
Shape Analysis by Ranking Abstraction

Amir Pnueli

New York University and Weizmann Institute of Sciences (Emeritus)

Symposium on Automatic Heap Anlysis AHA’07, Berlin, July 2007

Joint work with

Ittai Balaban, Yonit Kesten, Lenore Zuck

Shape Analysis by Ranking Abstraction, AHA’07, July 2007



Shape Analysis by Ranking Abstraction A. Pnueli

Ranking Abstraction

A method which combines predicate abstraction with augmentation of the system
by progress monitors.

We restrict our attention to cases in which the abstractions can be computed
automatically, using symbolic (BDD) representation.
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AAV: Abstraction Aided Verification
An Obvious idea:

• Abstract system S into S
A

– a simpler system, but admitting more behaviors.

• Verify property for the abstracted system S
A
.

• Conclude that property holds for the concrete system.

Approach is particularly impressive when abstracting an infinite-state system into
a finite-state one.

Technically , Define the methodology of Verification by Finitary Abstraction
(VFA) as follows:

To prove D |= ψ,

• Abstract D into a finite-state system Dα and the specification ψ into a
propositional LTL formula ψα.

• Model check Dα |= ψα.

We look for instantiations of this general methodology which are sound and
(relatively) complete.
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Finitary Abstraction

Based on the notion of abstract interpretation [CC77].

Let Σ denote the set of states of an FDS D – the concrete states. Let α : Σ 7→ Σ
A

be a mapping of concrete into abstract states. α is finitary if Σ
A

is finite.

We consider abstraction mappings which are presented by a set of equations
α : (u1 = E1(V ), . . . , un = En(V )) (or more compactly, V

A
= Eα(V )), where

V
A

= {u1, . . . , un} are the abstract state variables and V are the concrete
variables.
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Lifting a State Abstraction to Assertions

For an abstraction mapping α : V
A

= Eα(V ) and an assertion p(V ), we can lift the
state abstraction α to abstract p:

• The expanding α-abstraction (over approximation) of p is given by

α(p): ∃V :V
A

= Eα(V ) ∧ p(V ) ‖α(p)‖ = {α(s) | s ∈ ‖p‖}

An abstract state S belongs to ‖α(p)‖ iff there exists some concrete state
s ∈ α−1(S) such that s ∈ ‖p‖.
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Sound Joint Abstraction

For a positive normal form temporal formula ψ, we define ψα to be the formula
obtained by replacing every (maximal) state sub-formula p ∈ ψ by α(p) = ¬α(¬p).

For an FDS D = 〈V,Θ, ρ,J , C〉, we define the α-abstracted version
Dα = 〈V

A
,Θα, ρα,J α, Cα〉, where

Θα = α(Θ)
ρα = α(ρ)
J α = {α(J) | J ∈ J }
Cα = {(α(p), α(q)) | (p, q) ∈ C}

Soundness:

If α is an abstraction mapping and D and ψ are abstracted according to the recipes
presented above, then

Dα |= ψα implies D |= ψ.
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Example: Program INCREASE

Consider the program

y : integer initially y = 0[
ℓ0 : while y ≥ 0 do [ℓ1 : y := y + 1]
ℓ2 :

]

Assume we wish to verify the property (y > 0) for program INCREASE.

Introduce the abstract variable Y : {−1, 0,+1}.

The abstraction mapping α is specified by the defining expression:

α : [Y = sign(y)]

where sign(y) is defined to be −1, 0, or 1, according to whether y is negative,
zero, or positive, respectively.
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The Abstracted Version

With the mapping α, we obtain the abstract version of INCREASE, called
INCREASEα:

Y : {−1, 0,+1} initially Y = 0

ℓ0 : while Y ∈ {0, 1} do


ℓ1 : Y :=




if Y = −1
then {−1, 0}
else +1







ℓ2 :




The original invariance property ψ: (y > 0), is abstracted into:

ψα: (Y = +1),

which can be model-checked over INCREASEα, yielding
INCREASEα |= (Y = +1), from which we infer

INCREASE |= (y > 0)
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Predicate Abstraction

Let p1, p2, . . . , pk be a set of assertions (state formulas) referring to the data (non-
control) state variables. We refer to this set as the predicate base. Usually, we
include in the base all the atomic formulas appearing within conditions in the
program P and within the temporal formula ψ.

Following [GS97], define a predicate abstraction to be an abstraction mapping of
the form

α: {Bp1
= p1, Bp2

= p2, . . . , Bpk
= pk}

where Bp1
, Bp2

, . . . , Bpk
is a set of abstract boolean variables, one corresponding

to each assertion appearing in the predicate base.
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Example: Program BAKERY-2
local y1, y2 : natural initially y1 = y2 = 0

P1 ::




ℓ0 :loop forever do


ℓ1 : Non-Critical
ℓ2 : y1 := y2 + 1
ℓ3 : await y2 = 0 ∨ y1 < y2
ℓ4 : Critical
ℓ5 : y1 := 0







P2 ::




m0 :loop forever do


m1 : Non-Critical
m2 : y2 := y1 + 1
m3 : await y1 = 0 ∨ y2 ≤ y1
m4 : Critical
m5 : y2 := 0







The temporal properties for program BAKERY-2 are
ψexc : ¬(at−ℓ4 ∧ at−m4)
ψacc : (at−ℓ2 → at−ℓ4),
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Abstracting Program BAKERY-2
Define abstract variables By1=0, By2=0, and By1<y2

.

local By1=0, By2=0, By1<y2
: boolean

where By1=0 = By2=0 = 1, By1<y2
= 0

P1 ::




ℓ0 :loop forever do


ℓ1 : Non-Critical
ℓ2 : (By1=0, By1<y2

) := (0, 0)
ℓ3 : await By2=0 ∨ By1<y2

ℓ4 : Critical
ℓ5 : (By1=0, By1<y2

) := (1,¬By2=0)







P2 ::




m0 :loop forever do


m1 : Non-Critical
m2 : (By2=0, By1<y2

) := (0, 1)
m3 : await By1=0 ∨ ¬By1<y2

m4 : Critical
m5 : (By2=0, By1<y2

) := (1, 0)







The abstracted properties can now be model-checked.
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The Question of Completeness

We have claimed above that the VFA method is sound. How about completeness?

Completeness means that, for every FDS D and temporal property ψ such that
D |= ψ, there exists a finitary abstraction mapping α such that Dα |= ψα.

At this point we can only claim completeness for the special case that ψ is an
invariance property.

Claim 1. [Completeness for Invariance Properties]
Let D be an FDS and ψ : p be an invariance property such that D |= p. Then
there exists a finitary abstraction mapping α such that Dα |= α(p).

In fact, the proof shows that there always exists a predicate abstraction validating
the invariance property.
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Inadequacy of State Abstraction for Proving Liveness

Not all properties can be proven by pure finitary state abstraction.
Consider the program LOOP.

y: natural
ℓ0 : while y > 0 do[

ℓ1 : y := y − 1
ℓ2 : skip

]

ℓ3 :

Termination of this program cannot be proven by pure finitary abstraction. For
example, the abstraction α : IN 7→ {0,+1} leads to the abstracted program

Y : {0,+1}

ℓ0 : while Y = +1 do[
ℓ1 : Y := if Y = +1 then {0,+1} else 0
ℓ2 : skip

]

ℓ3 :

This abstracted program may diverge!
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Solution: Augment with a Non-Constraining Progress Monitor
y: natural




ℓ0 : while y > 0 do
[
ℓ1 : y := y − 1
ℓ2 : skip

]

ℓ3 :


 ‖|




dec : {−1, 0, 1}
compassion

(dec > 0,dec < 0)
always do
m0 : dec := sign(y − y′)




− LOOP − − MONITOR My −

Forming the cross product, we obtain:

y : natural
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

ℓ0 : while y > 0 do
[
ℓ1 : (y, dec) := (y − 1, sign(y − y′))
ℓ2 : dec := sign(y − y′)

]

ℓ3 :
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Abstracting the Augmented System

We obtain the program

Y : {0,+1}
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

ℓ0 : while Y = +1 do



ℓ1 : (Y,dec) :=




if Y = +1
then ({+1, 0}, 1)
else (0, 0)




ℓ2 : dec := 0




ℓ3 :

Which always terminates.
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Verification by Augmented Finitary Abstraction -
The Ranking Abstraction Method

To verify that ψ is D-valid,

• Optionally choose a non-constraining progress monitor FDS M and let
A = D ‖| M . In case this step is skipped, let A = D.

• Choose a finitary state abstraction mapping α and calculate Aα and ψα

according to the sound recipes.

• Model check Aα |= ψa.

• Infer D |= ψ.

Claim 2. The Ranking Abstraction method is complete, relative to deductive
verification [KP00].

That is, whenever there exists a deductive proof of D |= ψ, we can find a finitary
abstraction mapping α and a non-constraining progress monitor M , such that
Aα |= ψa. Constructs α and M are derived from the deductive proof.
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Computing the Abstraction within a Symbolic Model Checker

For some simple infinite domains, it is possible to decide satisfiability (validity)
by boolean methods. For such domains, it is possible to compute and apply the
abstraction, all within a single session of the model checker.
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A Poor Man’s Decision Procedure

Consider system variables:

N : natural
z1, . . . , zn : 1..N

An EA-assertion is a formula of the form ϕ : ∃~x∀~y.p(~x, ~y, ~u), where p is a boolean
combination of atomic formulas of the form zi < zj.
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Small Model Theorem

Claim 3.
Assertion ϕ = ∃~x∀~y.p(~x, ~y, ~u) is satisfiable iff ϕ is satisfiable in a model of size
≤ N0 = |~x| + |~u|.

Proof:
Assume ϕ is satisfiable in a model M1 of size N1 > N0. We show how to construct
a satisfying model M2 of size N2 ≤ N0.

Let v1 < v2 < · · · < vk be all the distinct values assumed by ~x, ~u in model M1.
Obviously k ≤ N0. We construct a model M2 of size k.

For every z ∈ ~x ∪ ~u, let

M2[z] = j iff M1[z] = vj

We can show that M2 |= ϕ
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Truncation of Infinite-state Systems

Let P be a (potentially) infinite-state program. Denote by ⌊P ⌋
N

the N -truncated
version of P obtained by restricting all integer variables to the subrange −N..N
(or 0..N for naturals) and all array bounds to N .

Let α be a finitary abstraction mapping and R a ranking augmentation which is
a conjunction of expression of the form inc′ = sign(δ′ − δ).

An abstraction problem (P,α,R) is called truncatable if there exists a natural
N > 0 such that

α(P ‖| R) ∼ α(⌊P ⌋
N
‖| R)

Claim 4. If all assertions occurring within α, R, and the FDS of P are EA-
assertions, then (P,α, δ) is truncatable.

The value of N is determined as he maximal |~x|+ |~u| over all abstraction formulas.
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Abstracting Assertions and Transition relations

Let us recall the formulas expressing abstractions of assertions and transition
relations. Assume that the abstraction mapping is given by α : V

A
= Eα(V ) and let

p(V ) be an assertion over the concrete variables. The α-abstraction of p is given
by:

α(p)(V
A
) : ∃V (V

A
= Eα(V ) ∧ p(V ))

Next, consider a transition relation ρ(V , V ′). The α-abstraction of ρ is given by:

α(ρ)(V
A
, V ′

A
) : ∃V , V ′ : (V

A
= Eα(V ) ∧ V ′

A
= Eα(V ′) ∧ ρ(V , V ′))
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Shape Analysis by Ranking-Abstraction
Consider the REVERSE program:

ℓ0 :y := null ; ℓ1 :while x 6= null do ℓ2 :(x, y, x.n) := (x.n, x, y); ℓ3 :

We define the predicate reach(u, v) which means that there is a chain of next-links
leading from the node pointed to by u to the node to which v points.

One of the properties we would like to prove is

at−ℓ0 ∧ t 6= null ∧ reach(x, t) → (at−ℓ3 → reach(y, t))

We therefore assume the initial condition Θ : t 6= null ∧ reach(x, t), and verify the
invariance property

(at−ℓ3 → reach(y, t))

As a predicate base we take the following predicates:

x = null , t = null , reach(x, t), reach(y, t)

and use the following abstraction mapping:

x null = (x = null), t null = (t = null), r xt = reach(x, t), r yt = reach(y, t)
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The Abstracted Program

This leads to the following abstract program:

x null , t null , r xt , r yt : boolean where x null = t null = 0, r xt = 1
ℓ0 :r yt := t null
ℓ1 :while ¬x null do

ℓ2 :




(r xt , r yt) := case
¬r xt ∧ ¬r yt : (0, 0)
¬r xt ∧ r yt : {(0, 1), (1, 1)}
1 : {(0, 1), (1, 0), (1, 1)}

esac
x null := if r xt then 0 else {0, 1}




ℓ3 :

It is not difficult to verify (say by model checking) that

Π = 3 ⇒ r yt
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Proving Progress Properties

Reconsider the REVERSE program:

ℓ0 :y := null ; ℓ1 :while x 6= null do ℓ2 :(x, y, x.n) := (x.n, x, y); ℓ3 :

A relevant progress property of this program is that of termination, which can be
specified as

1 ⇒ (π = 3)

A possible way of solving the problem is that of augmentation, composing the
system with the following progress monitor:




inc : {−1, 0, 1}
compassion (inc < 0, inc > 0)
loop forever do

inc := sign(|{i | reach′(x, i)}| − |{j | reach(x′, j)}|)




It is possible to show that there exists a small model theorem which allows us to
compute the abstracted system by truncating the heap at size 7.
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First Attempt at Verification

*** Property is NOT VALID ***
Counter-Example Follows:
---- State no. 1 =
AS.Pi = 0, AS.xnull = 0, AS.rxt = 1, AS.ryt = 0,
AS.tnull = 0, AS.inc = -1,
---- State no. 2 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 1, AS.ryt = 0,
AS.tnull = 0, AS.inc = 0,
---- State no. 3 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 1, AS.ryt = 0,
AS.tnull = 0, AS.inc = 0,
---- State no. 4 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = -1,
---- State no. 5 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = 0,
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Repeating Period

---- State no. 6 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = 0,
---- State no. 7 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = -1,
---- State no. 8 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = 0,
---- State no. 9 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 1, AS.ryt = 1,
AS.tnull = 0, AS.inc = 1,
---- State no. 10 =
AS.Pi = 2, AS.xnull = 0, AS.rxt = 1, AS.ryt = 1,
AS.tnull = 0, AS.inc = 0,
---- State no. 11 =
AS.Pi = 1, AS.xnull = 0, AS.rxt = 0, AS.ryt = 1,
AS.tnull = 0, AS.inc = -1,
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What Went Wrong?

According to the counter-example, it is possible to take a transition which
causes the number of nodes reachable from x to increase. To see how this is
possible, we performed the following:

>> Let t1:= _s[1].t[1];
>> Let st := x!=nil & t!=nil;
>> Print st & t1 & next(inc)=1;
pi = 2,1 x = 4,4 y = 2,4 t = 4,4
Next[1] = 0,0 Next[2] = 0,0 Next[3] = 0,0 Next[4] = 4,2
inc = ,1

This shows that the number of x-reachable nodes can increase if one of these
nodes participate in a cycle.

To avoid this, we add the predicate

r xn = reach(x, null)

and added reach(x, null) to the initial condition.

Now it ran successfully!!!
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Automatic Refinement

An important element of finitary abstraction methods is the CEGAR methodology
(Counter-Example Guided Refinement) in which, we use spurious counter
examples in order to improve the abstraction.

In pure predicate abstraction, the CEGAR paradigm produces an improved
abstraction α.

For Ranking Abstraction based on (α,∆), an application of a CEGAR step may
yield:

• A true counter example.

• An improved α.

• An enhanced ranking core ∆̃ = ∆ ∪ {∆k}.

The paper A Modular Ranking Abstraction describes the application of this
extended refinement process.
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Characteristics of Our Approach to Shape Analysis

The main characteristics of our approach are:

• Computation of the abstract system is precise and is induced by lifting the state
abstraction mapping α.

• Due to ranking abstraction, the method can verify arbitrary LTL properties, not
only safety properties.

• We strongly rely on the reachability predicate reach(x, y).

• The method has its own version of the CEGAR paradigm.

• To achieve the above, we restrict our attention to shapes that have a decidable
EA theory. In particular, theories possessing a small model property.
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A Repertoire of Shapes to Which the Method is Applicable

So far, we successfully applied the method to the following classes of shapes:

• Structures in which every node has a single successor link.

• Single parent structures, including ordered and unordered trees.

• Some variants of cascaded single parent structures.
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Conclusions and Future Research

• For cases to which the method is applicable, it is very effective. However, the
set of these cases is restricted.

• Should consider a combination in which we may relax the requirement
of precise complete abstraction and allow over-approximation together with
precise abstraction.

• Find an appropriate SAT-based variant.

Shape Analysis by Ranking Abstraction, AHA’07, July 2007 30


