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Motivation

• Informal definition: 

shape analysis = accurate heap analysis

• Many potential uses:

– Program verification 

– Automatic parallelization

– Memory management

– Scalable error detection

• Shape analyses are considered expensive

– mostly used for verification

• This talk: practical shape analysis
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Why Is It Difficult?

• Reason 1: Unbounded number of heap cells
– No lexical scopes to bound their lifetimes

• Reason 2: Destructive updates
– Structure invariants temporarily invalidated

• Reason 3: Inter-procedural interactions, recursion
– Inter-procedural reasoning is difficult and expensive

– Main scalability obstacle

• Many challenges, many possible solutions
– That’s why we’re here today!
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Overview

• Quick background

• Shape analysis with tracked cells

• Applications

• Future directions

• Conclusions
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Flow-Sensitive Analysis

• Shape analysis is inherently a flow-sensitive analysis
– E.g., abstract interpretation or dataflow analysis

• Use a memory abstraction, analyze each statement

Memory 
Abstraction

before

Memory 
Abstraction

after
y->n = t
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Abstraction: Shape Graph

• Shape analysis is inherently a flow analysis
– E.g., abstract interpretation or dataflow analysis

• Use a memory abstraction, analyze each statement

• Shape graph = finite graph abstraction

y->n = tx

y

t ø
rc=1

x

y

t ø
rc=1
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Global Abstractions

• Global heap abstractions don’t scale well

• Intra-procedural analysis is heavyweight

– Several abstract heaps per point

• Inter-procedural shape analysis is expensive

– Must propagate abstractions across procedures

– Efficient inter-procedural analysis is a challenge

Claim: need local abstractions and analyses to 
achieve scalability



Shape Analysis with 
Tracked Cells 

[POPL’05, ISMM’06, VMCAI’07] 
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Single Cell Abstraction

• The idea: abstract and analyze one heap cell at a time
– Not the entire heap

• Local abstraction: describe the state of one cell
– Called a “configuration”
– No knowledge about the rest of the heap
– Use reference counting to express heap shapes

• Local reasoning: analyze one cell at a time
– Algorithms are easier, more efficient
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A concrete list:

Example

x

y

struct list {

int d;

struct list *n;

} *x, *y;
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A concrete list:

Abstraction:

Example

x

y
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A concrete list:

Abstraction:

Example

(x1)

x

y
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A concrete list:

Abstraction:

Example

(x1)

(y1n1)

x

y
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A concrete list:

Abstraction:

Example

(x1)

(y1n1, + x->n)

x

y
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A concrete list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y
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A concrete list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y
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A concrete list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y

“x and y point to
the first two cells 
in an acyclic and
unshared list”
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A cyclic list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y
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A cyclic list:

Abstraction:

Example

(n2, - x->n)

(x1)

(n1, - x->n)

(y1n1, + x->n)

x

y
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A cyclic list:

Abstraction:

Example

(x1)

(n1, - x->n)

(y1n1, + x->n)

(n2, - x->n)

x

y
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Analyzing List Reversal

List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

Show that:

returned list y is acyclic

if input list x is acyclic

List x is acyclic:

(x1) : list head

(n1) : list tail
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

Abstraction Heap Cell

x
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1 x

Abstraction Heap Cell



Radu Rugina AHA ‘07

Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

x1 x

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

x1

x1 x

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

x1

x1

x1

x1y1
y

x

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
x1y1

x1

x1

x1

y1 y

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
x1y1

x1

x1

x1

y1

x

Abstraction Heap Cell

y
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

?->nn1

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

?->nn1

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

t1n1

+ x->n

n1

- x->n

n1 ?->n

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

t1n1

+ x->n

n1

- x->n

n1

x->n

t

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;

t1n1

+ x->n

n1

- x->n

n1

t1 t

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
t1

t1x1

t1n1

+ x->n

n1

- x->n

n1

t1

Abstraction Heap Cell
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Loop Body Analysis

t = x->n;

x->n = y;

y = x;

x = t;
t1

t1x1

n1

- x->n

n1

t1n1

+ x->n

n1

- x->n

n1

t1n1

- x->n

Abstraction Heap Cell
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Analysis Result
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

x1 n1

x1 n1t1 n1

x1 t1 n1

x1y1 t1

y1 t1x1

t1x1

n1

n1

x1 n1

y1 n1

y1

y1

y1n1
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Analysis Result
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

x1 n1

x1 n1t1 n1

x1 t1 n1

x1y1 t1

y1 t1x1

t1x1

n1

n1

x1 n1

y1 n1

y1

y1

y1n1
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Property Verified
List *reverse(List *x) {

List *t, *y;

y = NULL;

while (x != NULL) {

t = x->n;

x->n = y;

y = x;

x = t;

}

return y;

}

Acyclic input

Acyclic output

x1 n1

x1 n1t1 n1

x1 t1 n1

x1y1 t1

y1 t1x1

t1x1

n1

n1

x1 n1

y1 n1

y1

y1

y1n1
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Inter-Procedural Analysis

• Context-sensitive analysis

• Procedure summaries: map each input configuration set 
of corresponding output configurations

foo()

input output
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Inter-Procedural Analysis

• Context-sensitive analysis

• Procedure summaries: map each input configuration set 
of corresponding output configurations

n1
reverse() n1

y1

x1
reverse()

y1Summary 1: 

Summary 2:
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Inter-Procedural Analysis

• Efficient: reuse previous analyses of functions

– Match individual configurations

• Not entire heap abstractions 

– Works even if there is only partial overlap

Reuse

Abstraction at
a call site

Abstraction at
a different call site 
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Extensions

• Local abstraction and analysis for doubly-linked 
lists [VMCAI’07]
– Describe the state of one cell and its neighbors
– Captures local structural invariants

• Analysis by contradiction [SAS’06]
– Backward heap dataflow analysis
– Tracks the state of single cells backwards



Applications
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Heap Error Detection

• Goal: find memory errors in C programs [POPL’05] 

• Extend configurations with a boolean flag F
– F is true when the cell has been freed

• Dangling pointer access *e if:
– e may hit a configuration with F = true

– Same for double free’s

• Memory leak if:
– A configuration has all reference counts zero

– And F flag is false
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Heap Error Detection

• Methodology 
– Analyze each allocation site in turn

– Track cells from allocation point

– Use fixed exploration budget per allocation site

• Results:
– Open-source programs: OpenSsh, OpenSsl, binutils

– Analyzed 70 KLOC in 2 minutes

– 98 warnings

– 38 errors found

• Analysis scales and is applicable to larger programs
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Memory Management

• Static reclamation of heap objects [ISMM06]
– Compile-time program transformation for garbage collected 

languages (e.g., Java)

– Insert “free” statements 

– Useful for real-time and embedded systems

– Can be integrated with mark-sweep garbage collection

• Results:
– SpecJVM98 benchmarks + Java library code

– Analysis takes about 3 min per 2000 methods

– Analysis can reclaim more than 50% of the total memory



Concluding Remarks
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Current and Future Directions

• Shape analysis versus types: 

– Unique types and uniqueness inference [ISMM’07]

– Connecting shape analysis and general alias types

• Multithreaded heap analysis

– Use local reasoning about shared heap cells

• Refinement-based error detection 

– Gradually use more sophisticated analyses

– Heap analysis via guarded value-flow analysis [PLDI’07]
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tx Shape Graphs/TVLA
[Sagiv et al. ’96,’99]

ls(x,t) * ls(t,nil) Separation Logic 
[Distefano et al. ’06, Gotsman et al. ’06]

Tracked Cells
[Hackett,Rugina’05, Cherem,Rugina’06]

n1 t1n1x1

(all heap)

(list segments)

(single location)

Local

Global

Comparison

Procedure-local heaps 
[Sagiv et al, ‘05]
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Conclusions

• Practical shape analysis

– Local abstraction of single heap cells

– Local reasoning and analysis

– Inter-procedural analysis

– Analyses scale to larger applications

• Applications:

– Heap shape verification

– Find heap errors in larger programs

– Memory management transformations


