas-
sifier to have better initial performance, and the discriminative SVM classifier
to have better asymptotic performance, the ideal classifier will vary with dataset
and active learning iteration. The remaining question is how to combine these
classifiers [10] online for best performance given any specific supervision budget.
Cross-validation to determine reliability is infeasible because of lack of data;
however we can again resort to the MCE over the training set U (10). In our ex-
perience, MCE is indeed indicative of generalization performance, but relatively
crudely and non-linearly so. This makes approaches based on MCE weighted
posterior fusion unreliable. We therefore choose a simpler but more reliable ap-
proach which switches the final classifier at the end of each iteration to the one
with higher MCE, aiming to perform as well as the better classifier for any label
budget. Additionally, the process of multi-class posterior estimation for SVMs
[18] requires cross-validation and is inaccurate with limited data. To compute
the uncertainty criterion (1) at each iteration, we therefore use posterior of the
classifier determined to be more reliable by MCE. This ensures that uncertainty
sampling is as accurate as possible in both low and high data contexts.

Summary Algorithm 1 summarizes our approach. There are four parameters:
Gibbs parameter β, discovery vs. classification prior α, forgetting rate λ and
exploring rate ε. None of these were tuned; we set them all crudely to intuitive
values for all experiments, β = 100, α = 0.5, λ = 0.9 and ε = 0.01. The GMM
and SVM classifiers both have regularization hyperparameters Nmax and (C, γ).
These were not optimized, but set at standard valuesNmax = 32, C = 1, γ = 1/d.



Algorithm 1 Integrated Active Learning for Discovery and Classification
Active Learning
Input: Labeled L and unlabeled U data. Classifiers C, query criteria Qk, weights w.
1. Build unconditional GMM from L ∪ U (3)-(5)
2. Estimate σ by cross-validation (7)
3. Train initial GMM fgmm and SVM fsvm classifiers on L using σ

Repeat as training budget allows:
1. Compute query criteria pu(i) (1) and pl(i) (2)
2. Sample query criteria to use k ∼ Multi(w)
3. Query point i∗ ∼ pk(i), add (xi∗ , yi∗) to L
4. Update classifiers fgmm and fsvm with point i∗ (8) and (9)
5. Compute multi-class classification entropies Hgmm and Hsvm (10)
6. Update query criteria weights w (11) and (12)
7. If Hgmm > Hsvm: select classifier fgmm(x), Else: select fsvm(x)

Testing
Input: Testing samples U∗, selected classifier c.
1. Classify x ∈ U∗ with fc(x) ((8) or (9))

3 Experiments

Evaluation Procedure We tested our method on 7 rare class datasets from the
UCI repository [1] and on the CASIA gait dataset [20], for which we addressed
the image viewpoint recognition problem. We unbalanced the CASIA dataset by
sampling training classes in geometric proportion. In each case we labeled one
point from the largest class and the goal was to discover and learn to classify
the remaining classes. Table 1 summarizes the properties of each dataset. Per-
formance was evaluated at each iteration by: i) the number of distinct classes
discovered and ii) the average classification accuracy over all classes. This accu-
racy measure weights the ability to classify rare classes equally with the majority
class despite the fewer rare class points. Moreover, it means that undiscovered
rare classes automatically penalize accuracy. Accuracy was evaluated by 2-fold
cross-validation, averaged over 25 runs from random initial conditions.

Comparative Evaluations We compared the following methods: S/R: A baseline
SVM classifier making random queries. G/G: GMM classification with GMM
likelihood criterion (2). S/S: SVM classifier with SVM uncertainty criterion (1).
S/GSmix: SVM classifier alternating GMM likelihood and SVM uncertainty
queries (corresponding to [16]). S/GSonline: SVM classifier fusing GMM like-
lihood & SVM uncertainty criteria by the method in [2]. S/GSadapt: SVM
classification with our adaptive fusion of GMM likelihood & SVM uncertainty
criteria (10)-(12). GSsw/GSadapt: Our full model including online switching
of GMM and SVM classifiers, as detailed in Algorithm 1.

Shuttle (Figure 2(a)). Our methods S/GSadapt (cyan) and GSsw/GSadapt
(red), exploit likelihood sampling early for fast discovery, and hence early classi-



fication accuracy. (We also outperform the gradient and EM based active discov-
ery models in [9] and [12].) Our adaptive models switch to uncertainty sampling
later on, and hence achieve higher asymptotic accuracy than the pure likelihood
based G/G method. Figure 2(c) illustrates this process via the query criteria
weighting (12) for a typical run. The likelihood criterion discovers a new class
early, leading to higher weight (11) and rapid discovery of the remaining classes.
After 50 iterations, with no new classes to discover, uncertainty criteria obtains
greater reward (11) and dominates, efficiently refining classification performance.

Thyroid (Figure 2(b)). Our GSsw/GSadapt model (red) is the strongest
overall classifier: it matches the initially superior performance of the G/G likelihood-
based model (green), but later achieves the asymptotic performance of the SVM
classifier based models. This is because of our classifier switching innovation (Sec-
tion 2.4). Figure 2(d) illustrates switching via the average (training) classification
entropy and (testing) classification accuracy of each of the classifiers composing
GSsw/GSadapt. The GMM classifier entropy (black dots) is higher than the
SVM entropy (blue dots) for the first 25 iterations. This is approximately the
period over which the GMM classifier (black line) has better performance than
the SVM classifier (blue line), so switching classifier on training entropy allows
the classifier pair (green dashes) to always perform as well as the best classifier
for each iteration.

Data N d Nc S% L%
Ecoli 336 7 8 1.5% 42%

PageBlock 5473 10 5 .5% 90%
Glass 214 10 6 4% 36%

Covertype 10000 10 7 3.6% 25%
Shuttle 10000 9 7 .01% 78%
Thyroid 3772 22 3 2.5% 92%
KDD99 50000 23 15 .04% 51%
Gait view 2353 25 9 3% 49%

Table 1. Dataset properties. Number of
items N, classes Nc, dimensions d. Small-
est and largest class proportions S/L.

Data G/G S/GSmix S/GSad GSsw/GSad
EC 59 60 60 62
PB 53 57 58 59
GL 63 55 57 64
CT 41 39 43 46
SH 40 39 42 43
TH 50 55 56 59
KD 41 23 54 59
GA 38 31 49 57

Table 2. Classification performance sum-
mary in terms of area under classification
curve.

Glass (Figure 2(e)). GSsw/GSadapt again performs best by switching to
match the good initial performance of the GMM classifier and asymptotic per-
formance of the SVM. Note the dramatic improvement over the SVM models
in the first 50 iterations. Pageblocks (Figure 2(f)). The SVM-based models
outperform G/G at most iterations. Our GSsw/GSadapt correctly selects the
SVM classifier throughout. Gait view (Figure 2(g)). The majority class con-
tains outliers, so likelihood criteria is unusually weak at discovery. Additionally
for this data SVM performance is generally poor, especially in early iterations.
GSsw/GSadapt adapts impressively to this dataset in two ways enabled by our
contributions: exploiting uncertainty sampling criteria extensively and switching
to predicting using the GMM classifier.
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Fig. 2. (a) Shuttle and (b) Thyroid dataset performance. (c) Shuttle criteria adapta-
tion, (d) Thyroid entropy based classifier switching. (e) Glass, (f) Pageblocks and (g)
Gait view dataset performance.

In summary the G/G method (likelihood criterion) was usually the most
efficient at discovering classes as expected. However, it was usually asymptoti-
cally weaker at classifying new instances. This is because generative model mis-
specification tends to cost more with increasing amounts of data [11]. S/S, (un-
certainty criterion), was general poor at discovery (and hence classification). Al-
ternating between likelihood and uncertainty sampling, S/GSmix (corresponding
to [16]) did a fair job of both discovery and classification, but under-performed
our adaptive models due to its inflexibility. S/GSonline (corresponding to [2])
was better than random or S/S, but was not the quickest learner. Our first model
S/GSadapt, which solely adapted the multiple active query criteria, was com-
petitive at discovery, but sometimes not the best at classification in early phases
with very little data – due to exclusively using the discriminative SVM classifier.
Finally, by exploiting generative-discriminative classifier switching, our complete
GSsw/GSadapt model was generally the best classifier over all stages of learn-
ing. Table 2 quantitatively summarizes the performance of the most competitive
models for all datasets in terms of area under the classification curve.

4 Conclusion

Summary We highlighted active classifier learning with a priori unknown rare
classes as an under-studied but broadly relevant and important problem. To
solve joint rare class discovery and classification, we proposed a new framework



to adapt both active query criteria and classifier. To adaptively switch gen-
erative and discriminative classifiers online we introduced MCE; and to adapt
query criteria we exploited a joint reward signal of new class discovery and MCE.
In adapting to each dataset and online as data is obtained, our model signifi-
cantly outperformed contemporary alternatives on eight standard datasets. Our
approach will be of great practical value for many problems.

Discussion A related area of research to our present work is that of learning
from imbalanced data [8] which aims to learn classifiers for classes with imbal-
anced distributions, while avoiding the pitfall of simply classifying everything
as the majority class. One strategy to achieve this is uncertainty based active
learning [6], which works because the distribution around the class boundaries is
less imbalanced than the whole dataset. Our task is also an imbalanced learning
problem, but more general in that the rare classes must also be discovered. We
succeed in learning from imbalanced distributions via our use of uncertainty sam-
pling, so in that sense our method generalizes [6]. Although our approach lacks
the theoretical bounds of the fusion method in [2], we find it more compelling for
various reasons: it addresses a very practical and previously unaddressed prob-
lem of learning to discover new classes and find new instances of them by jointly
optimizing searching for new classes and refining their decision boundaries. It
adapts based on the current state of the learning process, i.e., early on, class
finding via likelihood may be more appropriate, and later on boundary refine-
ment via uncertainty. In contrast [2] solely optimises classification accuracy and
is not directly applicable to discovery. [5] and [3] address the fusion of uncertainty
and density (to avoid outliers) criteria for classifier learning (not discovery). [5]
adapts between density weighted and unweighted uncertainty sampling based on
their expected future error. This is different to our situation because there is no
meaningful notion of future error when an unknown number of classes remain
to be discovered. [3] samples from a weighted sum of density and uncertainty
criteria. This is less powerful than our approach because it does not adapt online
based on the performance of each criteria. Importantly, both [5] and [3] prefer
high density points; while for rare class discovery we require the opposite – low
likelihood. In comparison to other active rare class discovery work, our frame-
work generalizes [12], (which exclusively uses generative models and likelihood
criteria) to using more criteria and adapting between them. [9] focuses on a dif-
ferent active discovery intuition, using local gradient to discover non-separable
rare classes. We derived an analogous query criterion based on GMM local gra-
dient. It was generally weaker than likelihood-based discovery (and was hence
adapted downward in our framework) for our datasets, so we do not report on it
here. Unlike our work here, [5,12,9] all also rely on the very strong assumption
that the user at least specifies the number of classes in advance. Finally, the
only other work of which we are aware which addresses both discovery and clas-
sification is [16]. This uses a fixed classifier and non-adaptively iterates between
discovery and uncertainty criteria (corresponding to our S/GSmix condition). In
contrast, our results have shown that our switching classifier and adaptive query
criteria provide compelling benefit for discovery and classification.



Future Work There are various interesting questions for future research including
and how to create tighter coupling between the generative and discriminative
components [4], and generalizing our ideas to stream based active learning, which
is a more natural setting for some practical problems.
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