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Abstract
In this paper we introduce a novel methodology for verifying a
large set of Java programs which builds on recent theoretical devel-
opments in program verification: it combines the idea of abstract
predicate families [24–26] and the idea of symbolic execution and
abstraction using separation logic [9]. The proposed technology has
been implemented in a new automatic verification system, called
jStar, which combines theorem proving and abstract interpretation
techniques.

We demonstrate the effectiveness of our methodology by using
jStar to verify example programs implementing four popular de-
sign patterns (subject/observer, visitor, factory, and pooling). Al-
though these patterns are extensively used by object-oriented de-
velopers in real-world applications, so far they have been highly
challenging for existing object-oriented verification techniques.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification; D.3.3 [Programming Languages]:
Language Constructs and Features—Classes and inheritance

General Terms Languages, Theory, Verification

Keywords Separation Logic, Modularity, Classes, Design Pat-
terns

1. Introduction
In the last few years specification and verification of object-oriented
programs have seen considerable advances thanks to the introduc-
tion of new technologies and tools which are becoming more ma-
ture [2, 6, 7, 10, 17, 30].

Despite this remarkable progress, real-world applications still
present challenging problems for the verification world. A noto-
rious example is given by design patterns [11], which are largely
used in practice, and yet, many of their intricate idioms are still far
beyond the reach of the current state of the art [16].

Some key challenges in verifying object-oriented programs are:

Properties across multiple objects We need to be able to express
properties about several interacting objects from many different
classes.
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Call-backs Methods often make calls that in turn will call the
original object. This schema can cause great difficulty when one
tries to verify it using class/object invariant based approaches.

Modular verification Verification must deal with a single class in
isolation. Adding new classes cannot invalidate the verification
of pre-existing classes, and changing implementations while
preserving specification should only require the re-verification
of the changed code.

In recent work, Parkinson and Bierman [25,26] proposed a mod-
ular verification technique that addresses these problems. Although
theoretically useful, this work has been criticised for not demon-
strating its practical utility by providing an automated tool [18,28].
In this paper we address this criticism, by automating these novel
theoretical foundations, and hence bringing them closer to being
applicable to real programs. We have extended the abstraction tech-
niques developed for separation logic [9] and married them with
these theoretical foundations. The resulting combination has given
encouraging practical results in the verification of four popular de-
sign patterns.

Contributions. The contributions of this paper can be summa-
rized as follows.

1. An automatic verification tool based on separation logic aiming
at object-oriented programs written in Java. The tool, called
jStar, integrates two essential parts:
• A (general) theorem prover for separation logic tailored to

object-oriented verification.
• A (general) symbolic execution and abstraction technique

for separation logic tailored to object-oriented verification.
With the help of our theorem prover, the abstract interpre-
tation is able to perform fixed-point computation on strong
properties resulting by the combination of heap information
as well as data contents. The loop invariant is guessed auto-
matically, minimizing the burden of verification.

2. We bring succinct separation logic specification to the world
of automatic object-oriented verification. Pre/post specs in our
specification language are simple. Even for intricate examples,
such us the observer and visitor patterns, which involves proper-
ties of complex heap-allocated objects, the pre/post are straight-
forward.

3. We provide experimental evidence of the effectiveness of our
approach by the automatic verification of four popular design
patterns (visitor, subject/observer, factory and pooling). These
patterns together are a serious challenge for any other state of
the art object-oriented verification technique because of their
intense use of aliased global state.



The paper is organized as follows. We start by introducing jStar
with a series of examples, §2. We begin with an easy illustrative
example and then present how we have verified the design patterns.
We then give details on the architecture of jStar §3, and then
introduce the theory behind the tool: the theorem prover §4, the
symbolic execution §5, and the abstraction techniques §6. We give
an overview of related work, §7, and future work §8. Finally, we
conclude in §9. j

2. jStar by Example
In this section we demonstrate the verification of a few simple
programs and several design patterns.

2.1 Cell/Recell — Inheritance
We begin by presenting a simple example of inheritance to illustrate
the key concepts behind jStar. Consider two classes Cell and Recell:

class Cell {
int val;

void set(int x) {
val=x;

}

int get() {
return val;

}
}

class Recell extends Cell {
int bak;

void set(int x) {
bak=super.get(); super.set(x);

}

int get() {
return super.get();

}
}

The Cell class has a val field, which is updated by the set method
and its value is returned by the get method. The subclass Recell has
an additional field bak, which stores the previous value the object
was set with.

To specify the Cell class, we use a property Val , which describes
a Cell’s contents. We define the following in the Cell’s specification:

define Val(x, {content= y}) = true | x.val 7→ y ;

NOTATION 1. This definition introduces our formulae, which are
divided into two parts Π|Σ. The Π part concerns facts about stack
variables and the Σ part about heap allocated objects. A formal
definition will be given in §4. Notice that Val does not place any
constraint on stack variables. Henceforth, we simply omit the Π
part when it is simply true as in the definition above.

The above definition defines Val(x, {content= y}) to mean that the
field val of object x has contents y, provided x is precisely of
dynamic type Cell. If x is not of this type, then this definition does
not constrain the meaning of the property, called abstract predicate
family [25]. One can view this like a method definition: a method
definition specifies the behaviour of a method for a single class, not
for all classes.

This definition also defines Val$Cell(x, {content= y}), which
can be used by any of Cell’s subclasses. It is independent of the
actual dynamic type of x , that is, it always asserts x ’s val field
contains y no mater the type of x . We refer to this second property
as the internal property as it corresponds precisely to the body of
the definition for a particular class. Formally, we have the following
two axioms:

type(x, Cell) =⇒
(Val(x, {content= y}) ⇐⇒ Val$Cell(x, {content= y}))

Val$Cell(x, {content= y}) ⇐⇒ true | x.val 7→ y

where type(x, Cell) means x is precisely of dynamic type Cell. The
first relates the internal property to the general property. Note that,
this does not specify the meaning of Val(x, {content= y}) if x is
not of dynamic type Cell. The second specifies the internal prop-
erty. This can be used to verify the class, but is not available when

verifying other classes. That is, other classes (including subclasses)
must be independent of the specific internal definition of the predi-
cate, but may mention the predicate abstractly.

For each method, we provide two types of specifications: static
and dynamic [7, 26]. The static specification is used to give a
precise specification of the code’s behaviour, while the dynamic
is used to give a more abstract view of how the method behaves.
More specifically, the static specification is used for super and
private calls and for verifying it is sound to inherit a method. The
dynamic specification is used for dynamic dispatch and hence must
be implemented by all subclasses (behavioural subtyping [20]).

We can now use these notions to specify the behaviour of the get
method:

int get():
static

pre: {| this.val 7→ X}
post: {X = return | this.val 7→ X};

dynamic
pre: {| Val(this, {content= X})}
post:{X = return | Val(this, {content= X})};

The first specification, the static specification, describes pre-
cisely how the method updates the val field.1 It has the precon-
dition

| this.val 7→ X

that specifies that the val field of this has the value X (a logical
variable2), and the postcondition

X = return | this.val 7→ X

specifies that the field still has the same value, and this value is
returned, X = return.

The second specification, the dynamic specification, describes
how the method alters the more abstract Val property, rather than the
concrete fields. This enables subclasses to satisfy this specification
while changing the concrete behaviour, that is, modifying different
fields.

NOTATION 2. For the sake of brevity, in the following we omit the
keywords “pre” and “post” since it is clear that the first formula
is the precondition and the second is the postcondition. Moreover,
in the following, we only explicitly indicate the static qualifier, and
it should be tacitly clear that the spec is dynamic when the static
qualifiers is not indicated.

We can make the static specification reveal less implementation
details by using the Val$Cell property.

int get() static:
{ | Val$Cell(this, {content= X̂}) }
{ X̂ = return | Val$Cell(this, {content= X̂}) };

This describes for all subclasses precisely what this method body
does, but it does not reveal the fields that are actually modified.

As this pattern of specification is common, we provide a short-
hand, which defines the dynamic specification given above, and the
second static specification, with the single specification.

int get():
{ | Val$(this, {content= X̂}) }
{ X̂ = return | Val$(this, {content= X̂}) };

By post-fixing a $ onto a property it means interpret as the standard
property in the dynamic specification, that is without the $, and as
the internal property for the current class in the static specification,
in this case Val$Cell.

1 In this case, the update of the method get() is the identity function.
2 Sometimes called auxiliary or ghost variable.



Hence, we can provide both specifications for set with:

void set(int x):
{ | Val$(this, {content= X̂}) }
{ | Val$(this, {content= x}) };

We must also specify the behaviour of the constructor:

void <init>():
{ | } { | Val$(this, {content= X̂}) }

This specification stipulates that constructing an object gives
Val(this, {content= X̂}), and from a subclass’s super constructor
call results in the internal property Val$Cell(this, {content= X̂}).
This enables subclasses to use this property without knowing its
meaning.

Now, we turn our attention to the Recell subclass. We must now
define what the Val property means for the Recell class.

define Val(x, {content= y; old= z}) =
| Val$Cell(x, {content= y}) ∗ x.bak 7→ z ;

If x is of type Recell, this defines Val(x, {content= y; old= z})
as the property associated to Val from the superclass Cell and the
additional bak field has value z . As we have defined the property
with an additional labelled parameter, old, we must also provide
a meaning to the property with only the content parameter. In
effect, we have width subtyping on the labelled parameters, where
missing parameters are existentially quantified. Hence, this defines
Val(x, {content= y}) for the Recell class as

Val$Cell(x, {content= y}) ∗ x.bak 7→ ẑ

where ẑ is an existentially quantified variable. Importantly, by con-
taining the Val$Cell property it allows the Recell to make super calls
to the Cell’s methods, and also inherit methods, as the precondition
of Val$Cell can be provided for the calls.

We can give the specifications for Recell directly.

void <init>(): { | } { | Val$(x, {content= y; old= z}) };

int get():
{ | Val$(this, {content= X̂; old= Ŷ }) }
{ X̂ = return | Val$(this, {content= X̂; old= Ŷ }) };

void set(int x):
{ | Val$(this, {content= X̂; old= Ŷ }) }
{ | Val$(this, {content= x; old= X̂}) };

We must verify that these specifications are valid behavioural sub-
types, which follows from width subtyping of labelled parame-
ters. j

2.2 Visitor Pattern
Next, we consider the visitor design pattern [11]. We present the
source code in Figure 1. Our example involves an abstract syntax
tree (Ast) of integer expressions, which are made of constant in-
teger nodes (Const), and plus nodes (Plus) that represent the addi-
tion of two integer expressions. The Ast interface requires that each
node can “accept” a Visitor.

The Visitor interface has two methods: visitC which is invoked
when visiting a Const node; and visitP for visiting Plus nodes. The
accept methods in the Const and Plus nodes simply call visitC and
visitP respectively.

We consider two concrete visitors in this section: Sum, an op-
eration that calculates the value of the integer expression; and RZ
an operation that simplifies the integer expression by removing all
the unnecessary additions of zero. The second is complicated by
working in-place and swinging pointers where necessary.

We begin by specifying the interfaces Visitor and Ast. We specify
these classes with respect to three abstract properties of the state:
Visitor , Ast and Visited . We do not specify what the properties
concretely mean as these are only interfaces, and subclasses are free
to choose definitions. Intuitively, Visitor(v, {context= ẑ}) means
that v is a visitor ready to visit an expression, and it has some in-
ternal data ẑ; Visited(v, {content= x̂; context= ẑ; ast= a}) means
that v is a visitor that has visited a tree at a with content x̂, and
the internal data of the visitor was ẑ before it visited this tree.
Ast(a, {content= x̂}) means a is an integer expression with con-
tent x̂. We can see these properties as specifying the protocol of the
visitor pattern.

We give the interfaces’ specifications as

interface Ast
{
void accept(Visitor v):

{ | Visitor(v, {context= ẑ}) ∗Ast(this, {content= x̂}) }
{ | Visited(v, {content= x̂; context= ẑ; ast= this}) };

}
interface Visitor
{
void visitC(Const c):

{ type(c, ”Const”)
| Visitor(this, {context= ẑ}) ∗Ast(c, {content= x̂}) }

{ | Visited(this, {content= x̂; context= ẑ; ast= c}) };

void visitP(Plus p):
{ type(p, ”Plus”)
| Visitor(this, {context= ẑ}) ∗Ast(p, {content= x̂}) }

{ | Visited(this, {content= x̂; context= ẑ; ast= p}) };
}

We see that accept will be called on an integer expression with a first
parameter that is a visitor, which is ready to visit an integer expres-
sion, and when it returns it specifies the visitor must have visited
this expression. The specification for visitP and visitC are almost
identical except that this and the parameter are reversed, and they
additionally have type information: for example, type(c, ”Const”),
which specifies that c is precisely of type Const. This type informa-
tion captures the double dispatch calling pattern used by the visitor.

To enable us to specify the data associated to the abstract syntax
tree, we use two term constructors plus( , ) and const( ). Using this
we can define the Ast property for the Const class as

export Ast(x, {content= y}) = y=const(v̂) | x.v 7→ v̂ ;

This means that x is an integer expression of a constant v̂, and
the v field contains that value. Here rather than using define to
specify the property, we use export this enables the verification of
other classes to use this definition, in particular, the visitors, which
depend on the internal representation for efficiency.

Similarly, we define Ast for the Plus class:

export Ast(x, {content= y}) = y=plus(l̂v, r̂v)

| x.left 7→ l̂ ∗Ast(l̂, {content= l̂v})
∗ x.right 7→ r̂ ∗Ast(r̂, {content= r̂v});

This means x is a plus of two integer expressions l̂v and r̂v, which
are contained in the Asts in the left and right fields respectively.

We specify the accept method for Const as (Plus omitted for
brevity)

void accept(Visitor):
{| Visitor(v, {context= ẑ}) ∗Ast(this, {content= x̂}) }
{| Visited(v, {content= x̂; context= ẑ; ast= this}) };

void accept(Visitor) static:
{ type(this, ”Const”) | Visitor(v, {context= ẑ})
∗ Ast(this, {content= x̂}) }

{ | Visited(v, {content= x̂; context= ẑ; ast= this}) };



interface Ast{
public void accept(Visitor v);

}

class Const implements Ast{
int v;

Const(int x) {this.v=x;}

public void accept(Visitor v){
v.visitC(this);

}
}

class Plus implements Ast{
Ast left,right;

Plus(Ast l, Ast r){
left=l;
right=r;

}

public void accept(Visitor v){
v.visitP(this);

}
}

interface Visitor{
public void visitC(Const c);
public void visitP(Plus p);

}

class Sum implements Visitor{
int amount;
public void visitP(Plus p){

p.left.accept(this);
p.right.accept(this);

}

public void visitC(Const c){
amount+=c.v;

}
}

class RZ implements Visitor{
boolean isZero;
boolean isChanged;
Ast newl;

public void visitC(Const c){
if(c.v==0)

this.isZero=true;
}

public void visitP(Plus p){
p.left.accept(this);
if(this.isZero) {

this.isChanged=false;
this.isZero=false;
p.right.accept(this);
if(!this.isChanged) {

this.newl=p.right;
this.isChanged=true;

}
}else{

if(this.isChanged){
p.left=this.newl;
this.isChanged=false;

}
p.right.accept(this);
if(this.isZero){

this.isChanged=true;
this.newl=p.left;
this.isZero=false;

}else if(isChanged){
p.right=this.newl;
this.isChanged=false;

}
}

}
}

Figure 1. An example of visitor pattern.

The dynamic specification is identical to the interfaces specifica-
tion, and the static specification is the same, but with the addition
of the dynamic type information. This type information is neces-
sary to verify the double dispatch calling pattern in the visitor pat-
tern. There is a great deal of redundancy in this specification, as it
is almost identical to the inherited specification from the interface.
The rest of the details of the specification are straightforward and
omitted for compactness.

Now we verify the concrete visitors, starting with the Sum vis-
itor. To specify the functional behaviour of this visitor we must
define a function that sums the integer expression:

sum(const(v)) = v

sum(plus(l, r)) = sum(l) + sum(r)

We can define the Visitor and Visited properties for this class as:

define Visitor(x, {context= y}) = | x.amount 7→ y;

define Visited(x, {content= z; context= y; ast= a}) =
| x.amount 7→ y + sum(z)
∗ Ast(a, {content= z});

The Visitor defines that the amount field has some pre-existing
value; and the Visited property defines that the amount field con-

tains the addition of the pre-existing value y and the summation
of the integer expression z . The Visited property also contains the
Ast that it has just read, this is necessary to allow other visitors
to update the structure (see the next example visitor). The method
specifications is straightforward and therefore omitted.

Now, we turn our attention to the second concrete visitor: RZ.
This visitor removes all the additions of zero from an expression.
Mathematically we first define a function rz that removes the zeros

rz (const(x)) = const(x)

rz (plus(x, y)) =

8><>:
rz (x) if rz (y)=const(0)

rz (y) if rz (x)=const(0)

plus(rz (x), rz (y)) otherwise

For example, rz (plus(const(0), plus(const(1), const(0)))) is
const(1), and rz (const(0)) is const(0).

The Visitor implementation is complicated by the in-place na-
ture of the update, that is the visitor does not allocate any new
storage nodes in the expression, it simply updates old ones. The
Visitor property simply states that the isZero and isChanged
fields are both initially set to false. The newl field can have any
arbitrary value, and this is indicated by the existentially quantified
value ẑ



import java.util.∗;
import java.sql.∗;

class DBPool{
LinkedList<Connection> conns;
String url,user,password;

DBPool(String url,String user, String password){
conns = new LinkedList<Connection>();
this.url = url;
this.user = user;
this.password = password;

}

public Connection getResource() throws SQLException{
if(conns.size()==0)

return DriverManager.getConnection(url,user,password);
return conns.removeFirst();

}

public void freeResource(Connection db) throws SQLException{
if(conns.size() >= 20)

db.close();
else

conns.add(db);
}

}

Figure 2. Database pool example

define Visitor(x, {context= y}) = |
x.isZero 7→ false()
∗ x.isChanged 7→ false()
∗ x.newl 7→ ẑ;

The Visited property is more complex:

define Visited(x, {content= z; context= y; ast= a}) =

| x.isZero 7→ îz

∗ x.isChanged 7→ îc

∗ x.newl 7→ âl

∗ (îc 6= false() | Ast(âl, {content= rz (z)})
|| îc = false() | Ast(a, {content= rz (z)}))

∗ (îz 6= false() ∧ rz (z) = const(zero()) | emp

|| îz = false() ∧ rz (z) 6= const(zero()) | emp);

We use || to mean disjunction, which combines two formula (both
a pure and spatial part) to give a spatial formula. We use emp for
the empty spatial formula. First, we relate the fields to existential
variables, so they can be used in the rest of an assertion. The next
part specifies if îz is true, then the content rz (z) is zero. If îz is
false, then it is not zero. Finally, we specify that if îc is true, then
âl contains the updated integer expression, otherwise the original
node a is the updated integer expression.

The RZ class highlights the potential compactness of the spec-
ifications. The code for this class is almost incomprehensible, yet
the two properties clearly express how the class works, and that it
satisfies the functional specification of rz . j

2.3 Connection Pool — Ownership Transfer
Next we present a simple example of a connection pool for a
database [12]. This example illustrates ownership transfer [23, 25],
that is when a connection is freed with freeResource it should no
longer be used. We present the source code in Figure 2.

The class has two methods: getResource and freeResource. The
first returns a pointer to an unused database connection. This
might have come from its internal cache of connections stored

in the linked list pointed to by the conns field, or it could be a
freshly allocated one from the database library. The second method,
freeResource, either closes the connection it is passed, or adds the
connection to its internal list of connections.

Next, we present the specification of these methods:

java.sql.Connection getResource():
{ | DBPool$(this, {type = t̂})}
{ | DBPool$(this, {type = t̂})
∗ DBConnection(return, {connection= t̂}) };

void freeResource(java.sql.Connection db):
{ | DBPool$(this, {type = t̂})
∗ DBConnection(db, {connection= t̂}) }

{ | DBPool$(this, {type = t̂}) };

The getResource() method’s pre-condition specifies we must have a
connection pool, DBPool , of some type t̂, and the postcondition
specifies that we still have this pool, but additional we are returned
a connection connected to t̂, DBConnection . Here t̂ is used to
represent the database connection strings (url, user and password).
Due to the underlying separation logic, we know this connection is
separate from any other connection in use.

The specification of freeResource is the converse, its precondition
specifies that you must have a pool and a connection, and the
postcondition specifies you only have the pool. Hence, once freeing
a connection you can no longer use the connection.

We can define the DBPool property as

define DBPool(x, {type=t}) = t=sql(ûrl, ˆuser, ˆpassword) |
x.url 7→ ûrl ∗
x.user 7→ ˆuser ∗
x.password 7→ ˆpassword ∗
x.conns 7→ ŷ ∗
LinkedList(ŷ, R̂) ∗DBSet(setof (R̂), t) ;

This defines that the fields that store the url , user and password
contain the right data, and that the conns fields contains ŷ, which
is a list with contents R̂, represented by the property LinkedList .
The function setof converts a list into a multiset. We use a special
predicate DBSet to represent that each value in the list points to a
database connection. We discuss the precise details of this predicate
later in the paper. j

2.4 Factory Pattern
The database connection pool in the previous section could be re-
factored to allow greater code reuse. In particular, we could break
apart the database specific component from the pool of resources.
We can do this re-factoring with either the Factory pattern or the
Template method pattern [11]. We have performed and verified
both re-factorings. Here we just present the Factory pattern as the
code is simpler, and hence so is the specification.

We define a ResourceFactory interface that makes and destructs
resources. We can then parametrize a pooling class, ResPool, with
a factory to create the objects that will be pooled. Finally, we
make a ConnectionFactory class that implements the ResourceFactory
interface. We present the interface and the classes in Figure 3.

We give specification to the factory that are very similar to the
connection pool from earlier:

interface ResourceFactory
{
Object makeResource():

{ | ResourceFactory(this, {type=t̂})}
{ | Resource(this, {handle= return; type= t̂})
∗ ResourceFactory(this, {type=t̂})};



import java.util.∗;
import java.sql.∗;

public interface ResourceFactory<R,E extends Exception>{
public R makeResource() throws E;
public void destructResource(R r) throws E;

}

public class ResPool<R,E extends Exception>{
LinkedList<R> resources;
ResourceFactory<R,E> rf;

ResPool(ResourceFactory<R,E> rf){
resources=new LinkedList<R>();
this.rf=rf;

}

public R getResource() throws E{
if(resources.size()==0)

return rf.makeResource();
return resources.removeFirst();

}

public void freeResource(R r) throws E{
if(resources.size()>=20)

rf.destructResource(r);
else resources.add(r);

}
}

class ConnectionFactory
implements ResourceFactory<Connection,SQLException>{
String url, user, password;

ConnectionFactory(String url, String user, String password){
this.url=url; this.user=user; this.password=password;

}

public Connection makeResource() throws SQLException{
return DriverManager.getConnection(url,user,password);

}

public void destructResource(Connection c) throws SQLException{
c.close();

}
}

Figure 3. Factory pattern

void destructResource(Object r):
{ | Resource(this, {handle= r; type= t̂})
∗ResourceFactory(this, {type=t̂}) }

{ | ResourceFactory(this, {type=t̂}) };
}

However, there is one key difference rather than specify precisely
what resource will be returned, and consumed, we use a property
Resource(this, {handle= return; type= t̂}) that is dependent on
the particular implementation of the ResourceFactory. This enables
each implementation to specify what Resource means, for exam-
ple, one class specifies it as a database connection and another as
an XSLT processor.

We can then specify the ResPool class as

class ResPool {
define ResPool(x, {factory= f ; type= t}) = |

x.resources 7→ ŷ ∗
x.rf 7→ f ∗
ResourceFactory(f, {type=t}) ∗
LinkedList(ŷ, R̂) ∗ IterRes(setof (R̂), f, t) ;

void <init>(ResourceFactory rf):
{ |ResourceFactory(rf, {type=t̂}) }
{ |ResPool$(this, {factory= rf; type= t̂}) };

void freeResource(java.lang.Object r):
{ | ResPool$(this, {factory= f̂ ; type= t̂})
∗ Resource(f̂ , {handle= r; type= t̂}) }

{ | ResPool$(this, {factory= f̂ ; type= t̂}) };

java.lang.Object getResource():
{ | ResPool$(this, {factory= f̂ ; type= t̂}) }
{ | ResPool$(this, {factory= f̂ ; type= t̂})
∗ Resource(f̂ , {handle= return; type= t̂}) };

}

Here, we must use a new predicate IterRes(X, f, t) to mean that
there exists a Resource(f, {handle= i; type= t}) predicate for each
element i of the set X . In separation logic, this would be given with
the iterated separating conjunction:

~i∈XResource(f, {handle= i; type= t})
The definition of ResPool means that for each element of the list
from ŷ, we have a Resource predicate, that was created by the
ResourceFactory f .

Finally, in the ConnectionFactory specification we define the
ResourceFactory and Resource properties:

define ResourceFactory(x, {type=t}) =

t = sql(ûrl, ˆuser, ˆpassword) | x.url 7→ ûrl ∗
x.user 7→ ˆuser ∗ x.password 7→ ˆpassword;

export Resource(x, {handle= y; type= t}) = |
DBConnection(y, {connection= t});

The most important part of this specification is that the Resource
definition is exported. This means that, since Resource is defined
in the ConnectionFactory specification then any class can use the
following fact in its verification:

type(f, ”ConnectionFactory”) | Resource(f, {handle= x; type= t})
=⇒ DBConnection(x, {type = t})

and the reverse
type(f, ”ConnectionFactory”) | DBConnection(x, {type=t})

=⇒ Resource(f, {handle= x; type= t})
This means that any client of the resource pool, who knows the type
of the internal factory is a ConnectionFactory, will know it allocates
and deallocates database connections.

We omit the method specifications as they follow directly from
the interface. j

2.5 Subject/Observer
We conclude our illustration of jStar by demonstrating an example
of the subject/observer pattern [11]. This has been a popular design
pattern for challenging recent verification techniques [1, 3, 15, 18].
We present an example subject/observer pattern in Figure 4. We
explain the code through its specification.

We can specify the properties of the IntegerList as:

define Subject(s, {obs= O; vals= V }) =
| SubjectInternal$IntegerList(s, {obs= O}) ∗

SubjectData(s, {vals= V }) ;

define SubjectInternal(s, {obs= O}) =
| s.observers 7→ ô ∗ LinkedList(ô, O) ;

export SubjectData(s, {vals= V }) =

| s.list 7→ l̂ ∗ LinkedList(l̂, V ) ;



public interface Subject{
public void addObserver(Observer o);
public void removeObserver(Observer o);

}

public interface Observer{
public void update(Subject o);

}

public class IntegerSize implements Observer{
IntegerList bag;
int size;

public IntegerSize(IntegerList bag){
this.bag=bag;
bag.addObserver(this);

}

public void update(Subject o){
if(o==bag)

size=bag.list.size();
}

}

public class IntegerList implements Subject{

LinkedList list=new LinkedList();
LinkedList observers=new LinkedList();

public void beginModification(){}
public void endModification(){notifyObservers();}

public void addObserver(Observer o){
observers.add(o);
o.update(this);

}

public void removeObserver(Observer o){
observers.remove(o);

}

private void notifyObservers() {
Iterator i=observers.iterator();
while(i.hasNext()) {

Observer o=(Observer)i.next();
o.update(this);

}
}

}

Figure 4. Source code for Subject/Observer example

exportSubjectObs(s, {obs= O; vals= V }) =
| Subject$IntegerList(s, {obs= O; vals= V })
∗ ObsSet(O, V, s);

We define the Subject property as being composed of two parts
the data, SubjectData , and the internal state, SubjectInternal .
The latter represents the internal structures for keeping the list of
Observers, and the former is the data associate to the subject, in
this case a list of Integers. We additionally provide a predicate to
represent the aggregate structure of the set of Observers and the
subject: SubjectObs . This property is exported, so that clients
can access the individual observers as well as the whole aggregate.

We also export the SubjectData so that clients can manipu-
late the state associated to the IntegerList using the beginModification
and endModification methods. The client should call beginModification
to gain access to the internal data, and upon completion of the mod-
ification should call endModification.

void beginModification():
{ | SubjectObs$(this, {obs= Ô; vals= V̂ }) }
{ | SubjectInternal$(this, {obs= Ô})
∗ SubjectData(this, {vals= V̂ }) ∗ObsSet(Ô, V̂ , this) };

void endModification():
{ | SubjectInternal$(this, {obs= Ô})
∗ SubjectData(this, {vals= V̂2}) ∗ObsSet(Ô, V̂ , this) }

{ | SubjectObs$(this, {obs= Ô; vals= V̂2}) };

The specification of beginModification means that we can call the
method if we have the property of the aggregate structure, and
after the call we have the structure broken into parts, includ-
ing the SubjectData property, which allows the client to mod-
ify the associated data. The specification of endModification takes a
SubjectData predicate with a potentially different value, V̂2 to the
observers, and makes the observers consistent with the new value.
Note, if we had exported the Subject property as well, then for
this example the beginModification method could be removed.

We provide methods for adding and removing observers from
the aggregate structure:

void addObserver(Observer o):
{ | SubjectObs$(this, {obs= Ô; vals= V̂ })
∗ Observer(o, {vals= v̂2; subject= this}) }

{ | SubjectObs$(this, {obs= add(o, Ô); vals= V̂ }) };

void removeObserver(Observer o):
{ | SubjectObs$(this, {obs= add(o, Ô); vals= V̂ }) }
{ | SubjectObs$(this, {obs= Ô; vals= V̂ })
∗ Observer(o, {vals= v̂2; subject= ŝ}) };

The first simply takes the aggregate and an Observer , and puts
it into the aggregate, and the latter removes an observer from the
aggregate.

Finally, we have a method notifyObservers, which when given a
Subject and an out of date set of observers, ObsSet , will update
the set of observers to the correct value:
void notifyObservers():
{ | Subject$(this, {obs= Ô; vals= V̂ }) ∗ObsSet(Ô, V̂2, this) }
{ | Subject$(this, {obs= Ô; vals= V̂ }) ∗ObsSet(Ô, V̂ , this) };

The behaviour of notifyObservers depends on the specification of the
Observer interface:
interface Observer {
void update(Subject s):
{ | Observer(this, {vals= v̂; subject= s})
∗ SubjectData(s, {vals= v̂2}) }

{ | Observer(this, {vals= v̂2; subject= s})
∗ SubjectData(s, {vals= v̂2) };

}

This says the Observer will correctly update itself to the value
current in SubjectData .

Finally, we turn our attention to the constructors specification:
void <init>():
{ | }
{ | Subject(s, {obs= empty(); vals= empty()}) };

void <init>() static:
{ | }
{ | SubjectData$IntegerList(s, {vals= empty()})
∗ SubjectInternal$IntegerList(s, {obs= empty()}) };



Pattern Time(s) LOC Result
Visitor 0.40 71 Yes
Connection Pool 0.06 27 Yes
Factory Pattern 0.10 46 Yes
Subject/Observer 0.50 49 Yes

Table 1. Experimental results of the example patterns performed
with jStar on a 1.66 GHz Intel Core Duo, 2 GB Ram.

We might have expected the static post-condition of the construc-
tor to be Subject$IntegerList(s, {obs= empty(); vals= empty()})
but unfortunately, this is not true. The Subject predicate for this
class contains the SubjectData property, for the precise type of
the object being constructed. However, as this constructor is po-
tentially inherited we do not know the object is precisely of type
IntegerList: it could be a subtype. Hence, we can only provide this
weaker specification. However, this allows subclasses to change the
SubjectData predicate and still inherit the code from this classes
methods: the verification of all the instance methods of class is ab-
stract in the definition of SubjectData . j

2.6 Experimental Results on Patterns Verification.
We have run jStar on all the pattern examples from Section 2.
Table 1 reports the results. All static and dynamic specs for every
example were automatically verified. The Result column shows that
all patterns meet their specifications. j

3. The jStar Architecture
Next, we give a global overview of jStar’s internal structure, de-
picted in Figure 5. A detailed description of each component will
be given in the next section of this paper. jStar is composed by
two main components: a theorem prover and the symbolic execu-
tion module. The prover is called by the symbolic execution during
the verification process to decide implications or to perform frame
inference. The symbolic execution module is responsible for the
fixed point computation of invariants.

jStar accepts programs written in Jimple, which is one of the
Soot toolkit intermediate representations [29] designed to analyze
Java programs. Hence, we use Soot for parsing Java into Jimple, the
latter is then parsed by jStar into its internal data structures. jStar
is implemented in OCaml.

Other input files are used by jStar for the verification of a
Java program: (1) pre/post condition specifications of the program’s
methods as well as the specification of the methods it calls; (2) the
logic rules — i.e., the theory — used by the theorem prover to
decide entailment and other implications; and (3) the abstraction
rules, which are special rules used to ensure convergence in the
fixed-point computation of loop-invariants. Abstraction rules are
an extension of the logical rules for deciding implications. j

4. Theorem Prover
Next, we describe our abstract theorem prover for separation logic.
The design is based on the entailment checker in smallfoot [4].

4.1 Formulae
Let Var be a countable set of program variables (ranged over by
x, y, . . . ) and V̂ar a countable set of existential variables (ranged
over by x̂, ŷ, . . . ). A formula, H , is a restricted form of separation

Theorem Prover

Symbolic Execution

Abstraction

Spec: pre/post

Abstraction rules

Logic Rules

Jimple code

jStar

SootJava program

Figure 5. jStar architecture

logic formula, defined by the following grammar.

E ::= x | x̂ | nil | . . . (Expressions)
P ::= E = F | E 6= F | p(E) (Pure predicates)
S ::= s(E) (Spatial predicates)
Π ::= true | P ∧Π (Pure part)
Σ ::= emp | S ∗ Σ (Spatial part)
H ::= Π ∧ Σ (Formula)

Note that we use the letter H for formulae and in the following
sections we use formulae to represent symbolic heaps. Given a
formula H = Π ∧ Σ, we call Π the pure part, whereas Σ is called
the spatial part. We denote by Heaps the set of all symbolic heaps
and we use hatted variables to (implicitly) denote existentially
quantified variables. That is, Π ∧ Σ is a shorthand for

∃x̂1, . . . , x̂n.Π ∧ Σ

where x̂1, . . . , x̂n are the existential variables occurring in Π ∧ Σ.
The pure part Π is a conjunction of pure predicates which

states facts about the stack variables and existential variables (e.g.,
x = nil), but are not concerned with heap allocated objects. The
spatial part is the ∗ conjunction of spatial predicates, i.e., related to
heap facts. In separation logic, the formula

S1 ∗ S2

holds in a heap that can be split into two disjoint parts where in
one of them the only allocated memory is described by S1 and in
the other only by S2.

We use a field splitting model, i.e., in our model, objects are
considered to be a compound entities composed by fields which
can be split by ∗.3 Notice that if S1 and S2 describe the same field
of an object than S1 ∗ S2 implies false.

The predicate emp says that there is nothing allocated in the
heap. The prover allows the definition of arbitrary pure predicates
p and spatial predicates s.

Here it is worth to mention a fundamental rule which gives the
bases of local reasoning in separation logic:

{H1} C {H2}
{H1 ∗H} C {H2 ∗H} Frame Rule

3 An alternative model would consider the granularity of ∗ at the level of
objects. In that case, objects cannot be split by ∗ since they are the smallest
unit in the heap.



where C does not assign to H’s free variables [22]. The frame rule
allows us to circumscribe the region of the heap which is touched
by C, (in this case H1), perform local surgery, and combine the
result with the frame, i.e. the part of the heap not affected by the
command C (in this case H). In the rest of the paper we make
intensive, although often tacit, use of the frame rule. j

4.2 Proof Rules
Our prover works on sequents of the form

Σf | Π1 | Σ1 ` Π2 | Σ2

We call Π1 | Σ1 the assumed formula, Π2 | Σ2 the goal formula,
and Σf the subtracted (spatial) formula. The semantics of a judge-
ment are:

Π1 ∧ (Σf ∗ Σ1) =⇒ Π2 ∧ (Σf ∗ Σ2)

The subtracted formula, Σf , is used to allow predicates to be re-
moved from both sides without losing information. This makes
finding complete proof rules easier, while guaranteeing termina-
tion.

The prover has built in simplification rules. We present just two
here:

Σf ∗ S | Π1 | Σ1 ` Π2 | Σ2

Σf | Π1 | Σ1 ∗ S ` Π2 | Σ2 ∗ S

Σf [E/x] | Π1[E/x] | Σ1[E/x] ` Π2[E/x] | Σ2[E/x]

Σf | Π1 ∧ x = E | Σ1 ` Π2 | Σ2

These rules are used to prove the implications, but can also be
supplemented by user supplied rules, for example:

rule field remove1:
| | field(?e1,?e2,?e3) ` | field(?e1,?e2,?e4)

if
field(?e1,?e2,?e3) | | ` ?e3=?e4 |

The empty parts of the sequent are simply preserved, and the ?e1,
?e3, ?e2 and ?e4 are variables that can be unified with any expres-
sion (as opposed to e, which can only be unified with existential
variables4). The definition is equivalent to the following rule:

Σf ∗ field(E1, E2, E3) | Π1 | Σ1 ` Π2 ∧ E3 = E4 | Σ2

Σf | Π1 | Σ1 ∗ field(E1, E2, E3) ` Π2 | Σ2 ∗ field(E1, E2, E4)

This can be read as saying, if you have the same field on either side
of the entailment, then they must have the same value.

We can specify a property is true of either the subtracted or
assumed formula by placing it on the far left hand side of a sequent.

rule field field contradiction :
field(?e1,?e2,?e3) ∗ field(?e1,?e2,?e4) | | ` |

if

This rule is actually equivalent to

field(E1, E2, E3) ∗ field(E1, E2, E4) ∈ Σf ∗ Σ1

Σf | Π1 | Σ1 ` Π2 | Σ2

The rule means if the same field is contained in either of the sub-
tracted or assumed formula, then we have assumed a contradiction
(because of the property of ∗ in separation logic as discussed in
Section 4.1) and the proof is complete. The user of the theorem
prover can instantiate our framework with any collection of these
rules, by giving in input the appropriate Logic Rules file.

4 In all the jStar’s input files existentially quantified variables are prefixed
with an underscore.

The prover simply uses these rules for proof search. For entail-
ment checking the following basic axiom is used.

Σf | Π1 | emp ` true | emp

As an example let us describe some of the rules used for the
Connection Pool pattern in Section 2.3. There, we described a
DBSet(S, t) predicate, which represented a set of connections S
with parameter t . In separation logic, we would represent this as

~i∈SDBConnection(i, t)

We can encode this into the prover as follows. We represent sets
with three functions add(x, S), union(S1, S2) and empty(),
which mean add x to the set S, combine the sets S1 and S2, and
the empty set, respectively. We then encode DBSet as follows:

rule dbsetleft add:
| | DBSet(add(?x,?y),?t) ` |
if
| | DBSet(?y,?t) ∗ DBConnection(?x,{connection = ?t}) ` |

rule dbsetleft union:
| | DBSet(union(?x,?y),?t) ` |
if
| | DBSet(?y,?t) ∗ DBSet(?x,?t) ` |

rule dbsetleft empty:
| | DBSet(empty(),?t) ` |
if
| | ` |

We show only the left hand rules, and have a similar three right
hand rules.

Finally, we present a rule that allows us to try to unify these
more complex terms

rule DBSet :
| | DBSet(?x,?y) ` | DBSet(?z,?y)

without
?x!=?z

if
DBSet(?x,?y) | | ` ?x=?z |

or
| | DBSet(?x,?y) ` ?x!=?z | DBSet(?z,?y)

Here without ?x!=?z means do not apply this rule if the inequality
is present in the sequent. This ensures we only apply this rule
once. The or means try to prove the first premise, and if that fails
try the second, hence this rule demonstrates the backtracking of
the theorem prover. It says try to prove ?x=?z, and if you fail try
something else. This rule is incomplete, and hence other similar
rules for add , union and empty are added.

The prover also can be extended with rewrite rules. The sum
definition from earlier is converted to:

rewrite sum plus :
sum(plus(?x,?y)) = sum(?x) + sum(?y)

rewrite sum const :
sum(const(?n)) = ?n

These rewrite rules are used to simplify terms.

Frame Inference. A key part of symbolic execution requires
frame inference, that is given two formula (heaps) H1 and H2

find a third H3 such that

H1 =⇒ H2 ∗H3 .

As with smallfoot, we can find these by simply altering the basic
axiom to

addToFrame(Π1 | Σ1)

Σf | Π1 | Σ1 ` true | emp



next

val: 0

X: NodeLL
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y: NodeLL
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Figure 6. The heap described in Example 1.

This collects all the leftover formulae, Π1 | Σ1, from the proof,
and by taking the disjunction of these formulae forms the frame
H3. Consider the following example inference

field(X, "val", Z) | v̂ = Z | field(X, "bak", W ) ` true | emp

field(X, "val", Z) | true | field(X, "bak", W ) ` v̂ = Z | emp

emp | true | field(X, "val", Z) ∗ field(X, "bak", W )
` true | field(X, "val", v̂)

Here we find the frame to be v̂ = Z | field(X, ”bak”, W ). This
says we have the bak field spare, and the existential variable v̂ has
been unified with Z. j

5. Symbolic Execution
Next, we define our symbolic execution for object-oriented pro-
grams taking inspiration from [5, 9]. A symbolic execution defines
the effect of a Jimple command on a symbolic state. Symbolic
states are specified in terms of separation logic formulae.

5.1 Symbolic Heaps
Let FNames , CNames , TNames and MNames be a countable
set of field, class, type and method names respectively. A signature
of an object field/method is a triple

〈C: t f〉 ∈ CNames × TNames × (FNames ∪MNames)

indicating that the field f in objects of class C has type t. In
the following we indicate by Sig the set of all signatures and by
ρ, ρ1, . . . its elements.

The predicate x.〈C: t f〉 7→ E states that the object denoted by
x points to the value E by the field f .

In the examples section, we omitted the class and type parame-
ters for clarity, but they are essential in the symbolic execution for
dealing with field shadowing.

EXAMPLE 1. The symbolic heap

x.〈NodeLL: NodeLL next〉 7→ y ∗ x.〈NodeLL: int val〉 7→ 0∗
y.〈NodeLL: NodeLL next〉 7→ nil ∗ y.〈NodeLL: int val〉 7→ 0

describes a heap where there are precisely two allocated objects (of
class NodeLL) x and y linked by the next field and whose value
is initialized to 0. Figure 6 shows a pictorial view of this heap. The
definition of class NodeLL is

class NodeLL {
int val;
NodeLL next;

}

j

5.2 Rules for Symbolic Execution.
Symbolic execution implements the function:

exec : Stmts ×Heaps → P(Heaps) ∪ {>}
which takes a Jimple statement and a heap and returns a set of
resulting heaps after the execution of the statement or the special

element > indicating that there is a possible error. Table 2 defines
the transformations for basic commands which implement exec.

The rule Assignment 1, when executed in a state H adds the
information that in the resulting state x is equal to E. As in stan-
dard Hoare/Floyd style assignment, all the occurrences of x in H ,
and E are replaced by a fresh existential quantified variable x̂. The
Mutation rule updates (in-place) the value of the field f of object
x with value E2. The Look-up rule adds an equality between x
and the content of the field f of object E to the resulting state.
As for Assignment 1, the occurrences of x in the input state is
replaced by a fresh existential variable x̂ in the output state. The
Return rule assigns the value to be returned to the special variable
ret which will be replaced when the control flow exits the method.
The rule Invoke deals with method invocation. The resulting state is
determined by the function jsr which is applied to the specs of the
method with signature 〈C: t m〉. In Jimple there are two main kinds
of invocation: instance invoke and class invoke. Here, we focus on
instance invokes as the class invokes are trivial.5 An instance of in-
voke can be either specialinvoke or virtualinvoke.6 We use
invoke to range over these two possibilities. Jimple translates super
and private calls into specialinvoke, and dynamically dispatched
calls into virtualinvoke. We define the following indexed func-
tion for specifications:

specinvoke :Sig → P(Specs)

where Specs is the set of all pre/post specification. When invoke is
virtualinvoke the function gives all the dynamic specifications
associated to a method, and for specialinvoke it gives all the
static specifications. Note that Invoke rule is non-deterministic. The
function

jsr : Specs ×Heaps ×Var∗ → Heaps

is defined as

jsr({P}m(~w){Q}, H,~v) =


H ′∗Q[~v/~w] if H ` P [~v/~w]∗H ′

> otherwise

Given a pre/post spec {P}m(~w){Q}, the current heap H where
the m is called, and the actual parameters ~v, jsr invokes the theorem
prover for the following frame inference question:

H ` P [~v/~w] ∗H ′

that is, the prover attempts to find a heap H ′ which satisfies this
entailment. In terms of the method call, H ′ is the part of the cur-
rent heap H which is not needed by the method execution, i.e., the
frame of the call. The frame H ′ is then composed with the spec’s
postcondition Q to form the result of the method call. This mech-
anism is sound because we appeal to the frame rule of separation
logic [13]. When doing frame inference formal parameters are sub-
stituted by the actual ones.

EXAMPLE 2. Consider the class Cell of Section 2 and let us as-
sume we are executing the call x.set(7) in the following symbolic
heap:

Val(x, {content= 3}) ∗Val(y, {content= 9})
Here x and y are objects of class Cell. Recall the spec of the set
method:

void set(int x):
{ | Val(this, {content= X̂}) }
{ | Val(this, {content= x}) };

5 Class invocations are sometimes called static invocations in Java. We
call them class invocations, so as not to confuse them with the statically
determined calls to instance methods, such as super calls.
6 Jimple also has interfaceinvoke; we treat this in the same way as
virtualinvoke.



class LinkedList
{

private NodeLL head;
private NodeLL tail;

void create()
{

head=null;
while (true) {

NodeLL n = new NodeLL();
n.next=head;
head=n;

}
}
....

}

Figure 7. Create method for LinkedList class.

The frame inference question for the theorem prover is to find a H ′

such that:
Val(x, {content= 3}) ∗Val(y, {content= 9})

` Val(x, {content= X̂}) ∗H ′

The solution frame is H ′ = X̂=3 ∧ Val(y, {content= 9}). Com-
bining the post-condition of the spec with the computed frame we
obtain

X̂ = 3 ∧Val(x, {content= 7}) ∗Val(y, {content= 9})

as X̂ is unused it is removed leaving precisely what we expect from
this method call.

Rule Assignment 2 returns the resulting state given by Invoke
where the special variable ret is replaced by x. Similarly, rule New
exploits Invoke calling it with the constructor of class C.

Rearrangement. The symbolic execution rules manipulate ob-
ject’s fields. When these are hidden inside abstract predicates both
Lookup and Mutation require the analyzer to expose the fields they
are operating on. This is done by the function

rearr : Heaps ×Var × Sig → P(Heaps)

which exploits the frame inference of the theorem prover. It is
defined as:

rearr(H, x.ρ) = {H ′ ∗ x.ρ 7→ v̂ | H ` H ′ ∗ x.ρ 7→ v̂}.

j

6. Fixed Point Computation and Abstraction
The jStar’s symbolic execution module constructs the control flow
graph of the input Jimple program. Then, for each node of the con-
trol flow graph it computes the set of all possible symbolic heaps in
which the node can be during any execution of the program. These
sets can be infinitely large.

In order to ensure termination of symbolic execution we apply
abstraction in the spirit of abstract interpretation [8], and more
specifically taking inspiration from Space Invader [9].

To explain the issue, consider the method create() in Figure 7.
The second column of Table 3 depicts the heaps computed by
symbolic execution at the while-loop point at different iterations
and starting with the empty heap emp. The table shows that the
number of NodeLL predicates grows unboundedly, and therefore
the fixed-point computation would diverge. However, following
Space Invader [9] we can replace chains of concrete NodeLL by
the more abstract lseg predicate. We loose the information on the

precise length of the lists which in many cases is unessential and
we will ensure the convergence of the fixed point computation of
the loop-invariant. This is done in the third column of Table 3. In
the second iteration of the abstract execution we do not have any
knowledge of the size of the list, and hence in the third iteration
we have reached the fixed point. Abstraction is done by rewriting
rules, also called abstraction rules which implement the function

abs : Heaps → Heaps

We apply abstraction after the execution of any command, this
helps to keep the state space small.7 Usually abstraction rules are
of the form:

condition
H ∗H ′  H ∗H ′′ (Abs Rule)

that is H ′ is replaced by H ′′ if the condition holds. H ′′ is more
abstract than H ′ since some unnecessary information is removed
(abstracted away). In general, the simplification of the formula is
done by removing existentially quantified variables that do not ap-
pear anywhere else in the heap. A concrete example is the following
abstraction rule:

x̂ /∈ Var(H, x)

H ∗NodeLL(x, x̂, v̂) ∗ lseg(x̂, nil, v̂′) H ∗ lseg(x, nil, v̂′′)
(NL)

This rule abstracts away the information that we have at least two
nodes and replaces it with the knowledge that there is at least one
node.8

For soundness, the abstraction rules must be true implications
in separation logic: the more concrete heap should imply the more
abstract one (e.g., in the rule above the left-hand side heap implies
the right-hand side one).

A framework for abstract interpretation of Java programs. We
have designed jStar to be very general: that is, we do not have
hard-wired abstraction in our symbolic execution (as for example
in Space Invader [9]). Instead, we introduce a mechanism to de-
fine new abstraction rules which can be understood by the theorem
prover as special kind of logical rules. In this way, new abstract do-
mains, in the sense of abstract interpretation, can be easily defined
by providing new sets of abstraction rules. This approach provides
jStar with a great level of flexibility.

The abstraction rules accepted by the theorem prover rewrite a
frame inference question into a simpler one. They have the form:

condition
H ` emp H ′ ` emp

(jStar Abs)

where the optional condition enforces that some variables do not
appear anywhere else in H as in the example rule (NL) above.
However, here we have a different format since a formula is sim-
plified not directly but as a consequence of the simplification of an
entailment.

The mechanism of abstraction by means of the jStar’s abstrac-
tion rules works as follows. Let’s assume we want to abstract the
heap H ∗H ′′. For this purpose, the theorem prover is asked to find
the frame of the entailment

H ∗H ′′ ` emp

Note that since the right-hand side is emp, the sought frame is
trivially H ∗ H ′′. However, suppose we have (jStar Abs) among
the set of abstraction rules. H matches with the left hand side of

7 Another possibility would be to apply abstraction at loop points only.
However, experimental experience has shown that this results in slower
analyses.
8 Here we use non empty list segment predicates composed by at least one
node.



H, x = E −→ x = E[x̂/x] ∧H[x̂/x]
Assignment 1

H ∗ x.〈C: t f〉 7→ E1, x.〈C: t f〉 = E2 −→ H ∗ x.〈C: t f〉 7→ E2
Mutation

H ∗ E.〈C: t f〉 7→ E1, x = E.〈C: t f〉 −→ x = E1[x̂/x] ∧ (H ∗ E.〈C: t f〉 7→ E1)[x̂/x]
Look-up

H, return E −→ ret = E ∧H
Return

S ∈ specinvoke(C, t, m) jsr(S, H, v) = H ′

H, invoke x.〈C: t m〉(v) −→ H ′ Invoke

H, invoke y.〈C: t m〉(v) −→ H ′

H, x = invoke y.〈C: t m〉(v) −→ H ′[x/ret ]
Assignment 2

H[x̂/x], virtualinvoke x.〈C: void init〉(v) −→ H ′

H, x = new C(v) −→ H ′ Allocation

Table 2. Symbolic execution rules for basic command. The primed variable x̂ is fresh.

Iteration Concrete execution Abstract execution
1 head = n ∧NodeLL(n, nil, v̂) head = n ∧NodeLL(n, nil, v̂)

2 head = n ∧NodeLL(n, n̂, v̂) ∗NodeLL(n̂, nil, v̂′) head = n ∧ lseg(n, nil, ŵ)

3 head = n ∧NodeLL(n, n̂, v̂) ∗NodeLL(n̂, n̂′, v̂′) ∗NodeLL(n̂′, nil, v̂′′) head = n ∧ lseg(n, nil, ŵ)
4 . . .
5 . . .

Table 3. Computed heaps at while-loop point of method create in concrete and abstract execution.

(jStar Abs), therefore, the rule fires and the entailment question is
replaced by

H ′ ∗H ′′ ` emp

where, presumably, H ′ is more abstract than H . As noted above,
since the right-hand side is emp, the trivial frame for this entail-
ment is H ′ ∗ H ′′. The latter is then returned by the prover as an
abstraction of H ∗H ′′.

An example of few useful abstraction rules we use to deal with
lists and their values is reported in Table 5. Here they are specified
with the syntax used in the abstraction file given as input to jStar.
The initial frame inference question is indicated on the top (just
below the name of the rule). The resulting entailment is at the
bottom after the if keyword. The optional condition is specified
by the “where” clause. The keyword “notincontext” following a
variable informally means: that variable does not occur in any other
predicate in the symbolic heap. The keyword “notin” prevents two
variables to be unified. Hence the rule LS LS should be read as:
replace the entailment lseg(x, x̂, s1) ∗ lseg(x̂, nil, s2) ∗ H ` emp
by lseg(x, nil, s1 · s2)∗H ` emp provided x̂ /∈ Var(H)∪{x} for
any heap H . The other rules can be explained as follows.

LS OBS If an observer ?w is the first elements of a list of un-
known type starting at ?x, i.e. ls(?x,?z,cons(?w,?r)), then we
can replace the occurrence of the single observer with a non-
empty list of observers (i.e. lsObs) starting at ?w and having
same subject and value, followed by a possibly empty list (lspe)
of unknown type.

LS OBS APP1 This rule simply replaces two consecutive lists of
observers with the same subject and value by one list which is
the append of the two original ones.

Built-in heap normalizations. Some natural simplifications of
symbolic heap have been built in the symbolic execution. First of

P (~x) ∧ P (~x) ∧Π ∧ Σ P (~x) ∧Π ∧ Σ
Built-in 1

E = x̂ ∧Π ∧ Σ (Π ∧ Σ)[E/x̂]
Built-in 2

Table 4. Basic built-in abstraction for the pure part.

all, Jimple $-variables are existentially quantified after their use.
Moreover, the other abstractions are:

1. Erasing multiple occurrences of same predicate in the pure part.

2. Abstracting unneeded primed variables from the pure part.

The latter two built-in abstractions are formalized by the rules in
Table 4. j

7. Related Work
The most closely related work is by Chin et al. [7]: they have also
built a tool for verifying object-oriented programs with separation
logic. They also distinguish between static and dynamic specifica-
tions. However, underlying their tool is the standard class invariant
approach, and we believe this makes it difficult for them to express
the specifications for the design patterns verified in this paper. We
do not believe they can verify the examples we have presented.

Both Spec] [2] and JML [6, 17] have been used to specify and
verify object-oriented programs. There have been several exten-
sions (for example, [3, 18, 21]) to both systems proposed to han-
dle the kind of examples we have presented in this paper. We do
not believe that either system can currently handle all the examples
presented in this paper.

Smans et al. [28] and Rosenberg et al. [1] have both proposed
ways of automating the ideas of dynamic frames [14]. Dynamic



Rule LS LS:
| | ls(?x, x,?s1) ∗ ls( x,nil(),?s2) ` |
where

x notincontext;
x notin ?x

if
| | ls(?x,nil(),app(?s1,?s2)) ` |

Rule LS OBS:
| | ls(?x,?z,cons(?w,?r)) ∗ Observer(?w,{val=?v; subject=?s}) ` |
if
| | lspe( f,?z,?r) ∗ lsObs(?x, f,cons(?w,empty()),?v,?s) ` |

Rule LS OBS APP1:
| | lsObs(?x, f,?l,?v,?s) ∗ lsObs( f,nil(),?l2,?v,?s) ` |
where

f notincontext;
f notin ?x, ?l, ?v, ?s, ?l2;

if
| | lsObs(?x,nil(),app(?l,?l2),?v,?s) ` |

Table 5. A sample of abstraction rules dealing with lists and val-
ues.

frames bring many of the advantages of separation logic to first-
order theorem proving, and may enable them to specify and verify
examples like these.

Similar to how jStar allows new abstract domains to be defined
by new abstraction rules, TVLA [19] is a parametric tool for defin-
ing shape analyses which uses first-order logic with transitive clo-
sure. The user, by defining so-called instrumentation predicates,
changes the way the abstraction is done. TVLA is based on the
concept of canonical abstraction [27], therefore, the fundamental
abstraction principle is fixed. Depending on the problem to be an-
alyzed, instrumentation predicates are used to prevent the loss of
crucial information. jStar takes the opposite point of view: without
abstraction rules nothing is abstracted. Abstraction rules are used
to explicitly state which unnecessary information can be abstracted
away. Most importantly, however, TVLA is a system oriented to de-
fine static analyses whereas jStar is oriented towards verification.

Bogor [10, 30] is an extensible explicit-state model checking
framework for Java. Bogor is completely automatic, but only con-
siders heap structures of bounded size. On the other hand, jStar, by
using appropriate abstractions, can deal soundly with unbounded
heaps. We believe that, in special cases, it would not be unreal-
istic thinking of using jStar in “Bogor style”, i.e., by disallowing
abstraction and executing only on concrete state spaces. j

8. Future Work
At the time of writing, jStar is just a research prototype and,
therefore, there is plenty of room for improvement. One of the
strengths of jStar is its flexibility, which gives us a substantial
power for experimentation with new ideas and techniques. Using
different sets of logic/abstraction rules we can obtain different
ways of reasoning about programs or doing abstraction. However,
this high-flexibility of our system might raise problems. Currently,
users are required to have some knowledge of theorem proving in
order, for example, not to design unsound logic rules (therefore, at
the moment, jStar might be too complex to use by programmers).

In the future, we are planning to study several kinds of possible
automation which may help in alleviating this problem.

• We are planning to design several sets of logic and abstraction
rules, able to cover a wide range of programs, and possessing

good properties (e.g., proven to be sound, ensuring termination
and progress etc.).

• We are going to investigate the possibility of mechanizing some
steps for producing new rules in a sound way.

• Further automation can be provided by studying techniques for
inferring method specifications.

We believe that these features have the potential to reduce the
danger of untrained users introducing errors. j

9. Conclusions
In this paper we described jStar, a new automatic verification tool
for Java programs, and the theory behind it. jStar’s foundations rely
on the combination of new separation logic advances in theorem
proving, symbolic execution, and abstraction.

jStar is almost completely automatic. It requires generally small
straightforward pre/post annotations, and loop-invariants are com-
puted automatically.

The practical results on real-world programs are very promis-
ing. Using jStar, we have been able to verify an entire implemen-
tation of four design patterns. Although used commonly when im-
plementing Java applications, until now, these patterns have been
beyond the reach of other state of the art automated Java verifica-
tion approaches. j
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