Automata-based Techniques for the Verification of Programs with Dynamic Linked Data Structures

Ahmed Bouajjani

LIAFA - University of Paris 7, France

joint work with

Peter HabermehlPierre MoroLIAFA - University of Paris 7, France

Adam RogalewiczTomas VojnarFIT - Brno University of Technology, Czech Rep.

Programs and Properties

Programs

- Finite-state data domains,
- Sequential programs without procedure calls (finite control),
- Dynamic creation of objects, destructive updates and pointer manipulation

Properties

- Absence of intrinsic errors (e.g., null pointer dereference, use of undefined pointers, reference to deleted elements, etc.)
- Shape properties (e.g., at some given control point of the program, the heap is always a doubly linked list)

Our approach

- Reduce the verification of shape properties to control point reachability - Augment the program by testers of shape properties
- Automata-based framework:
 - $-\, {\rm Encode} \,\, {\rm configurations} \,\, {\rm as} \,\, {\rm words}/{\rm trees}$
 - Use finite-state word/tree automata to represent sets of configurations
 - Encode program statements as word/tree transducers
- Apply *abstract regular model checking* techniques to solve the problem Symbolic reachability analysis + (refinable) abstractions on automata

Pushdown systems (pop/push rules)

Parametrized networks

 $(\forall j < i. \; S[j] = a) \land S[i] = b \, / \, S[i] \coloneqq a$

 $OutToken_i \mid\mid InToken_{i+1}$

Computing post/pre images: Automata composition

Reachability analysis: Computing transitive closures

$$\mathsf{Safety} \ \rightsquigarrow \ T^*(Init) \cap Bad = \emptyset$$

Problems to face:

- \bullet Non regularity / Non constructibility of T^* and $T^*\text{-images}$
- Termination of the constructions
- State explosion of the automata / transducers

Termination Problem

Termination problem: Acceleration ?

Abstract Regular Model Checking

Given a transducer τ , and 2 automata I (initial) and B (bad), check: $\tau^*(I) \cap B = \emptyset$

Define a *finite-range abstraction function* α on automata
Compute iteratively (α ∘ τ)*(I),
If (α ∘ τ)*(I) ∩ B = Ø then answer YES

Abstract Regular Model Checking

Given a transducer τ , and 2 automata I (initial) and B (bad), check: $\tau^*(I) \cap B = \emptyset$

⇒ Abstract-Check-Refine loop

- 1. Define a *finite-range abstraction function* α on automata
- 2. Compute iteratively $(\alpha \circ \tau)^*(I)$,
- 3. If $(\alpha \circ \tau)^*(I) \cap B = \emptyset$ then answer YES
- 4. Otherwise, let θ be the computed symbolic path from I to B,
- 5. Check if θ includes a *concrete counterexample*,
 - If yes, then answer NO,
 - Otherwise, define a *refinement* of α which *excludes* θ , and goto (2).

Abstractions based on state space collapsing

- We define *parametrized* families of abstractions $\{\alpha_p\}_{\mathbb{P}}$:
- \bullet We consider equivalence relations \simeq_p on states of automata, and we define

$$\alpha_p(A) = A/\simeq_p$$

- We require that for every $p \in \mathbb{P}$, the equivalence \simeq_p is *finite-index* \Rightarrow For every p, α_p has a finite image (defines a finite abstract domain)
 - \Rightarrow Abstract fixpoint computations always terminate

Instance 1: Abstraction based on *bounded length languages*

• Let $k \in \mathbb{N}$. Then, given an automaton A, consider the equivalence $q_1 \simeq_k q_2$ iff $L(A, q_1)^{\leq k} = L(A, q_2)^{\leq k}$

where

$$L(A,q)^{\le k} = L(A,q) \cap \{ w \in \Sigma^* : |w| \le k \}$$

• For every
$$k \in \mathbb{N}$$
, let $\alpha_k(A) = A/\simeq_k$

• The image of α_k is finite = all *minimal automata* for the finite languages of words of lengths $\leq k$.

Instance 1: Abstraction based on *bounded length languages*

 $L_{\le 1}(1) = L_{\le 1}(2)$

Instance 2: Predicate Automata Abstraction

- Predicate = finite-state automaton (regular language)
- Let $\mathcal{P} = \{A_1, \ldots, A_n\}$ be a set of *predicate automata*.
- Let $A = (\Sigma, Q, q_0, F, \delta)$ be finite-state automaton. For every $q \in Q$, and for every $A_i \in \mathcal{P}$, let

$$q \models A_i \quad \text{iff} \quad L(A,q) \cap L(A_i) \neq \emptyset$$

• Let $\simeq_{\mathcal{P}} \subseteq Q \times Q$ be the equivalence relation such that $\forall q, q' \in Q. \ q \simeq_{\mathcal{P}} q'$ iff $\forall A_i \in \mathcal{P}. \ q \models A_i \Leftrightarrow q' \models A_i$

• We define

$$\alpha_{\mathcal{P}}(A) = A/\simeq_{\mathcal{P}}$$

 \Rightarrow The image of $\alpha_{\mathcal{P}}$ is finite = all automata with at most $2^{|\mathcal{P}|}$ states.

Instance 2: Predicate Automata Abstraction

Counter-example guided abstraction refinement

Counter-example guided abstraction refinement

Refinement of α :

Find $\alpha' \subseteq \alpha$ such that: $Y \cap X \neq \emptyset$ implies $\alpha'(Y) \cap X \neq \emptyset$.

Counter-example guided abstraction refinement

Refinement of α :

Find $\alpha' \subseteq \alpha$ such that: $Y \cap X \neq \emptyset$ implies $\alpha'(Y) \cap X \neq \emptyset$.

 $\Rightarrow \mathsf{Take} \ \mathcal{P}' = \mathcal{P} \cup \{ (\alpha(Y) \cap X, q) \ : \ q \text{ is a state in } \alpha(Y) \cap X \}$

•

a

ARMC: References

- The case of words: [B., Habermehl, Vojnar, CAV'04]
- The case of trees: [B., Habermehl, Rogalewicz, Vojnar, Infinity'05]
- Generic framework: parametrized networks of processes, counter systems, FIFO channel systems, etc

ARMC: References

- The case of words: [B., Habermehl, Vojnar, CAV'04]
- The case of trees: [B., Habermehl, Rogalewicz, Vojnar, Infinity'05]
- Generic framework: parametrized networks of processes, counter systems, FIFO channel systems, etc
- $\bullet \Rightarrow$ Application to programs with dynamic linked data structures

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS'05]

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS'05]

- Heaps are collections of lists with sharing and (non-nested) cycles
- # of sharing points is proportional to # of program variables

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS'05]

- Heaps are collections of lists with sharing and (non-nested) cycles
- # of sharing points is proportional to # of program variables

 $x, a \to b \to n_t, b \to a \to m_t, d \to d \to y, c \to c, m_f \parallel z, c \to a \to n_f$

- \Rightarrow a finite (known) number of markers is needed
- Program statements correspond to rewrite steps (\rightsquigarrow transducers)
- Automatic management of the markers by the transducers

The case of several next selectors

[B., Habermehl, Rogalewicz, Vojnar, SAS'06]

- Several selectors $S = \{s_1, \dots, s_n\}$
- Σ a finite set of labels (data)
- M a finite number of markers (special labels, e.g., root)
- \bullet Heap encoded as a *n*-ary tree backbone + routing expressions
- Routing expression = regular expression over $[1, n] \cup [\overline{1}, \overline{n}] \cup \Sigma \cup M$

Examples of encodings

•

Examples of encodings

Encoding program statements: Nondestructive updates

Consider the case $x = y \rightarrow s$

• Routing expressions are encoded as tree transducers:

Given a tree where a source node n is labeled by a special mark \blacklozenge , the transducer T_r associated with r moves the mark from n to another node m such that n and m are related by a path in r.

• The mark \blacklozenge is put on the node of y, the transducer T_r is applied, and then x is moved to the marked node. (Composition of transducers.)

Encoding program statements: Destructive updates

Consider the case $x \to s = y$

- With each statement $x \rightarrow s = y$, there is one associated routing expression
- the s-next pointer below x is labeled by the routing expression of this statement
- the shortest paths relating occurrences of x and y in the trees are added to the routing expression (operation on tree automata building a tree transducer encoding of the new routing expression).

• Abstraction on automata \Rightarrow finite number of routing expressions.

Experimental results

- Implementation based on MONA tree automata libraries
- Experimentation on a 64bit Opteron 2.8 GHz

Example	Time	Abstraction method	Q	N_{ref}
SLL creation	1s	predicates	25	0
SLL reverse	5s	predicates	52	0
DLL delete	бs	finite height	100	0
DLL insert	10s	neighbour	106	_
DLL reverse	7s	predicates	54	0
DLL insertsort	2s	predicates	51	0
Inserting into trees	23s	predicates	65	0
Depth-first search	11s	predicates	67	1
Linking leaves in trees	40s	predicates	75	2
LL insert	5s	predicates	55	0
Deutsch-Schorr-Waite tree traversal	47s	predicates	126	0
TL insert	11mn 25s	finite height	277	0
TL delete	1mn 41s	predicates	420	0

SLL = singly linked lists, DLL = doubly linked lists

LL = list of lists

Task = DLL + pointer to the head. TL = list of tasks.

Related work

- TVLA approach [Sagiv, Reps, Wilhelm, ..., 1998- ...]
- PALE approach [Klarlund, Moller, Schwartzbach, 1993-2001]
- Logic-based approaches: Separation logic [O'Hearn, ..., 1999-...], Logic of Reachable Patterns [Yorsh, Rabinovich, Sagiv, Meyer, B., 06], etc.
- Several (specialized) techniques for the case of lists (and few for trees)

Conclusion and future work

- Automata-based techniques for shape analysis
- Promising experimental results
- Other abstraction techniques (specialized for the considered domain)
- Improving automata technology
- Data over infinite domains
- Other families of graphs