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Abstract

Methods were investigated for estimating the poses of human faces undergoing large rotations in depth.
Dimensionality reduction using principal components analysis enabled pose changes to be visualised as
manifolds in low-dimensional subspaces and provided a useful mechanism for investigating these changes.
Appearance-based matching using Gabor wavelets was developed for real-time face tracking and pose
estimation. A real-time Gabor wavelet projection was implemented using a Datacube MaxVideo 250

whilst an alternative system for real-time pose estimation used only standard PC hardware.
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I. INTRODUCTION

View-based object representations using sets of 2D views rather than explicit 3D models are
becoming increasingly attractive for computer vision. The approach is motivated on psychophys-
ical, neurobiological [1], [2] and computational grounds. Its popularity is partly due to the fact
that computation can be made simple by avoiding the need to build 3D models or to perform
explicit 3D reconstruction. This “simplicity” can also facilitate the engineering of real-time sys-
tems for tracking and analysis of complex 3D objects. In addition, view-based representations
do not directly encode prior knowledge of 3D shape. An important consequence is that they can
be learned directly from a (possibly labelled) set of images. In this paper, the objects of interest
are human faces. Although face detection and recognition have been widely studied, faces are
usually constrained to frontal or near-frontal views. A human head rotating in depth (out of
the image-plane) induces non-linear transformations in the projected image of the face. Facial
features become occluded and the outline of the face alters its shape causing interference with
the background. Pose estimation is therefore a difficult task.

This paper is concerned with real-time pose estimation using view-based representation and
appearance-based correspondence for matching faces in the presence of such non-linear transfor-
mations. A real-time pose estimator can be used to drive graphical models (avatars) for applica-
tions such as virtual teleconferencing. It can also be used to index a more detailed view-specific
representation for identity recognition and expression analysis. In addition, pose prediction is

useful for overcoming display-lags in real-time interactive and visual communication applications.



Two real-time systems are presented in this work. The first uses specialised hardware (a Dat-
acube MaxVideo 250) to implement an approximation to a Gabor wavelet projection (GWP).
The second performs face tracking and pose estimation using only a standard PC and a low-end
frame grabber. Eye features were used to align views across rotations in depth by exploiting
facial symmetry. Appearance-based matching was used to perform tracking and pose estimation.

In the next section, the issue of alignment in a view-based representation is addressed. The
problem of face tracking and pose estimation is then defined in more detail in section IIT where
some previously suggested methods are also reviewed. Section IV describes the use of princi-
pal components analysis (PCA) to examine face pose distributions. In section V, the GWP is
described for appearance-based correspondence and the resulting pose transformations are ex-
amined using PCA in section VI. Section VII describes a real-time pose estimator. Specialised
hardware was used to implement an approximate GWP. An alternative system used only stan-
dard PC hardware to perform face tracking and pose estimation for a virtual teleconferencing

application. Conclusions are drawn in section VIII.

II. VIEW ALIGNMENT: FEATURE-BASED VERSUS APPEARANCE-BASED CORRESPONDENCE

Alignment is crucial for a view-based representation. This can be achieved by establishing
either feature-based or appearance-based correspondence. In theory, a view-based representation
consists of a linear vector space in which each view is represented by a vector [3]. This is only
computationally valid if images are “aligned” in the vector space. Ideally, this can be achieved by
establishing exact correspondences between the pixels across the set of views [4]. However, dense
correspondences are difficult to estimate and rotations in depth result in self-occlusions which
prohibit complete sets of image correspondences from being established. Such an approach suffers
from similar computational difficulties to the establishment of “morph fields” [5]. In practice,
rotation in depth forms non-linear manifolds which can be approximated locally as linear vector
spaces [6]. Alternatively, correspondences can be established for only a restricted set of facial
features. For example, Gabor wavelets have been used to establish exact correspondences for
these facial feature points and this has enabled facial feature tracking [7]. Images can then be
“warped” to a canonical shape in order to separate shape (features’ image co-ordinates) and
texture (photometric properties) into separate linear vector spaces [6]. The shape can be used
to recover pose [8]. We refer to this form of alignment as feature-based.

An alternative approach uses “anchor” points such as the locations of the two eyes or simply
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the entire face as a “template”, to bring views into alignment by translation, rotation and
scaling in the image-plane [9]. This is computationally not only desirable for real-time but also
valid. Although correspondences established with such an appearance-based approach are only
approximate (since they are not point-wise), the vector space formed by faces at a specific view
is of low dimensionality [10], [11]. In other words, it is reasonable to assume that it is not
necessarily always the case that dense correspondence has to be established in order to obtain
the necessary alignment for view-based representation.

The methods described here do not attempt to establish exact correspondences. Instead,
an appearance-based approach has been adopted in which spatial filtering is used to construct
templates and to compensate for inexact correspondences. This filtering is based upon a GWP
and has several additional advantages. It is used to investigate the role of locally oriented features
at a range of spatial frequencies in selecting face pose. It also provides some invariance under
changes in illumination conditions, skin tone and hair colour. PCA was used to visualise the
manifold described by rotation in depth and to investigate the use of a GWP face representation
for distinguishing poses. The use of PCA here was analogous to the parametric eigenspaces of

Murase and Nayar [12].

II1. FACE TRACKING AND POSE ESTIMATION

Face tracking and pose estimation entail the recovery from each face image of a 6 dimensional
parametric vector P = (z,y,s,rs,7y,7;), where (z,y) is the image-plane position of the face, s
is its scale or projected size, (r4,7y) is the head’s rotation in depth and r, is the rotation of the
head in the image-plane. A “nodding” head undergoes x-axis rotation whilst a “shaking” head
undergoes y-axis rotation. The image transformations induced by changing the values of the pa-
rameters z, y, s and 7, can all be approximated using linear (affine) image-plane transformations.
However, as already noted, rotations in depth result in non-linear transformations.

Face detection is needed in order to bootstrap the tracking and pose estimation process. Meth-
ods for face detection usually assume frontal or near-frontal views and tend to be computationally
expensive. They have been based upon colour [13], silhouette, spatial configuration of facial fea-
tures and pattern recognition techniques (see [14] for references). Face detection is not the main
topic of this paper and the systems described here used an appearance-based matching scheme
for detection and tracking. Further references on methods for face processing can be found in

reviews [15], [16].
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A. Feature-based Correspondence

Matching methods which rely upon maintaining correspondences between facial features in-
evitably encounter problems due to self-occlusion, background interference and unreliable feature
tracking. They also require high-resolution images of the face.

Two types of feature-based matching are possible. The first kind relies upon the ability to
locate and track image features known to correspond to features on the face itself [17], [18], [19],
[20]. Self-occlusion restricts such methods to local regions of the view-sphere. The second type
also relies upon locating and tracking suitable features but these features are chosen based only
upon intensity characteristics and have no known conceptual meaning [21], [22], [23], [24]. Head
pose is usually estimated relative to the pose in the first frame of a sequence which is typically
a frontal view.

Gee and Cipolla used geometric face models for pose estimation [17], [18]. These methods
relied critically upon accurately detecting the correct facial features and it is not clear how
this was done. Kruger et al. used computationally intensive elastic graph matching to locate
and estimate the pose of faces [19]. The graphs consisted of connected nodes of Gabor filter
“jets”. Different graph models were needed for different poses, leading to a poorly integrated
and computationally expensive approach. Taylor et al. used “active shape models” to locate
faces and to model their variations [20]. If these statistical models are trained using suitable
data, modes of variation can be extracted which correspond to rotations in depth.

Azarbayejani et al. used an extended Kalman filter (EKF) to recover head pose from 10-
20 tracked feature points [21], [22]. A similar but computationally intensive approach used an
ellipsoidal model and a dense optical flow field [23]. Maurer et al. tracked feature points using
Gabor wavelets and phase-based displacement estimation [24]. In order to estimate head pose,
the tracked points were assumed to lie in a plane. It took several seconds per frame to perform
the wavelet convolutions. For similar purposes, phase-based displacement estimation using a
real-time GWP implementation (see section VII) can be combined with a shape model in order

to perform facial feature point tracking [7].

B. Appearance-based Correspondence

Although appearance-based matching has been used for both face recognition [25] and ex-

pression analysis [26] of frontal facial views, its use with rotation in depth is of more interest
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here. In large, there seems to be little reported work on pose estimation using appearance-based
techniques. Beymer used masked face templates at 15 different viewing angles to perform iden-
tity recognition [27]. Niyogi and Freeman used hierarchical indexing to match many intensity
image templates (40 x 30 pixels) of entire heads at different viewing angles [28]. Poses used were
ry = {—30°,0°,30°} and r, = {—40°,—-20°,0°,20°,40°}. Nearest-neighbour matching against a

uniform background resulted in the correct pose in 48% of the images tested.

IV. FACE POSE EIGENSPACE

In this section, a method for visualising the effects of face rotations in depth is described. In the
following sections, this technique is first used to investigate the role of GWP face representations.
This in turn motivates the design of the real-time systems for pose estimation.

Sequences of heads rotating from profile to profile under different lighting conditions were
obtained as output from a head tracking system described elsewhere [14], [29]. These were 60
frames long and were automatically normalised with respect to translation and scale by the
tracker. Each image was also normalised by subtracting its mean intensity and dividing by its
standard deviation. This corrected variations in overall illumination intensity, camera gain and
imaging aperture. (Factors such as skin tone and hair colour also influence the first and second
moments of intensity so this correction is only approximate). An example can be seen in Fig. 1.

Given an n-frame sequence of a head rotating in depth, a pose eigen-space (PES) can be
calculated using PCA as follows. Each image frame is of size m = px ¢ pixels and defines an
m-dimensional column vector x. The sequence defines a set of such vectors {x1,x2,...,Xp}.

Furthermore, the mean, u, and the covariance matrix, 3, of this image set are given by:
1 n
p==> % (1)
s

= i i — " 2)
=1

where X is an m xm matrix. Let uj, j = 1...n', be the n' eigenvectors of ¥ which have the
largest corresponding eigenvalues A;:

Euj = )\jUj (3)

The n' eigenvectors are the principal components and form the axes of a PES. In practice, the

covariance matrix X is singular since n < m. However, the n’ < n eigenvectors can be estimated
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A face pose distribution curve <—

Fig. 1. The pose eigen-space (PES) of a 60-frame sequence of a head rotating from profile to profile.

(Every 3rd frame is shown.)

using Singular Value Decomposition [30].
For an image, x, an n'-dimensional “pattern vector”, Q(x) = [wy ws ... wy]?, can be computed

by projection onto each of the eigenvectors u;:

wi=uj(x—p) j=1,...,n (4)

This pattern vector can be normalised by the eigenvalues in order to give the data equal variance
along each principal component axis:
w1 Wy Wp!

Qnorm(x) = |5~

T
=N )‘n,] (5)

A face sequence can thus be approximated by its pattern vectors and the first n’ eigenvectors and

eigenvalues. When n/ < 3 the pattern vectors can be plotted on a graph so that the distribution of
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poses in the representation space can be visualised. Fig. 1 shows an example sequence along with
a plot of its normalised 3D pattern vectors, Qnorm- The pose of a novel face image of the person
can be estimated by projecting it into this PES. In the case of unnormalised pattern vectors,
Euclidean distance in the PES is a least-squares approximation to Euclidean distance in the image
space. The commonly used methods of minimising the sum-of-squared-difference or maximising
the correlation between images can therefore be efficiently approximated by minimising Euclidean
distance in the PES [31]. If normalised pattern vectors are used, Euclidean distance in PES is
related to the Mahalanobis distance.

The following conclusions regarding pose distributions can be drawn from this PES analysis.
Projected normalised pattern vectors of head sequences under different lighting conditions form
smooth manifolds in a 3D PES. Fig. 2 shows three curves which form a fairly smooth manifold
parameterised by pose and illumination. In particular, the 3rd principal component seems to
capture changes caused by lighting conditions. This manifold is similar to those obtained by
Murase and Nayar who derived parametric eigenspaces from various non-face objects under
robotically manipulated pose and illumination conditions [12]. In contrast, the face sequences
used here were produced by an automatic visual tracking system with left, right and ambient

lighting. As a result, the manifold shown here is less smooth, reflecting more realistic conditions.

left lighting <—
ambient lighting —+-
right lighting -&--

Fig. 2. A manifold formed by face sequences under different lighting conditions rotating from profile-to-
profile (—=90° to +90°). The manifold is formed by three tracked head sequences of the same person
under different lighting conditions. The images were projected into a PES derived from only one of

these sequences.

Even after intensity normalisation, variations in illumination conditions are apparent. In the

next section, the use of Gabor wavelet projections is described for face representation. This helps
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to alleviate lighting effects and has several other benefits.

V. GWP FACE REPRESENTATION

A Gabor wavelet projection (GWP) yields images which are locally normalised in intensity
and decomposed in terms of spatial frequency and orientation. It thus provides a mechanism for
obtaining (a) some invariance under intensity transformations due to illumination, skin tone and
hair colour, (b) selectivity in scale by providing a pyramid representation, and more importantly
for our studies, (c) it permits investigation into the role of locally oriented features with regard
to pose changes.

In a scheme proposed by Wiirtz [32], a Gabor wavelet transform (GWT) can be performed by
convolutions with Gabor kernels in the Fourier domain. A single Gabor function (the mother
wavelet) is parameterised by a vector k= (112;), defining variations in spatial frequency and orien-

tation. Then a GWT in [-7 < w=(}) < 7] is given by:

0.2 _1.)\2 0.2 2 2
Ficlw) = exp (— %) ~exp (—%) 0

The second term in Equation (6) results in “admissibility” i.e. removal of the DC component.
A consequence of this is zero response to spatially constant intensity.

However, for computational efficiency using convolution hardware, approximated spatial con-
volution is more desirable. An approximate Gabor wavelet projection (GWP) of an image was
obtained by convolution with a set of 2D Gabor kernels, i.e. sinusoidally modulated 2D Gaus-
sian functions of different spatial frequencies and orientations [33]. Fig. 3 shows Gabor wavelet
kernels in the spatial domain at three frequencies and four orientations varying by 45° from 0°

to 135°. The kernels, which approximate Equation (6), are defined as follows:

Kodd(z,y) = Esin ge () (7)

o2 k)2

Keven(ma y) = f(COSQ - e_T)e_TQ(;

0 = [kx, kV2(x + ), ky, kvV2(y — )] (9)

2 = 22 + y2, o controls the width of the Gaussian envelope and k controls the spatial

where r
frequency. The extra Gaussian term in K., makes the kernel admissible.
Fig. 4 shows Gabor wavelets parameterised by 3 spatial frequencies and 4 orientations (0°,

45°, 90°, 135°) applied to a face image to yield a GWP. The real and imaginary parts of the
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Fig. 3. Gabor wavelet kernels at four orientations and three spatial frequencies. The imaginary (odd)

components appear on the left and the real (even) components on the right.

Fig. 4. A face image with GWP responses at three spatial frequencies and four orientations.

kernel responses oscillate with their characteristic frequency making them highly sensitive to

image-plane translations and therefore ill-suited to matching. This undesirable property can
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be avoided by taking the magnitude of the responses thereby removing phase information [34].
Fig. 5 shows the magnitude responses of the GWP to the face image of Fig. 4. Gabor magnitude
and phase images, Ginag and Gppg, are obtained from the even and odd convolution responses,

Geven and Gyq4, as follows.

Godd(wa y) = I(LE, y) * Kodd (10)

Geven(a:a y) = I(-Ta y) * Keyen (11)

Gmag(#,9) = \/(Goaa(z,9))? + (Geven(x,))? (12)
1 Godd(wa y)

Gpha(xay) = tan (13)

Geven(xay)
The Gabor phase responses rotate approximately with the spatial frequency making them

highly predictable and well suited to estimating feature displacement. Such a mechanism was
combined with a point distribution model of deformable shape to obtain robust facial feature
tracking [7]. However, in an appearance-based approach, inexact correspondences can be com-
pensated by ignoring the phase and considering only the magnitudes of the responses which tend
to vary smoothly over an image. The magnitude responses are used in the work described here.
At lower frequencies, faces were smoothed to a larger extent resulting in less sensitivity to small
translations in the image-plane and greater correlation between nearby images in a sequence.
However, using excessively low frequencies results in loss of relevant spatial structure (see the
first row in Fig. 5).

A GWP face G(x) is obtained by superimposing the GWP responses. The result is similar to
the original intensity image except that intensity distributions are locally normalised. (A “GWP
face”-like representation could also be obtained by using symmetric filters.) Furthermore, a
“composite” GWP face CG(x) of equal dimensionality to G(x) is formed by concatenating
four “oriented” 1/4 sized images, each a sub-sampled (by a factor of four) Gabor response to a
different orientation (see Fig. 6). In the next section, we describe the purpose and show the effect
of forming such a composite GWP face representation in understanding face pose distributions

in a PES.

VI. PoSE DISTRIBUTION OF FACES ROTATING IN DEPTH

The formation of a PES from a sequence of face images was described in Section IV. If the

images used are composite GWP faces, each eigenvector derived from this representation can be
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4 o ma

- s e - -~

Fig. 6. Left: a normalised intensity face I. Centre: a GWP face G(x). Right: a composite GWP face
CG(x) of equal dimensionality.

visualised as a composite eigen-image consisting of four oriented sub-images. The magnitude of
each pixel in such an eigen-image can be envisaged as a measure of the variability of the response
of one complex Gabor kernel centred at the corresponding position in the original image. In
particular, the magnitudes of the first eigen-image would indicate where in the image-plane
which orientations encode the most information about pose. This gives us a means to investigate

the role of locally oriented features in pose changes.

Here, PES manifolds are derived from GWP-face and composite GWP face images. These are

visually compared to those obtained using intensity image sequences in a 3D PES. Only a single
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spatial frequency was used for the GWP in order to simplify the computation.

A. Data Preparation

A set of pose-labelled face sequences of 12 people were obtained under controlled conditions
in which subjects were asked to look at markers on the wall positioned at angles from 0° (frontal
view) to 90° (right profile view) in 10° increments. Profile-to-profile sequences were generated by
mirroring the sequences so that each sequence consisted of 19 frames of known poses. Illumination
varied between sequences. All images were sub-sampled with smoothing to 64x64 pixels. Fig. 7

shows 5 frames from such a sequence.

Fig. 7. A head rotates in depth.

In order to measure the effects of pose change, other degrees of freedom such as image-plane
translations and scale changes are carefully removed by manually cropping the images. An
important point to note is that rotation of a head results in a horizontal translation of the face in
the image-plane. This makes the alignment of images of different poses rather difficult. Initially,
the approach of alignment by facial features was adopted. This can result in a sequence in which
the “centroid” of the head translates horizontally as the head rotates in depth. Alignment based
on establishing correspondences as discussed in Section IT becomes problematic due to occlusions.
For all the experiments described in this section, images were aligned approximately around the
visual centroid of the head, automatically for the tracked sequences and manually for the labelled

sequences.

B. PES of Intensity Faces

A generic PES was derived using a mean sequence, p = {X9,X1,...,Xp—1}, formed by taking
the mean normalised intensity image at each of n pose angles over many different face sequences.
The plot in Fig. 8 shows the pose distribution of a mean sequence formed using 11 face sequences

of different people. Also plotted are the projections into this mean PES of a face sequence of a
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novel person and a non-face sequence of a fan rotating similarly from profile-to-profile. Since the

faces were not perfectly symmetric, mirroring has caused a discontinuity at the frontal view.

mean face <—
novel face -+-

3rd PC non-face -8--

0 0
2ndPcOl g, , 01 1stPC

03 03

Fig. 8. (1) Plot: A 3D PES was formed from the mean face sequence. Pattern vectors were plotted for
the mean face sequence, a novel face sequence and a non-face object (a fan) rotating from —90° to

+90°. (2) Bottom row: the first 5 PC’s of the mean face sequence.

The following observations were made regarding this mean intensity PES. Whilst the 1st prin-
cipal component (PC) separates the left and right poses, the 2nd and 3rd PCs jointly discriminate
between poses from profile to frontal views reasonably well. This can also be observed from the
eigen-images shown beneath the plot. It is worth noticing that although higher order PCs have
not been plotted in this 3D PES, it is clear that the 4th and 5th PCs capture finer changes in
pose angle. In principle, the poses of all the frames of the novel face sequence can be computed
by finding the nearest point along the mean curve. This is an efficient approximation to minimis-
ing sum-of-squared-difference or maximising correlation between a novel face and a mean face of
known pose. For the same reason, the non-face object is distant from the face curves in the PES

for most poses.

C. PES of GWP Faces

In order to examine the effect of using GWP faces (see the second image in Fig. 6) on pose

distribution, a PES based on a mean GWP face sequence was derived. Similarly to the mean
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intensity PES, a mean GWP face sequence, p, = {80,81, - -,8n—1}, Was obtained by taking the
mean GWP face at each pose angle over 11 sequences of different people. Fig. 9 shows the pose
distribution curve of this mean GWP sequence and the projections of two different GWP face
sequences into this PES. One important observation is that compared with the mean intensity
PES shown in Fig. 8, the pose distributions in both 2nd and 3rd PC dimensions are more linear.
This may be due to the fact that the GWP faces are less sensitive to changes in illumination and
differences in local features. However, PES of GWP faces is more sensitive to translations in the

image-plane.

mean GWT face —<—
testface 1 —+-

3rd PC test face 2 -8--

w0
2nd PCOO.lo 0.1 1stPC

Fig. 9. Pose distribution curves of (1) the mean GWP face representation of 11 face sequences (2) two

test GWP face sequences. All 3 are projected into the mean GWP PES.

Although it is clear from those eigen-images shown in Fig. 8 that the 1st PC plays an important
role in dividing the pose sphere into two groups and that the subsequent PCs encode higher
frequency changes caused by pose variation, it is not clear what effect local oriented facial features
have on the pose distribution. In order to examine this issue, a mean composite GWP sequence,
Ky Was constructed similarly to p,. Fig. 10 shows the pose distribution curves in the PES of
this mean composite GWP face sequence. Compared to both the PES of the mean intensity
(Fig. 8) and the PES of GWP faces (Fig. 9), the pose distribution curves are well linearised. The
pose angles are symmetrically distributed along two lines, clearly separable and much easier to
measure. The discontinuity at the frontal view is due to the fact the sequences were formed by

mirroring images (see Section VI-A).
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mean composite GWT face <—
testface 1 —+-
test face 2 -8--

3rd PC

Fig. 10. Projections of the mean composite GWP face sequence and two test face sequences into the

mean PES.

VII. A REAL-TIME POSE ESTIMATOR

A real-time system for head pose estimation was developed based upon the findings on pose
distribution. The scenario considered is that of a user sitting in front of a monitor. The back-
ground is cluttered and may contain moving people and objects. The allowed range of head
rotations in depth should be at least those poses in which the user can see the monitor. Head
pose needs to be estimated to a precision which is perceptually acceptable to users envisaged
in a virtual teleconferencing environment. Users will usually already have been required to “log
in” to the computer system and the head tracker can take advantage of this by loading sepa-
rate models for each user. Under these conditions, a person-specific, appearance-based model
has been developed to obtain real-time performance with modest hardware (a 133MHz Pentium
PC). The output parameters P = (z,y, s, 73, 7y,7;) from the model have been used to drive an

avatar for use in a virtual teleconferencing application [9].

A. Real-time GWP

Firstly, an approximation to a GWP was implemented using specialised pipeline hardware
(a Datacube MaxVideo250) in order to achieve real-time performance. Fig. 11 illustrates this
implementation. Two real-time 8 x 8 convolver units and 8 convolution kernels were used: both
even and odd kernels at 4 orientations. All kernels were designed to be admissible (see Section V).
The even and odd responses were converted to magnitude and phase responses in hardware using
a look-up table (LUT). Different spatial frequencies were obtained by sub-sampling the image

prior to convolution. In this implementation, suitable parameters were found to be ¢ = 2.0,
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¢ =64 and k = > (see Equations (7) and (8)).

Spatial

Orientation Subsample/<-----
| frequency

Phase Amplitude

Fig. 11. Datacube implementation of GWP.

Secondly, an alternative system which performed all computation including the convolutions
in software was implemented on a 133MHz Pentium PC. In this case, real-time performance was
achieved by using 3 X 3 convolution kernels to obtain simple oriented responses. Monochrome
video input from a Matrox Meteor frame grabber was sub-sampled after Gaussian smoothing to
a resolution of 96 x 72 pixels. Performance without smoothing was unacceptable. System boot-
strapping and face tracking were performed using templates which were typically 25 x 30 pixels.
The use of such low resolution was motivated not solely by the need for real-time performance.
If adequate pose estimation is achievable at this resolution it would seem misguided to require
the processing of additional high-frequency information. The human visual system seems able

to satisfactorily estimate head pose at such low resolutions.

B. Face Tracking using Template Matching

Model face templates were designed so as to exclude the background to as great an extent as
possible without the need for specially shaped masks for each pose (cf. [27], [35]). The templates
contained most of the visible interior facial region. The hair was largely excluded in order to
avoid difficulties with unpredictable and changing hair-styles. Templates were of a fixed size in
order to facilitate the use of image interpolation techniques. Such techniques also require the
templates for the different poses to be spatially aligned both for reasons stated in Section IT and
in order to obtain a smooth manifold in image space. This alignment was achieved using the
eyes as “anchor” points.

A set of view-based model templates was obtained off-line. Firstly, a frontal view (r; = r, = 0)
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was captured interactively by specifying with a mouse the points on each eye nearest to the side of
the head: (Zieye, Yieye) and (Treye, Yreye). The width of all templates was set to w = Treye — Tieye
and the height to h = 1.2w. A rectangular face template was captured with upper-left vertex
at (Zieye; [Yreye — Yieye)/2 + 0.2h). Subsequent templates were captured by specifying with a
mouse the most extreme point on the eye nearest to occlusion by the head, (Zoce, Yocc), and then
capturing a template with an upper vertex at (Zocc, Yoce + 0.2h).

To bootstrap the system, a head was detected and tracked using normalised cross-correlation
with the view templates. Efficient hierarchical matching was performed using an image pyramid
as implemented in the Matrox Imaging Library [36]. The matching score r between an image

patch x and a template model m is given by:

R Mxm — Ux bm (14)
OxOm

The tracker was initially trained using raw intensity images and as expected performance was
found to degrade drastically after periods typically of minutes due to changes in illumination
since the camera was situated near an exterior window. However, the same system using filtered
images did not noticeably degrade over a period of several weeks. It is worth pointing out that
horizontally oriented kernels respond strongly to the mouth, nostril area, eyes and eyebrows.
The responses are most sensitive to x-axis head rotation and images filtered with these kernels
are therefore suited to estimating r,. Since these filters respond to the main facial features, they
are also useful for detecting and tracking the face. Vertically oriented kernels respond strongly
to the sides of the head and nose. Their response is sensitive to y-axis rotation making them

useful for estimating 7.

C. Temporal Continuity in Pose Estimation

Temporal continuity was exploited in order to restrict the space in which to search for the
best template match. In any given frame, the search was centred on the parameters P =
(x,y,8,7r5,7y,7,) predicted for that frame. P was defined in Section III. In the implementa-
tion described here, scale and image-plane rotation were assumed to be approximately con-
stant (s = C, r, = 0). The extent of the search space around P was initialised to Sg =
(dg,dy,0,04,6,,0). If no strong match was found in a frame, the search space was expanded:

S =S + (Ady, Ady,0,A0,,A0,,0). Whenever a strong match was found the search space was
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reinitialised: S = Sg. Suitable search parameters for the current implementation were found to
be d; =9, dy =6, Ady =2, Ady =1 and 8, = 0, = AO, = A, = 20°.

Only a subset of the templates was typically used in any given frame thereby increasing the
frame-rate and improving robustness. In general, increasing the number of templates used made
a false match more likely. However, decreasing the number of templates made finding no good
match a more probable outcome. The search parameters 6, and 6, were set to address this
trade-off.

A further trade-off exists in setting d; and d,. Large values slow down the achievable frame-rate
which in turn increases the visual motion between frames. Small values allow faster frame-rates
but might not allow the head to be found. In the simplest version of the system, the predicted
state P for frame ¢ was just the estimated state for frame ¢t — 1. This approach permitted
successful tracking.

The pose estimates obtained using nearest-neighbour template matching were imprecise due to
the coarse quantization of the view-sphere used. In addition, the nearest-neighbour template was
not always the template with the pose nearest to the current face pose. The pose estimates might
be improved by exploiting spatial continuity (see Section VII-G). However, temporal continuity
also provides a powerful constraint and can be easily exploited. A simple “moving average” filter

on the pose estimates r* had a significant effect on their perceptual acceptability:
r*(t)=1—-a)r(t)+ar*(t—1) (15)
where « is a constant (typically o = 0.5) and r(t) is the pose measured at time ¢.

D. Tracking ry

Vertically filtered templates proved useful for estimating y-axis rotation. A suitable interval
between templates was found to be 15° for such templates. It should be noted that the intervals
on the view-sphere given here are approximate. It is difficult to accurately label the head pose
without the use of a calibration method such as a Polhemus tracker. Subjects can be asked
to point their heads towards labelled points on the wall but such data labelling is always noisy.
Fig. 12 shows a set of 7 templates in the range +45° which were used to estimate r,. Fig. 13 shows
example frames during tracking and pose estimation using these templates. The estimation of
Ty 15 in good agreement with human perception and shows a significant amount of invariance to

Ty
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Fig. 12. Templates at 15° intervals used to estimate rotation about the y-axis. The template in the

centre is from a frontal view.

Fig. 13. Tracking and estimating y-axis rotation using the 7 templates of Fig. 12. The needle in the

upper-left corner of each image indicates the estimated head rotation.

E. Tracking ry

Horizontally filtered templates proved useful for estimating x-axis rotation. Fig. 14 shows 7
templates at intervals of 10°. Fig. 15 shows example frames from a head being tracked using
these templates. The estimates of r, are in good agreement with human perception and are
not adversely affected by small amounts of y-axis rotation. The last frame in Fig. 15 shows the
pose estimation breaking down for large r,. Certain facial expressions caused changes in pose
estimates. For example, lowering the eye-brows resulted in too large an estimate of r,. This
expression made the face appear foreshortened as if tilted backwards. Conversely, raising the
eyebrows often resulted in too small a value for r,. Human perception of r, may be susceptible

to similar effects.

Fig. 15. Tracking and estimating x-axis rotation using the 7 templates of Fig. 14. The last image shows

an example of the pose estimation breaking down under large y-axis rotation.

F. Simultaneous Tracking of (rg,ry)

Horizontally filtered templates were found to be suitable for tracking r, and r, simultaneously.

Typically, 11 or 15 templates were used (see Fig. 16). Temporal filtering of the pose estimates
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was needed to overcome the coarse quantization of the view-sphere and the occasional incorrect
match. Some example frames showing tracking using this technique are shown in Figs. 17 and

18.

Fig. 17. A head is tracked using templates filtered with a horizontally oriented kernel. The best matching

templates’ bounding boxes are shown overlaid on a filtered sequence.

Fig. 18. An unfiltered sequence is shown here for visualisation. The pin diagram indicates estimated

pose.

In order to track both r, and ry with good precision, the vertically and horizontally filtered
images can be combined to provide sensitivity to rotations around both the x and y axes. Two
ways in which to combine them are:

1. Both vertical and horizontal responses are used to perform matching and pose estimation in
each frame.

2. The vertical and horizontal responses are “interlaced” in time. Matching is performed using
vertical responses in the odd numbered frames and using the horizontal responses in the even
numbered frames.

The second approach was adopted for the PC platform. This combined the benefits of hori-
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zontal responses for face detection and x-axis rotation with those of vertical responses for y-axis
rotation. There was no loss of frame-rate. In the case of the Datacube implementation of a
GWP with multiple orientations, robustness can be improved by performing template matching

with responses at all orientations.

G. RBF networks for pose estimation

The template matching described so far measures the head pose (73, 7,) in a given frame using
nearest neighbour matching, i.e. the pose label associated with the best matching template is
used as the measurement. A more general method is to interpolate over the matching scores
of a set of templates. Radial basis function (RBF) networks provide one possible approach to
achieving this interpolation [37], [38].

Several RBF networks were trained and their ability to interpolate between templates of dif-
ferent head poses was investigated. Once a match was found for a view template in the current
image, an RBF network was applied to the matching image patch. Each hidden unit measured a
Gaussian weighted distance to a view template. The output layer was linear and its weights were
set using Singular Value Decomposition [38]. Network training was very fast (a few seconds).
However, no improvement could be demonstrated over the nearest neighbour “winner takes all”

method of pose estimation.

H. Driving an avatar

The pose estimates were used to drive a synthetic head model which rotated in depth around
its £ and y axes. The result was perceptually acceptable to the user, especially when pose
prediction was used to compensate for the time-delay between movement of the real head and

the synthetic head [9].

VIII. CONCLUSIONS

In this paper, the issue of measuring face pose of a moving head in real-time has been ad-
dressed. A composite face representation scheme based on a Gabor wavelet projection (GWP)
was introduced in order to both normalise intensity and scale and to investigate the role of lo-
cally oriented features in regularising pose distributions. Pose eigenspaces based on principal
components analysis were used to represent and interpret the distribution of pose changes from

continuous face sequences of rotations in depth. In particular, it was shown that pose changes
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of a continuous face rotation in depth form a smooth curve in pose eigenspace. Whilst the first
principal component (PC) of this eigenspace divides all poses from profile-to-profile into two
symmetric parts centred at the frontal view, the remaining PCs differentiate poses between pro-
file to frontal views. The third PC also seems to capture changes in illumination. Furthermore,
it seems that the pose distribution curves of faces in the pose eigenspace are distinctively dif-
ferent from those of non-face objects. Although GWP representation reduces the complexity of
pose distributions, it is sensitive to translational changes in the image-plane. More interestingly
though, the composite GWP representation gives a highly linear pose distribution. It appears
that the Gabor kernels of different orientation play some role in “regularising” pose distribu-
tions. This is computationally attractive for determining poses of novel faces. Based on these
findings, an appearance-based and computationally efficient model for tracking and estimating
the pose of a moving human head has been developed. Oriented spatial filters were used to
obtain robustness under changing illumination conditions and to improve pose estimation by
extracting directionally sensitive facial features. A set of face templates was used to sample the
view-sphere. Exploitation of temporal constraints provided robust tracking and pose estima-
tion with an accuracy which was shown to be perceptually acceptable for applications in virtual

teleconferencing.

There are several obvious ways in which the system could be extended in the future. Firstly,
it could be modified to cope with changes in scale. The area of the image to be searched would
be re-sampled at different scales prior to applying the oriented spatial filters. The same set of
view-templates could then be used to search at a range of scales. This scale range would also be

restricted using temporal continuity.

Secondly, given the estimated poses of continuous head movement, analysis of the facial region
at a higher resolution becomes feasible and estimation of non-rigid deformations such as facial
expression and mouth shape can be performed with fewer constraints. Most current methods
for estimating these non-rigid deformations are limited to frontal or near-frontal views, e.g. [39].
The availability of rigid head pose should facilitate their extension to a wider range of poses with

graceful degradation rather than complete failure under large rotations in depth.

Thirdly, the system currently requires one to train one’s own head model interactively before
the system starts to function. This process involves capturing a few templates by rotating the

head and “clicking” on an eye feature. It takes about 2 minutes. It was not possible to explore
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a person independent model due to the lack of any suitable database with labelled head pose
angles. In order to derive a model which reliably exhibits invariance to identity, a representative
database of different people at various poses would be required. If such a database became
available, each view-template could be replaced by a statistical model capturing the variations
due to identity. The method developed here should be extendable via training-from-examples
techniques. Work is currently being undertaken to explore the use of a Polhemus tracker for

collecting pose ground-truth.
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