Symbolic Shape Analysis

Andreas Podelski, Thomas Wies

University of Freiburg, Germany
{podelski,wies}@informatik.uni-freiburg.de

Motivation

class SortedList {
private static Node first;
/+: public static specvar content :: objset;
vardefs "content == {v. v # null A next* first v}";
invariant "tree [next]";
invariant "V v. v € content A v.next # null
— v..Node.data < v.next.data"; =/
public static void insert(Node n)
/x: requires "n # null A n ¢ content"
modifies content
ensures "content = old content U {n}" x/

{
Node prev = null;
Node curr = first;
while ((curr !'= null) & (curr.data < n.data)) {
prev = curr;
curr = curr.next;
}
n.next = curr;
if (prev != null) prev.next = n;
else first = n;
}

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 2/39

Shape Analysis a la SRW

States are graphs

Define partitioning of nodes through node predicates
Abstract states are graphs of abstract nodes

Abstract nodes are equivalence classes of concrete nodes

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 3/39

Predicate Abstraction

Take transition graph (nodes are states)

Define partitioning of nodes through state predicates
Abstract transition graph is graph of abstract nodes
Abstract nodes are equivalence classes of concrete nodes

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 4/39

Motivation

shape analysis — 2predicate abstraction

reas Podelski, Thomas Wies Symbolic Shape Analysis 5/39

Why go symbolic?

dreas Podelski i ymbolic Shape Analysis 6/3

Motivation

Apply not only idea, but also
techniques of predicate abstraction.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 7139

Shape Analysis is tough!

it is not about constructing a finite abstraction of the transition graph
(whose nodes are finite abstractions of graphs)

it is about constructing an abstraction of the post operator, i.e. of a
transformer of infinite sets of graphs

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 8/39

Generic Benefits of Predicate Abstraction

o use formulae to represent infinite sets of states
no need to define meaning of abstract values
abstract domain C concrete domain

abstraction = entailment =

logical operators more rich than lattice operators

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 9/39

Generic Benefits of Predicate Abstraction

o use formulae to represent infinite sets of states
¢ no need to define meaning of abstract values
e abstract domain C concrete domain
o abstraction = entailment |=
e logical operators more rich than lattice operators
e use reasoning procedures
e automation
e separation of concerns (black-boxing)
e soundness by construction, loss of precision identifiable
e get leverage from theorem proving and formal methods
e abstraction = provable entailments

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 9/39

Generic Benefits of Predicate Abstraction

o use formulae to represent infinite sets of states
¢ no need to define meaning of abstract values
e abstract domain C concrete domain
o abstraction = entailment |=
e logical operators more rich than lattice operators
e use reasoning procedures
e automation
e separation of concerns (black-boxing)
e soundness by construction, loss of precision identifiable
e get leverage from theorem proving and formal methods
e abstraction = provable entailments
e abstraction refinement
e more automation
e symbolic execution of counter-examples
e abstract domain C refined abstract domain

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 9/39

How can we make shape analysis symbolic?

Which class of formulae to represent infinite sets of graphs?

Can we construct an abstract post by defining it locally, i.e. on
node predicates P?

formula = weakest precondition(P)

What is a predicate transformer for node predicates?
Can we again use Cartesian abstraction?

Should we again use Cartesian abstraction?

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 10/39

Outline

@ Boolean heaps (abstract domain)

@ Cartesian post (abstract transformer)

© Abstraction refinement

@ Bohne - implementation of symbolic shape analysis

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 11/39

Boolean Heaps

Boolean Heaps

Partition heap according to finitely many predicates on heap objects.

Pi={v|v=x} P={v|v=null} P3={v|next*(x,v)}

—P1 A =Py AP3

xt ‘ next _ next

Describe partitioning as a universally quantified formula

VV.P1A=Po APy Vv V =P AP AP3

O Boolean heaps

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 12/39

Boolean Heaps

Abstract domain = {sets of Boolean heaps}

Abstract element

Boolean heap

\i/VV. \/ /k\ Pi,j,k(V) abstract node

i

abstract node V.

Boolean heap

set of Boolean heaps

<
\.

-

set of Boolean heaps

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 13/39

Boolean Heaps

Symbolic shape analysis
\/VV. \/ /\ Pi’j’k(V)
i k

j
N——— .
abstract node 0O sets of sets of bit-vectors

—~—
Boolean heap

(. 7

—~—
set of Boolean heaps

Predicate abstraction
VAP
j

i .
—_—— [0 sets of bit-vectors
abstract state

sets of abstract states

0 Boolean heaps provide extra precision needed for shape analysis.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 14/39

Abstract Post on Boolean Heaps

How to compute abstract post on Boolean heaps?

post? (H) = ?

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 15/39

Abstract Post on Boolean Heaps

How to compute abstract post on Boolean heaps?

post™ (H) = a o post o y(H)

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 15/39

Abstract Post on Boolean Heaps

How to compute abstract post on Boolean heaps?

post™ (H) = a o post o y(H)

post? = clean o CartesianPost o split

o split ~ focus
e clean = coerce

Next slides: CartesianPost.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 15/39

Cartesian Post

Abstract Post on Boolean Heaps

Pir={v|v=x} Py={v|next"(v,null)} P3={v]|next"(x,v)}

=P1 AP>AP3

Xt . next . next ‘

Vv.Pi AP APV

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 16 /39

Cartesian Post

Abstract Post on Boolean Heaps

Pi={v|v=x} Py={v|next*(v,null)} Ps={v]|next"(x,v)}

=P1 AP>AP3
N . next . next ‘
aopost.oy(Vv. P AP /APy v)

for command ¢ = (x: =x. next)

-P1 AP>AP3

Xt . next ‘

VYV.P1AP2A=Ps VvV PL AP APs vV

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 16 /39

Cartesian Post

Abstract Post on Boolean Heaps

Pi={v|v=x} Py={v|next'(v,null)} P3z={v]|next"(x,v)}

P1 AP2AP3 —P1 AP2AP3
@ next /~ O\ next / O\ next @
CartesianPost¢(V V. V)

for command ¢ = (x: =x. next)

P> A P3
xt_(*) _next (") next @
_/ N

VVv.-P1AP>A=P3 VvV PoAP3

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 16 /39

Cartesian Post

CartesianPost(Vv. \/ C)

=vv. \/ A{P|C = wip(P)}

Cartesian Post

Compute effect of heap updates locally
o for each abstract object C;
¢ and independently for each heap predicate P

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 17/39

Cartesian Post

CartesianPost(Vv. \/ C)

I
=vv. \/ A{P|C Ewp(P)}
i
In practice: precompute abstract weakest preconditions
wip#(P) = \/{ ¢ € BoolExp(Pred) | ¢ = wip(P) }

Cartesian Post

Compute effect of heap updates locally
o for each abstract object C;
« and independently for each heap predicate P

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 17/39

Cartesian Post

CartesianPost(Vv. \/ C)

=vv. \/ A{P|C Ewp(P)}
i
In practice: precompute abstract weakest preconditions
wip#(P) = \/{ ¢ € BoolExp(Pred) | ¢ = wip(P) }

Cartesian Post

Same advantages as for predicate abstraction:
[1 abstraction reduced to checking verification conditions
] requires O(n¥) decision procedure calls (in practice)
] abstract transformer computed once for the whole analysis
[best abstract post can be computed from Cartesian post.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 17/39

Cartesian Post

What is wip(P)?

where P is not an assertion on states, but defined by a formula in a
variable v ranging over nodes, such as next*(x, V)

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 18/39

Node Predicates

Denotation of a formula with a free variable v;

[next(v) =z] = Ase State. {0 € Obj | nexts 0 = % }
or [next(v) =z = Ao € Obj. {s€ State | nexts 0 = z }

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 19/39

Node Predicates

Denotation of a formula with a free variable v;

[next(v) =z] = Ase State. {0 € Obj | nexts 0 = % }
or [next(v) =z = Ao € Obj. {s€ State | nexts 0 = z }

Node predicates

NodePred & Obj — 25tae
[¢(v)] = Xo.{se State |s,[v— 0] = #(v) }

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 19/39

Node Predicate Transformers

Remember: NodePred = Obj — 25tate,

Lift predicate transformers post and wlp to node predicates.

lit e (25@ _, 25t _, NodePred — NodePred
it 7p = Xo.7(po)

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 20/39

Node Predicate Transformers

Remember: NodePred = Obj — 25tate,

Lift predicate transformers post and wlp to node predicates.

lit e (25@ _, 25t _, NodePred — NodePred
it 7p = Xo.7(po)

Node predicate transformers :
hpost,hwlp € Com — NodePred — NodePred
hpost ¢ it (post c)

hwip ¢ & Jift (wip ¢)

Andreas Podelski, Thomas Wies

Symbolic Shape Analysis 20/39

Outline

@ Boolean heaps (abstract domain)

@ Cartesian post (abstract transformer)

® Abstraction refinement

@ Bohne - implementation of symbolic shape analysis

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 21/39

Counter-Example based Abstraction Refinement

Abstract error trace

C assert(Vv.
|VV.¢0I Co [vv.g | VV¢2|—>| I ¢)

YV.d3 EVV. ¢
assertion fails

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 22/39

Counter-Example based Abstraction Refinement

Abstract error trace

C assert(Vv.
|VV.¢0I Co [vv.g | VV¢2|—>| I 9)

VV. g2 l# W|pC2(VV. ¢)
backwards analyze error trace

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 22/39

Counter-Example based Abstraction Refinement

Abstract error trace

| WAl % e X3 assert(vv. ¢)

VV' ¢1 ': Wlpcl;Cz (VV QS)
error trace is spurious

Refinement: add atoms of weakest preconditions along the path as
new predicates.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 22/39

Counter-Example based Abstraction Refinement

Abstract error trace

| V.o HF’| R R ey assert(vv. ¢)

VV' ¢1 ': Wlpcl;Cz (VV QS)
error trace is spurious

Refinement: add atoms of weakest preconditions along the path as
new predicates.

Theorem (Progress)

If analysis is based on best abstract post then refinement step
eliminates spurious error trace.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 22/39

Abstraction Refinement

Progress property holds for best abstract post,
but does not hold for Cartesian post.
o Folklore says: best abstract post does not pay off.

e Theory says: best abstract post does pay off in the presence of
abstraction refinement.

e Practice says: yes, it does indeed.

But: we have to efficiently implement best abstract post.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 23/39

Abstraction Refinement

Implementing the Best Abstract Post

Cleaning operator: clean

Semantics: clean = a oy
Effect: strengthens Boolean heaps by removing unsatisfiable abstract

objects.
next ‘

X#V X#£V
y#V y=v
null # v null = v
next*(x, v) next” (x, v)
next*(y, v) next*(y, v)

Symbolic Shape Analysis 24/39

Andreas Podelski, Thomas Wies

Abstraction Refinement

Implementing the Best Abstract Post

Pi={v|v=x} Py={v|next'(v,null)} Pz={v]|next"(x,v)}

—P1 AP> A P3

xt . next . next ‘

command ¢ = (X: =X. next)

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 25/ 39

Abstraction Refinement

Implementing the Best Abstract Post

Pi={v|v=x} Py={v|next'(v,null)} Pz={v]|next"(x,v)}

-P1 AP>AP3

. = ‘
. = ‘

~PLAP,APS

command ¢ = (X: =X. next)

Pi={v|v=next(x)} P,={v|next*(v,null)} P;={v]|next™(x,v)}

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 25/ 39

Abstraction Refinement

Implementing the Best Abstract Post

Pi={v|v=x} Py={v|next'(v,null)} Pz={v]|next"(x,v)}

Xt ‘ next ‘

~P APy AP,

command ¢ = (X: =X. next)

Pi={v|v=next(x)} P,={v|next*(v,null)} P;={v]|next™(x,v)}

But it is exponential in number of predicates. ..

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 25/39

Implementing the Best Abstract Post

First compute Cartesian post and then clean.

Implementation of post?

Given Boolean heap H = Vv. ¢ over predicates Pred
@ for each predicate P € Pred consider a new predicate P’ with
P’ = wip(P)
® compute Ho = VV. A ApecpregWIPE (P) — P)
© compute H; = clean[Pred U Pred’](Ho)
O compute Hy = (3Pred.H;)[Pred/Pred’]
then we have H, = post# (H).

Best abstract post efficient when exploiting pre-computed Cartesian
post.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 26/39

Abstraction Refinement

Bohne’s Abstraction Refinement Loop

Bohne

analyze Ifp reached
current abstract :>
symbolic shape analysis reachabiliy tree y

error found

spurious

counter-example

predicates
found?

Two refinements within lazy abstraction

@ add new predicates

® switch from Cartesian post to best abstract post

Andreas Podelski, i Symbolic Shape Analysis 27139

Outline

@ Boolean heaps (abstract domain)

@ Cartesian post (abstract transformer)

© Abstraction refinement

@ Bohne - implementation of symbolic shape analysis

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 28/39

Bohne

class SortedList {
private static Node first;
/+: public static specvar content :: objset;
vardefs "content == {v. v # null A next* first v}";
invariant "tree [next]";
invariant "V v. v € content A v.next # null
— Vv..Node.data < v.next.data"; =/
public static void insert(Node n)
/x: requires "n # null A n ¢ content"
modifies content
ensures "content = old content U {n}" x/

{

Node prev = null;

Node curr = first;

while ((curr !'= null) & (curr.data < n.data)) {
prev = curr;
curr = curr.next;

}

n.next = curr;

if (prev != null) prev.next = n;
else first = n;

Andreas Podelski, Thomas Wies Symbolic Shape Analysis

Bohne

Bohne, Symbolic Shape Analysis Implementation

Properties verified in previous example:
o correctly inserts the element into the list
(relates pre- and post states of procedure)
e list remains sorted
o data structure remains acyclic list
¢ no null pointer dereferences

e accepts annotated Java programs as input
e annotations are user-specied formulae:

e data structure invariants
e procedure contracts (pre- and post conditions)

e automatically computes quantified loop invariants
e proves desired properties and absence of errors

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 30/39

Bohne

List Reversal

‘ ‘ next ‘ next ’ next . method entry
‘ ‘ next ‘ next . next . . loop entry
‘M‘ ‘ next. next . 1. loop iter.
‘ next‘ next‘ ‘M ... 2. loopiter.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 31/39

Bohne

List Reversal

2
8,

‘ next ‘ next ’ next .. method entry
2
8,

‘ next ‘ next . next . . loop entry
2
NG

‘ next ‘ next. next . 1. loop iter.
)
NG

‘ next next‘ ‘M ... 2. loop iter.

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 31/39

Bohne

Some Experimental Results

‘ benchmark ‘ used DP ‘ # predicates ‘ # validity checker calls | running time
total (cache hits) total (DP)

DLL.addLast MONA 7 118 (19%) 25 (69%)
List.reverse MONA 10 465 (33%) 7s (64%)
SortedList.add MONA, CVC lite 17 623 (56%) 14s (59%)
Skiplist.add MONA 20 787 (44%) 265 (57%)
Tree.add MONA 13 358 (31%) 31s (92%)
ParentTree.add MONA 13 362 (32%) 33s (91%)

No manually supplied predicates in any of the examples.

Checked properties include

e procedure contracts: elements are inserted into/removed from the
data structure

e data structure consistency: sortedness, treeness
e absence of errors: null pointer dereferences

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 32/39

Conclusion

Bohne - symbolic shape analyzer

o verifies complex user-specified properties of Java programs

e procedure contracts
e data structure invariants

e infers loop invariants automatically

e disjunctions of universally quantified Boolean combinations of
predicates on heap objects
e predicates are inferred automatically

Future Work

¢ specialized reasoning procedures for lists/trees
¢ exploit combinations of reasoning procedures
» abstraction refinement with interpolation

Andreas Podelski, Thomas Wies Symbolic Shape Analysis 33/39

	Motivation
	Symbolic Shape Analysis
	Boolean Heaps
	Cartesian Post
	Abstraction Refinement
	Bohne
	Conclusion

