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Abstract

It is shown that there exist network topologies such
that congestion can only be avoided if messages are
sent using non-linear Boolean functions. This can be
achieved for any word length that is fixed in advance.
To the best of my knowledge, this is the first pub-
lished example where the use of non-linear Boolean
functions is needed in any solution that maximises
the total network flow.

The paper also highlights a new link between net-
work flow and error correcting codes: There exist
networks where the optimal flow is achieved by essen-
tially selecting the worst error correcting code (rather
than the best). The dichotomy between good and bad
error correcting codes is highlighted in the paper.

Our constructions are for delay-free (and error-
free) networks, but they can easily be adapted to
more general models of network flow.

The major application of the construction is to
illustrate some of the difficulties in proving lower
bounds for the famous matrix transposition problem
as well as sorting related problems.

1 Introduction

We show that there exist network topologies where
any attempt to transmit data using ordinary rout-
ing techniques or even more general methods based
on linear Boolean functions, will lead to deadlocks
and congestion. Yet - and this is the surprising
point - it is possible to transmit all data to their
destinations without congestion if the network uses
non-linear Boolean functions. Apparently this re-
sult contradicts the widespread belief that non-linear

Boolean functions are never useful, and that data it-
self are best transmitted in a manner where no ma-
jor calculations take place at different network nodes
(except maybe in the source/target node where non-
linear encryption or data-compression might be ap-
plied). One of the central and common assumptions
in network flow is that data are being sent in a data-
oblivious way [1]. That means that data are treated
as a black box where processors can copy it, but can-
not modify it.

Recently, a number of papers have challenged the
‘conventional wisdom’ [7, 11, 10, 9, 6, 4, 8] that there
is little - if any - point in network coding. Instead
these papers show that information is sometimes bet-
ter transmitted as being ‘diffused’ throughout the
network from the source to the sinks by means of
network coding. In [4], some of the published ex-
amples use non-linear flows on the bit level. The
use of non-linear functions can however be eliminated
from these examples. Actually, by a minor modifica-
tion of the elegant main theorem of [11, 10], we will
show that any single source multicast problem has a
bit-wise linear solution (on blocks of a suitable size)
whenever it has a solution at all. Thus the non-linear
Boolean functions underlying the constructions in [4]
can be eliminated (which essentially was also shown
in [11, 10]). Our example is - to the best of my knowl-
edge - the first published example where the use of
non-linear Boolean functions is proved to be neces-
sary for delay-free (error-free) networks. It is also
the first example that shows that there exist net-
works where certain messages are best transmitted
in a fashion where they all have pairwise small ham-
ming distance! All published examples of network
flow essentially try to maximise the error correction
capability of the network coding. In our construction



the greatest network performance is achieved by min-
imising (rather than maximising) the error correction
of certain signals!

The suggestion of sending data in a non-linear fash-
ion has already been seriously discussed are in the
context of the famous matrix transposition problem.
In the seminal paper [3] the authors raise this chal-
lenging open problem. They write:

Intuitively, the lower bound should still hold
in this more general model, since it is un-
likely that these operations [arbitrary bit
manipulations] are of any great help, but no
proof is known. Such a proof would no doubt
provide great insight into the nature of in-
formation transfer and sorting-related com-
putations.

The matrix transposition problem is still open. In
fact it was when trying to resolve the matrix trans-
position problem, that I managed to produce the
‘counter examples’ showing that non-linear Boolean
functions are sometimes needed in the solution of flow
problems in delay-free networks. It still seems highly
plausible that non-linear Boolean functions [i.e. ar-
bitrary bit manipulations| are of little help for the
matrix transposition problem. However the construc-
tions in this paper suggest that that this might be
very difficult to prove.

We leave it as an interesting open question,
whether the use of non-linear flow can be eliminated
by allowing sufficiently large block computations (see
also [5] for a discussion of this conjecture).

We will not attempt to actually design protocols
for finding non-linear solutions when such solutions
exist. In practice the flow has to be controlled by, for
example, using special header bits which might con-
tain routing information as well as information which
insures that packets are received in the correct order
when they are delivered. When huge and massive
data-flows are involved, the ‘price’ for consulting a
somewhat centralised “traffic control” becomes very
small, while the potential increase in the overall net-
work performance could be huge. We do not prove -
or disprove - whether there could be any practical ap-
plications of allowing a (semi)central “traffic control”
the use of non-linear Boolean functions.

Before, we consider non-linear flows we show a few
straightforward results concerning linear flows.

1.1 Linear flows are sometimes better

than pushing bits

Consider the following network topology in figure 1
(a):
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In this network (for a formal definition of delay-free
network see [11, 10]) the task is to transmit a single
bit z from the upper left node to the lower right node,
and at the same time transmit a single bit y from
the upper right node to the lower left node. In this
network each channel can only carry one bit. If we
try to transmit the bits z and y without interference,
a deadlock is created in the middle channel where
the messages ¢ and y block the way for each other.
If however we follow the approach illustrated in the
network in figure 1 (b) and send the exclusive OR i.e.
z+y, along the middle wire, we can send the bit 2 and
y to their destinations without any deadlock. Thus
it is possible to solve the broadcasting task using the
linear Boolean functions (z,y) = = + y,(z,z + y) —
z+ (z+y)and (z+y,y) = (z+y) +y.

This example, is of course, highly unrealistic. How-
ever the example remains valid if z and y instead
of representing single bits, represent general data
flows. Suppose that 7 and 7 are two data-flows
given by @ = ...r_sx_1Tox1T>... and Y :=
e Y—2Y—_1YoY1Y2 . . .. Assume the task is to transmit
the data-flow @ (rather than the single bit z) from
the upper left node to the lower right node, and at the
same time to transmit the data flow 7 from the up-
per right node to the lower left node. In this scenario
we assume that the network can do computations for
words of arbitrary length (so-called block computa-
tions which are defined in [11, 10, 17, 4]). In this case

Figure 1



there is no need for block computations and the task
can be solved using words of length 1 by sending the
data-flow Z+7 :=...(z_2+y_2), (x_1+y_1), (To+
Y0), (T1 +91), (T2 +9a2), . - .. through the middle chan-
nel. There is no solution which just ‘pushes’ blocks
(of any given length).

1.2 When doubling the bandwidth is
more than Twice as good!

The purpose of this section is to illustrate the po-
tential role of block computations as well as to show
a somewhat counter intuitive phenomena that occur
even when only a linear flow is involved. Yet, we will
show (by a minor modification of [11]) that single
source multi-cast problems can never be truly patho-
logical and that linear Boolean functions (applied to
blocks of a fixed but suitable size) always suffice.

At first the following seems quite absurd! We claim
that for a fixed buffer size i.e. word length (=block
length), doubling the bandwidth sometimes makes it
possible to more than double the overall performance
of the network!

To illustrate this consider the single source multi-
cast problem in figure 2. Two bits (data-streams) x
and y have to be sent from a single source S to a set
of targets (nodes 1,2,3,4,5,6) at the bottom of the
network.
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We claim that at least one of the six target nodes
will fail to receive both z and y. To illustrate the
problem assume, for example, that we decide to send
z through channel (s,7), decide to send y through
channel (s,8) and decide to send = + y through chan-
nel (s,10). Which Boolean function f(z,y) should

we send through channel (s,9)? If we send z through
(s,9) node 2 is not able to reconstruct z and y. If we
send y through (s,9) node 4 is not able to reconstruct
z and y. It is no better if we send x4y through (s, 9)
since then node 6 is not able to output z as well as y.
It is not hard to show that in this example the use of
non-linear Boolean functions is of no help. Thus if the
bandwidth is one, the bits x,y can only be transmitted
correctly to five of the siz nodes (i.e. at most 11 out
of 12 bits can be guaranteed to arrive correctly).

Now let us double the bandwidth, while keeping
the buffer size, i.e. the word length, at one. The task
of sending bits 1, x2, 3,24 to the six nodes at the
bottom can be solved as shown in figure 3.

(X1#X3,X5+X )

(X1 X4 X+ X3+X )

1 2 3 4 5 6  Figure 3

Notice that each of the six nodes is now able to
receive the bits x1, xs, x3, x4 if we select appropriate
linear functions at the bottom nodes. As an example
node 6 receives the bit values z1 + 3, 2 + x4 from
node 9 and receive the bit values z1 +x4 and zo+23+
x4 from node 10. From these bit values it is possible
to reconstruct the original bits as follows: z; = (z1 +
.'L'3) + (.7:2 +.Z‘4) + (.732 +x3 +£L'4), To = (.'172 +x3 +SC4) +
(x1+x3)+(x1+24), 3 = (T2 +24)+(22+23+24) and
2y = (21 +24) + (21 +23) + (X2 +24) + (X2 + 3 +24).
Similar, but even simpler, constructions are possible
for nodes 1 — 5.

Thus if the bandwidth is two (and the word length
remains 1), the bits x1,z2,x3 and x4 can be trans-
mitted correctly to all the siz nodes (i.e. 24 out of 24
bits can be guaranteed to arrive correctly). Voila! By
doubling the bandwidth from 1 to 2 we managed to
increase the performance from 11 to 24 bits!

Instead of doubling the bandwidth we could double
the word length (i.e. the buffer size). Alternatively,
we can solve the problem using the elegant method



of diversity coding [6] by working over a field F,, with
p > 3 being a prime number and letting f(z,y) :=
x + 2y be the flow through channel (s,9) in the first
diagram. This solution would essentially work since
words of length [ (for [ large), can be converted into
numbers in base p with only an insignificant reduction
of performance. Notice, however that this solution -
though linear on the semantic level - is non-linear on
the bit level. As we already noticed the problem has
actually a linear solution (for block size 2). This is
not a coincidence since:

Theorem(1): Any single source multi-cast problem
has a solution! if and only if it has a linear
solution!. Furthermore, a single source multi-
cast problem always has a solution!, except when
this can be ruled out for the obvious reason that
the max flow to one of the targets is too small .

The fact that the mincut bound is achievable by lin-
ear codes over sufficiently large fields was first shown
in [12]. Later (in [11]) this result was improved to
smaller fields with size being a power of 2.

From this theorem it follows that our multi-cast
problem has a solution (as we have already seen),
since the max flow from the source to each of the
targets is 2. It also follows that this solution can be
chosen to be linear (even bit-wise linear) for a suitable
choice of word length.

Theorem(1) follows from an easy modification of
Theorem 2, in [11]. According to this theorem if a
single source multi-cast problem has a solution, then
there is a linear solution over the field Fy: for a suit-
able choice of [. To prove Theorem(1) it suffices to
show that the linear solution (over Fy:) can be con-
verted to a bit-wise linear solution of block length
I. Since F» is a subfield of F,: we can view Fy as
a [ dimensional vector space over F,. Notice that
any Fyi-linear map ¢ : For & ... ® Fy — Fy is also
a Fy-linear map. Let ej,es,... e € Fy be a basis
for this vector space and let us identify the string
()\1,)\2,... )\l) € le with the vector Ej)\jej € Fy
(here an inappropriate identification would lead to
non-linear Boolean functions). Let b : F — Fj be
the bijection given by b(A1, A2, ... A;) = E;Aje;. The

1Solutions are allowed to work on blocks of any fixed length

induced map ' : FL @ ... ® F) — F! defined by
P (r1,m2,...15) = b1 oah(b(ri),b(ra),... b(rs)) is
clearly Fy-linear since the bijection b : F} — Fy is
F»-linear. Thus any linear solution (over Fy:) can be
converted to a bit-wise linear solution of block length
l.

Rudolf Ahlswede has pointed out (personal com-
munication) that the construction in this section is
directly related to the construction of a special type
of error correcting codes. More specifically the ex-
ample above (with bandwidth 1) is equivalent to the
question whether there is a (4,4, 3) 2-ary MDS code
(there is none). The same question for bandwidth 2 is
equivalent to the question whether there is a (4, 16, 3)
4-ary MDS code. In effect there is a linear (4,16, 3)
4-ary MDS code, which also shows that there exists
a linear boolean solution for bandwidth 2.

2 The main results

2.1 Non-linear flow is sometimes bet-

ter than linear flow

Consider the network 7' in figure 4:
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This network, which will serve as a building block
in our construction, has the following curious prop-
erty:



Proposition(2): Assume we want to ensure all 4
bits z1,22,23 and z4 are successfully transmit-
ted from the left side to the right side in the di-
agram. If only linear signals are allowed it is
possible to send at most four distinct messages
through the vertical channels. If however non-
linear flows are allowed it is possible to send five
distinct messages (and this is optimal) through
the vertical channels.

Proof: Along the four vertical channels we send sig-
nals s1,s2,s3 and s4. And horizontally the aim is
to send the signals 21,29,23 and z4. Assume first
that all signals are sent in a linear fashion. More
specifically let p be any assignment of linear func-
tions to each node in the network. Under this assign-
ment the signals z; + L;(s1, 82, 3,84), 4 = 1,2,3,4,
(where Ly, Ls, L3 and Ly are linear Boolean func-
tions) are transmitted to the right hand nodes z;,
i = 1,2,3,4. Without loss of generality we can
assume that the signals si,s2,s3 and s4 arrive un-
scrambled at the bottom destinations. We will view
each message (s1,s2,53,54) € {0,1}* as a vector
in the four dimensional vector space Fy over the
field F». Let V, C Fj denote the linear subspace
spanned by all vectors for which L;(s1, s2,53,84) =0
for i = 1,2,3,4 (notice that this is indeed a lin-
ear subspace since it is the intersection of the ker-
nel of the linear maps L;, 1 = 1,2,3,4). We claim
that the vector space dimension dim(V,) of V, is at
most 2 (i.e. dim(V,) < 2). To see this, assume that
dim(V,) > 3. Let pr; : Ff — F3 i =1,2,3,4 be the
projections given by pri(s1, s2,83,54) = (2,83,54),
pT2(81,32,33,84) = (81753754) ,pT3($1,82733,S4) =
(s1,82,84) and pry(si, $2,83,84) = (81, 82,83). Since
we assumed dim(V,) > 3 at least one of the pro-
jections pr; must be onto i.e. for at least one of
the projections we must have pri(V,) = F5. If
however pr;(V,) = Fj it is not hard to show that
the variable z; cannot be sent correctly i.e. that
L;i(s1,82,83,84) # 0 for certain (s1,82,83,84) €
V,. This contradicts the definition of V,. Thus
dim(V,) < 2 as we claimed. Thus the number of dis-
tinct messages we can send along the vertical chan-
nels is at most 2%™(V2) < 4. Clearly it is possible
to send 4 messages (let for example s3 = s4 = 0)

through the vertical channels. Thus the optimal num-
ber of messages we can send through the vertical
wires is 4 in the case where all flows are linear.
Next, consider non-linear flows. Consider the five
messages mg := (0,0,0,0), mt := (1,0,0,0), mp :=
(0,1,0,0), Mm% := (0,0,1,0) and m; := (0,0,0,1).

If we only send these messages through the vertical
wires we can ensure that the signal z4 arrives un-
scrambled, if we use the non-linear construction in
figure 5:

Stytyttytattsts

Figure 5

Here t1 := s1 + 24, t2 := 82 + 24 and t3 := s3 + 24.
We have to check that z4 = (s1 + 24)(s2 + 24) + (51 +
24)(83+24)+ (82+24)(83+24) whenever (s1, s2, 83, 54)
is one of the five messages m¢ := (0,0,0,0), it :=
(17 07 07 0)7 Tﬂ = (07 17 07 0)7 m = (07 07 17 0) and
m4 := (0,0,0,1). To do this notice that 24 = (1 +
24)(0+24) + (1+ 24) (04 24) + (04 24) (0+ 24) and that
24 = (0424)(0+24) +(0+24) (04 24) + (04 24) (0+ 24).
The cases of 5 := (0,1,0,0), m4 := (0,0,1,0) are
treated similarly.

The other parts of the network (corresponding to
21,22 and z3) are treated similarly by the obvious
modifications. We ensure that the signals z1, zo and
z3 arrive unscrambled by letting z; := (s2 + 21)(s3 +
21) + (82 + 21)(84 + 2!1) + (83 + 2!1)(54 + Zl), 29 1=
(s1+22)(83+22)+ (81 +22)(s4+22) + (83+22) (84 +22)
and by letting z3 := (s1 +23)(s2 +23) + (51 +23) (84 +
23) + (s2 + 23) (54 + 23).

To complete the proof it suffices to show that it is
impossible to send more than five messages through
the vertical channels. Consider the part of T' cor-
responding to the variable z4. In general the signals
t1,ts and t3 are of the form t; := a;z45; + Biza+7isi +
0; with 4 = 1,2,3 and a4, B;,7v:,9; € {0,1}. Notice



however that the signal s; can be reconstructed only
if a; = 0 and v; = 1. With out loss of generality we
can assume §; = 0 and thus we can assume that ¢; :=
Biza+ si-, i = 1,2,3. Clearly at least one of 81, 32, 53
must have value 1. The most ‘clean’ case appears
when 8; = 5 = B3 = 1. In this case the variable z,4
can be transmitted without error if and only if for any
pair of code words (s1, 2, 83, s4) and (t1,t2,t3,t4) the
hamming distance between (s1, s2, s3) and (¢1, t2, t3)
is <2 If By = B =1 and B3 = 0 the variable
24 can be transmitted without error if and only if for
any pair of code words (s1, 52, 83, 54) and (t1,ta2, t3,t4)
we have (81 + 1,59 + 1,83) # (tl,tg,t3). Finally, if
$1 =1 and B2 = B3 = 0 the variable z4 can be trans-
mitted without error if and only if for any pair of
code words (s1, S92, 83,84) and (1, 2,t3,t4) we have
(s1+1,82,83) # (t1, 12, t3).

Now consider the network 7'. We want to maximise
the number of messages (code words) we can send
through the vertical channels. We leave most cases
to the reader. Here we only check the case where 8; =
B2 = B3 = 1 not just for z4 but also for z1, 22 and z3.
In this case we notice that the variables 2z, 22, 23 and
z4 can be transmitted without error if and only if any
pair of code words (s1, $2, 83, $4) and (¢1,t2,t3,t4) has
hamming distance < 2.
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Figure 6

Figure 6 contains a few nice geometric interpre-
tations of the problem of constructing codes with a
hamming ‘diameter’ < 2 (in each display, we assume

that (0,0,0,0) is a code word). Whatever way we
look at it we notice that there is only one way to se-
lect five code words having diameter 2 and containing
(0,0,0,0) . &

Given the “devise” T it is not hard to construct
examples where non-linear flow makes it possible to
send more bits (rather than just more messages). The
smallest example we have been able to construct this
way contain 25 sources/targets.

The network topology Y in figure 7 uses four copies
of the network T'. The two boxes in figure 7 repre-
sent the bipartitioned graphs Ky 1. Notice that the
network Ky 16 at the top allows us to compute any
Boolean function f : {0,1}° — {0,1}!® and that the
network Kig,9 at the bottom allows us to compute
any Boolean function f : {0,1}'¢ — {0,1}°.
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Figure 7

Next we show that this network topology Y has
the following property:

Theorem(3) The problem of transmitting the 25
data-flows x1, %2, ... 9 and z; i,j € {1,2,3,4}
from their sources (top/left) to their destinations
(bottom/right) has a non-linear solution. The
problem has no linear solution (of block length

1).

Proof: We can send 5* = 625 distinct messages



through the vertical channels (without messing up
the 16 z variables). Hence it is possible to send
the 9 bits (2° = 512 messages) through the vertical
channels. Thus the transmission problem has a
solution using non-linear functions. We have to
show that the transmission problem has no linear
solution. Assume that there is a linear solution p

and consider the linear map: ¢(z1,z2,... 2g)
Z9 —  Z3 defined by (zi,...x9) =
(81(.'13'1, e SL'g),Sz(.Zl, N .’Eg), N 816(331, PN :L'g))

with s; : Fy — F,. We claim that the rank of
1 is at most 8. Assume that it is strictly larger
than 8. Consider the projections of ¢ to the
linear subspaces Vi := span{si,s2,83,84}, Vo :=
span{ss, e, 87,88}, Va3 = span{sy,sio0,511, 8512}
and V4 = {813,814,815,816}. One of these
must have rank > 2, which contradicts propo-
sition 1. Thus we can broadcast at most 8 bits
through the vertical channels if we are only al-
lowed to use linear Boolean functions (if we let
83 = 84 = 87 = 88 = S11 = S12 = S15 = S16 = we
notice that it is actually possible to archive this and
broadcast 8 bits along the vertical channels). Since
any solution needs to transmit 9 bits, there is no
linear solution (of block length 1) &

2.2 A linear solution of finite Block
size

While I circulated [13] among leading experts in the
network coding community, Ralf Koetter responded
that the network coding problem for T (and thus Y)
has a linear solution using block length 3:
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Figure 8

Ralf Koetter’s solution outlined in figure 8, resolves
the non-linear flow in figure 5. This can be explained
as follows: We consider three time slots. In the first
time slot, no information is transmitted on the verti-
cal lines and hence we can transmit three bits of infor-
mation for all the horizontal transmissions Z;, Zs, Z3
and Z4 (in figure 4) by using the three parallel con-
nections for different bits. In both of the subsequent
two time-slots, four bits of information are transmit-
ted on the vertical transmissions, which is possible
if no bits are transmitted across the network. Al-
together, during three time intervals we transmit 1
bit per time slot for Z1, Za, Z3, Z4, and 8/3 bits per
time slot through the vertical channels. Now since
8/3 > log,(5) this provides a linear (vector) solution
that matches the rate of the non-linear solution (of
block size 1).

We have already seen that there are network flow
problems where there is no solution of block length 1,
but where there exist linear solutions of block lengths
> 1. Recently an example by R. Koetter (mentioned
in [5]) shows that there exist a network flow prob-
lem with a linear solution of finite block length, yet
the problem has no bit-wise linear solution over any
field. The construction in figure 7 gives another such
example. The flow problem Y has no bit-wise linear
solution over any field, yet it has a linear solution of
block length 3. The main point however is that the
flow problem in Y has non-linear solutions (bit-wise).

3 Lifting the results to networks
with higher bandwidth

The main constructions (figure 4 and figure 7) were
proved to be valid only for networks with bandwidth
(block size) 1. The constructions can, however, be
lifted to situations of higher bandwidth w using the
following devise A, :
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w channels across

Proposition(4): Assume all channels in figure 9
have bandwidth w > 1. Let uy,us,... U,_1be
distinct variables, each representing an element
in {0,1}¥ . There are w horizontal channels
across and any number r > 1 of vertical chan-
nels. If each of the u variables are guaranteed to
be sent across unscrambled, there is a solution
that transmit two distinct messages (i.e. one bit)
along each vertical channel. There are no solu-
tions that transmit more than two messages (i.e.
more than one bit) through a vertical channel.

Proof: All channels have bandwidth w. First
we show that there is a solution that trans-
mits exactly one bit through each vertical chan-
nel. Assume that u; := (uj1,ujo2,... u;,) and send
(u1j,u2j,... Uy-1,;,0) j = 1,2,...w through the
horizontal channels. Send (0,0,0,...0,r) through
the kth vertical channel. Notice that this can be
achieved without the horizontal (vertical) channels
“contaminating” each other. To prove the last claim
we have to show that there is no solution where one of
the channels r; sends more than two distinct signals.
Assume that the channel r; sends three (or possibly
more) distinct signals m,ms and mz. We need to
be able to send 2¢(“~1) messages through the hori-
zontal channels. The number of messages which can
be sent through each horizontal channel is at most
2¢/3. Thus the total number of messages that can
be sent through the w horizontal channels is at most
(2¥/3)% < 2¢(@=1)_ This is a contradicts the assump-
tion. &

Assume we modify the network Y by increasing
the bandwidth of each channel to w. For each chan-
nel cin Y we add a copy of the devise A, ; such that
the channel ¢ is identical to the vertical channel r; in
A, 1. Denote this new network Y, and notice that the
number of nodes of Y,, is bound by cw for a suitable
constant ¢. Notice that there is a one-to-one corre-
spondence between the solutions to Y (bandwidth 1)
and solutions to the modified network Y, (bandwidth
w). Furthermore for any w € N given in advance,
the network Y,, has only non-linear solutions of block
size w. Thus we have shown:

Theorem(5): There exists a constant ¢ € N, such
that for any w € N, there exists a network Y,
such that:

e There is no linear solution of bandwidth < w.
e There is a non-linear solution of bandwidth < w.

e Y, contains less than cw nodes.

Applications to the matrix trans-
position problem

Next we consider a famous open problem from net-
work complexity theory: the matriz transposition
problem. This problem was raised in [3] and discussed
in more details in [16]. One version of the problem
is also described explicitly in [2]. The problem can
be described as follows: Consider an acyclic network
which has n source nodes at the top, and where each
node (except the source nodes) has fan-in 2. Besides
having n input nodes at the top, the network has n
output nodes at the bottom. The task of the network
is to transpose any given n xn matrix A. More specif-
ically the rows of the matrix A are input (as n, n-bit
words) into the input nodes (each input node receiv-
ing a different row in A). The output nodes have
to output the n columns of A. Each node can con-
vert any two m-bit input words - using any possible
Boolean function f : {0,1}?" — {0,1}"- to an n-bit
output word. The matrix transposition problem is
to show that any such network which transposes any



given n X n matrix input matrix, must contain at least
Q(nlogn) nodes.

The intuition behind this ‘conjecture’ is that it
is hard to see that complex Boolean functions or
even linear Boolean functions, should be of any help
in solving this problem. Furthermore, the natural
merge-sort approach which uses nlogn nodes seems
hard to improve. In the merge sort network each bit
follows a predefined path, and is never even copied.
Yet intuitively this network seems to be optimal.

A natural approach for solving the matrix transpo-
sition problem is first to show that non-linear Boolean
functions are of no use, and that without loss of gen-
erality we can assume that all possible network cod-
ing is linear. To prove non-trivial lower bounds for
this case still seems to be very hard, but somehow
it appears much more tractable than the messy non-
linear case. Our constructions suggest that it might
be very hard to reduce the problem to the purely
linear case.

Given the results in [2] we notice that any non-
trivial lower bound for the matrix transposition prob-
lem (when arbitrary network coding is allowed) would
give a non-trivial lower bounds for the fast Fourier
transform as well as for sorting (in a computational
model which is stronger than the comparison-based
model considered in [2]). Thus our counter example
also pinpoints to some of the difficulty for proving
lower bounds for sorting related problems.

Open questions

Our constructions raise a number of natural and im-
portant questions. Maybe the most important ques-
tion is whether any flow problem can be solved using
linear coding. This interesting possibility was first
suggested in [5]. Our construction shows that the
linear coding in general needs to have block length
Q(n) where n denotes the number of nodes of the
network. How much is it possible to amplify the ad-
vantage of non-linear Boolean functions over linear
Boolean functions? Is it possible to increase the (bit-
wise) performance by more than a logarithmic factor
in the size of the network?

It seems that the usefulness of non-linear network
coding is somewhat ‘atypical’ and that ‘most’ net-
work flow problems have linear solutions (of small
block size) if they have solutions at all. Is it possi-
ble to formalise and prove that this intuition is cor-
rect? Is it possible to identify nice classes of network
topologies where it is possible to show that non-linear
boolean functions are not needed? The complexity
of finding optimal (linear) solutions for single source
multi-cast problems has been shown to be essentially
quadratic in the size of the underlying network [15, 9].
Is there a fast algorithm that can detect if a given
problem requires the use of non-linear Boolean func-
tions? Is there a general method which allows us to
modify a given network, (where channels might have
capacity w > 1) or to obtain an ‘equivalent’ network
which only has solutions if it has linear solutions?

The link between network coding and error correct-
ing codes seems very interesting. According to Rudolf
Ahlswede (personal communication) it should be pos-
sible to use MDS codes to construct multi-cast prob-
lems that have only non-linear solutions. It is possi-
ble to implement his suggestion using the Nordstrom-
Robinson code [14], which is a non-linear (12,32, 5)-
2-ary MDS code with no linear solution. To do
this, consider a network with source s and 12 nodes
ai,as, ... aia, each accessed by s with one edge. Fur-
thermore for each 8-element subset of {a1,as,. .. a2}
there is a specified sink connected to all of its ele-
ments. So there are ('7)= 495 sinks. Using non-
linear flows it is possible to send 5 bits from s to
each of the 495 sinks as each sink can reconstruct
the original code word ajasas...ajs since (at most)
4 bits of the 12 bits are unknown. It should be em-
phasised that this construction only seems to work
for networks with bandwidth 1. Thus it is an open
question whether there exist multi-cast problems (of
band width > 2) that only have non-linear solutions.
It is also an open question if it is possible to use er-
ror correcting codes to construct examples like ours,
where each source (sink) sends (receives) independent
messages.

While analysing the network 7' we noticed that
there is a distinct advantage in letting the class of
code words send through the vertical channels hav-
ing as diameter (in terms of hamming distance) as



possible. Thus there seems to be a very interesting
dichotomy between situations where the main strat-
egy is to maximise the error correcting ability (like
in the examples based on MDS-coding), and differ-
ent situations (like in the network T') where the main
strategy is rather to minimise the error correcting
level. The trade-off between such different situations
could lead to new research questions.
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