
Shape Analysis with 
Tracked Cells

Radu Rugina
Cornell University

2 July 2007



Radu Rugina AHA ‘07

Motivation

• Informal definition: 

shape analysis = accurate heap analysis

• Many potential uses:

– Program verification 

– Automatic parallelization

– Memory management

– Scalable error detection

• Shape analyses are considered expensive

– mostly used for verification

• This talk: practical shape analysis



Radu Rugina AHA ‘07

Why Is It Difficult?

• Reason 1: Unbounded number of heap cells
– No lexical scopes to bound their lifetimes

• Reason 2: Destructive updates
– Structure invariants temporarily invalidated

• Reason 3: Inter-procedural interactions, recursion
– Inter-procedural reasoning is difficult and expensive

– Main scalability obstacle

• Many challenges, many possible solutions
– That’s why we’re here today!



Radu Rugina AHA ‘07

Overview

• Quick background

• Shape analysis with tracked cells

• Applications

• Future directions

• Conclusions



Radu Rugina AHA ‘07

Flow-Sensitive Analysis

• Shape analysis is inherently a flow-sensitive analysis
– E.g., abstract interpretation or dataflow analysis

• Use a memory abstraction, analyze each statement

Memory 
Abstraction

before

Memory 
Abstraction

after
y->n = t



Radu Rugina AHA ‘07

Abstraction: Shape Graph

• Shape analysis is inherently a flow analysis
– E.g., abstract interpretation or dataflow analysis

• Use a memory abstraction, analyze each statement

• Shape graph = finite graph abstraction

y->n = tx

y

t ø
rc=1

x

y

t ø
rc=1



Radu Rugina AHA ‘07

Global Abstractions

• Global heap abstractions don’t scale well

• Intra-procedural analysis is heavyweight

– Several abstract heaps per point

• Inter-procedural shape analysis is expensive

– Must propagate abstractions across procedures

– Efficient inter-procedural analysis is a challenge

Claim: need local abstractions and analyses to 
achieve scalability



Shape Analysis with 
Tracked Cells 

[POPL’05, ISMM’06, VMCAI’07] 



Radu Rugina AHA ‘07

Single Cell Abstraction

• The idea: abstract and analyze one heap cell at a time
– Not the entire heap

• Local abstraction: describe the state of one cell
– Called a “configuration”
– No knowledge about the rest of the heap
– Use reference counting to express heap shapes

• Local reasoning: analyze one cell at a time
– Algorithms are easier, more efficient



Radu Rugina AHA ‘07

A concrete list:

Example

x

y

struct list {

int d;

struct list *n;

} *x, *y;



Radu Rugina AHA ‘07

A concrete list:

Abstraction:

Example

x

y



Radu Rugina AHA ‘07

A concrete list:

Abstraction:

Example

(x1)

x

y



Radu Rugina AHA ‘07

A concrete list:

Abstraction:

Example

(x1)

(y1n1)

x

y



Radu Rugina AHA ‘07

A concrete list:

Abstraction:

Example

(x1)

(y1n1, + x->n)

x

y



Radu Rugina AHA ‘07

A concrete list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y



Radu Rugina AHA ‘07

A concrete list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y



Radu Rugina AHA ‘07

A concrete list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y

“x and y point to
the first two cells 
in an acyclic and
unshared list”



Radu Rugina AHA ‘07

A cyclic list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y



Radu Rugina AHA ‘07

A cyclic list:

Abstraction:

Example

(n2, - x->n)

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y



Radu Rugina AHA ‘07

A cyclic list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

(n2, - x->n)

x

y



Radu Rugina AHA ‘07

Analyzing List Reversal

List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

Show that:

returned list y is acyclic

if input list x is acyclic

List x is acyclic:

(x1) : list head

(n1) : list tail



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

Abstraction Heap Cell

x



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1 x

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

x1 x

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

x1

x1 x

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

x1

x1

x1y1
y

x

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
x1y1

x1

x1

x1

y1 y

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
x1y1

x1

x1

x1

y1

x

Abstraction Heap Cell

y



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

?->nn1

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

?->nn1

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

t1n1

+ x->n

n1

- x->n

n1 ?->n

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

t1n1

+ x->n

n1

- x->n

n1

x->n

t

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

t1n1

+ x->n

n1

- x->n

n1

t1 t

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
t1

t1x1

t1n1

+ x->n

n1

- x->n

n1

t1

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
t1

t1x1

n1

- x->n

n1

t1n1

+ x->n

n1

- x->n

n1

t1n1

- x->n

Abstraction Heap Cell



Radu Rugina AHA ‘07

Analysis Result
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

x1 n1

x1 n1t1 n1

x1 t1 n1

x1y1 t1

y1 t1x1

t1x1

n1

n1

x1 n1

y1 n1

y1

y1

y1n1



Radu Rugina AHA ‘07

Analysis Result
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

x1 n1

x1 n1t1 n1

x1 t1 n1

x1y1 t1

y1 t1x1

t1x1

n1

n1

x1 n1

y1 n1

y1

y1

y1n1



Radu Rugina AHA ‘07

Property Verified
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

Acyclic input

Acyclic output

x1 n1

x1 n1t1 n1

x1 t1 n1

x1y1 t1

y1 t1x1

t1x1

n1

n1

x1 n1

y1 n1

y1

y1

y1n1



Radu Rugina AHA ‘07

Inter-Procedural Analysis

• Context-sensitive analysis

• Procedure summaries: map each input configuration set 
of corresponding output configurations

foo()

input output



Radu Rugina AHA ‘07

Inter-Procedural Analysis

• Context-sensitive analysis

• Procedure summaries: map each input configuration set 
of corresponding output configurations

n1
reverse() n1

y1

x1
reverse()

y1Summary 1: 

Summary 2:



Radu Rugina AHA ‘07

Inter-Procedural Analysis

• Efficient: reuse previous analyses of functions

– Match individual configurations

• Not entire heap abstractions 

– Works even if there is only partial overlap

Reuse

Abstraction at
a call site

Abstraction at
a different call site 



Radu Rugina AHA ‘07

Extensions

• Local abstraction and analysis for doubly-linked 
lists [VMCAI’07]
– Describe the state of one cell and its neighbors
– Captures local structural invariants

• Analysis by contradiction [SAS’06]
– Backward heap dataflow analysis
– Tracks the state of single cells backwards



Applications



Radu Rugina AHA ‘07

Heap Error Detection

• Goal: find memory errors in C programs [POPL’05] 

• Extend configurations with a boolean flag F
– F is true when the cell has been freed

• Dangling pointer access *e if:
– e may hit a configuration with F = true

– Same for double free’s

• Memory leak if:
– A configuration has all reference counts zero

– And F flag is false



Radu Rugina AHA ‘07

Heap Error Detection

• Methodology 
– Analyze each allocation site in turn

– Track cells from allocation point

– Use fixed exploration budget per allocation site

• Results:
– Open-source programs: OpenSsh, OpenSsl, binutils

– Analyzed 70 KLOC in 2 minutes

– 98 warnings

– 38 errors found

• Analysis scales and is applicable to larger programs



Radu Rugina AHA ‘07

Memory Management

• Static reclamation of heap objects [ISMM06]
– Compile-time program transformation for garbage collected 

languages (e.g., Java)

– Insert “free” statements 

– Useful for real-time and embedded systems

– Can be integrated with mark-sweep garbage collection

• Results:
– SpecJVM98 benchmarks + Java library code

– Analysis takes about 3 min per 2000 methods

– Analysis can reclaim more than 50% of the total memory



Concluding Remarks



Radu Rugina AHA ‘07

Current and Future Directions

• Shape analysis versus types: 

– Unique types and uniqueness inference [ISMM’07]

– Connecting shape analysis and general alias types

• Multithreaded heap analysis

– Use local reasoning about shared heap cells

• Refinement-based error detection 

– Gradually use more sophisticated analyses

– Heap analysis via guarded value-flow analysis [PLDI’07]



Radu Rugina AHA ‘07

tx Shape Graphs/TVLA
[Sagiv et al. ’96,’99]

ls(x,t) * ls(t,nil) Separation Logic 
[Distefano et al. ’06, Gotsman et al. ’06]

Tracked Cells
[Hackett,Rugina’05, Cherem,Rugina’06]

n1 t1n1x1

(all heap)

(list segments)

(single location)

Local

Global

Comparison

Procedure-local heaps 
[Sagiv et al, ‘05]



Radu Rugina AHA ‘07

Acknowledgements

Brian Hackett 

Siggi Cherem 

Lonnie Princehouse

Maksim Orlovich

http://www.cs.cornell.edu/~rugina/satc

http://www.cs.cornell.edu/projects/crystal



Radu Rugina AHA ‘07

Conclusions

• Practical shape analysis

– Local abstraction of single heap cells

– Local reasoning and analysis

– Inter-procedural analysis

– Analyses scale to larger applications

• Applications:

– Heap shape verification

– Find heap errors in larger programs

– Memory management transformations


