
Compositional Resource Invariant Synthesis

Cristiano Calcagno1, Dino Distefano2, and Viktor Vafeiadis3

1 Imperial College
2 Queen Mary University of London

3 Microsoft Research, Cambridge

Abstract. We describe an algorithm for synthesizing resource invariants
that are used in the verification of concurrent programs. This synthesis
employs bi-abductive inference to identify the footprints of different parts
of the program and decide what invariant each lock protects. We demon-
strate our algorithm on several small (yet intricate) examples which are
out of the reach of other automatic analyses in the literature.

1 Introduction

Resource invariants are a popular thread-modular verification technique for con-
current lock-based programs. The idea is to associate with each lock a resource
invariant, namely an assertion that is true whenever no thread has acquired
the lock. When a lock is initialized, we must prove that the associated resource
invariant holds. When a thread acquires a lock, it can assume that the corre-
sponding resource invariant holds. When it releases the lock, it must prove that
the resource invariant is still true.

In concurrent separation logic (CSL), O’Hearn [9] has adapted the notion of
resource invariants by making them record exactly the part of the memory that
a given lock protects. His elegant examples show how the ownership of memory
cells can be transferred from one thread to another via a resource invariant. CSL
provides simple proofs of programs such as the one in Fig. 1, where a memory
cell is allocated in one thread and deallocated in another.

The central problem facing any attempt to construct CSL proofs automati-
cally is the synthesis of suitable resource invariants. For instance, consider the
two programs in Fig. 2 (taken from [9]) implementing a one place pointer-
transferring buffer. In the first program, the memory cell x is transferred from
the first thread to the second one, and can be easily verified once we have guessed
the resource invariant (full∧c 7→−)∨(¬full∧emp). In the second program, there
is no transfer of ownership and the resource invariant is simply emp. To establish
a proof for these programs the choice of the resource invariant must mirror the
ownership property. O’Hearn does not address the issue of how to come up with
the correct resource invariant and states that “ownership is in the eye of the
asserter.” This is also the approach taken by Smallfoot [3], which required the
user to specify the resource invariants.

More recently, Gotsman et al. [7] proposed a very practical, heuristic method
for calculating resource invariants. Their method is based on a thread-modular

put(x) = with buf when (!full) do {
c := x; full := true;

}

get(y) = with buf when (full) do {
y = c; full = false;

}

Fig. 1. put(x) and get(y) definitions.

resource buf(c)

x = new();

put(x);

get(y);

dispose(y);

resource buf(c)

x = new();

put(x); dispose(x);
get(y);

Fig. 2. A single element buffer with ownership transfer (left). Without ownership trans-
fer (right).

program analysis to compute resource invariants by a global fixpoint calculation.
In order to decide which part of the memory is owned by a thread and which
part belongs to a given lock, they use a predetermined reachability heuristic. The
problem with this approach is that it relies heavily on an ad hoc local heuristic.
For instance, in both programs of Fig. 2, at the end of the put(x) critical region,
we have the state full ∧ c = x ∧ c 7→−. To verify the left program, we need to
associate the memory cell c 7→− to the resource. To verify the right program,
the same memory cell must remain owned by the first thread. So, in general, the
splitting cannot be decided by a purely local heuristic. Instead, the contexts of
all conditional critical regions protecting the same resource need to be considered
and therefore global methods are required.

In general, designing a method able to synthesize resource invariants in a
thread-modular and automatic manner and susceptible to the ownership policy
of the program is very tricky since ownership is a global property of the system.
In this paper, we present an algorithm aiming at achieving this goal. Our method
is not based on reachability but rather on the idea of footprint — i.e., the region
of memory that a command requires in order to run safely. By employing the
footprint concept, we obtain a more systematic way for computing resource
invariants. We describe an algorithm that uses bi-abduction [4] to calculate what
state is actually protected by the resource. We show the effectiveness of our
algorithm by applying it to all the involved examples given by O’Hearn [9].

2 Informal description of the synthesis algorithm

Intuitively, our algorithm works by guessing an initial set of resource invariants
and by iteratively refining the guess until either this is strong enough to prove
the program or the algorithm gives up because it cannot find a better refinement
of the current guess. More precisely, our algorithm can be described as follows:

1. For each Conditional Critical Region (CCR) in the system we take the empty
heap as the initial approximation of the state protected by the resource.

2. The current guess of the Resource Invariants (RI) is used to compute speci-
fications for all the CCRs. This step might refine the current RIs.

2

3. An attempt is made to prove each thread (separately) using the current
guess of RIs and current specifications of CCRs. If a proof can be built, the
algorithm stops with success (the current RIs are strong enough to prove
memory safety). Otherwise, the current RIs are refined, as described below.

4. The refinement is done by applying bi-abduction [4] on the continuation of
the CCR where the previous proof attempt failed. This is done to check
whether the program involves ownership transfer.

Note that in step 3, in constructing a proof for the threads, we assume that
the user annotates the program with both the association of variable names to
resources and preconditions for the threads, but not the resource invariants (or
loop invariants). We remark that the association of variables to resources can
sometimes be discovered by a tool like Locksmith [10], and it seems likely that
bi-abduction might be employed to discover these thread preconditions, just as it
was used in [4] to discover procedure preconditions. So in applying our algorithm
it is likely that an even greater degree of automation is possible. However, in this
paper, we make these assumptions to focus our study on the core algorithmic
difficulty of discovering the resource invariants.

3 Basics

3.1 Programming Language

We describe a simple parallel programming language following [9]. Let Res be a
countable set of resource names. A concurrent program Prg in this language con-
sists of an initialization phase where variables may be assigned a value, a single
resource declaration, and a single parallel composition of sequential commands

Prg = init ;
resource r1(variable list), . . . , rm(variable list)
C1 ‖ · · · ‖ Cn

Sequential commands are defined by the grammar:

Comm ::= x := E | x := [y] | [x] := E | x := new() | dispose(x)
| skip | C;C | if B then C else C | while B do C endwhile
| with r when B do C endwith

where E ∈ PVar ∪ {nil} and PVar is a countable set of program variables
ranged over by x, y, z, Sequential commands include standard constructs
(assignment, sequential composition, conditional, and iteration), dynamic al-
location (x := new()), explicit deallocation (dispose(x)), and operations for
accessing the heap: look-up (x := [y]) and mutation ([x] := E). Resources are
accessed using CCR commands with r when B do C endwith, where B is a
(heap-independent) boolean condition and C is a command. A CCR is a unit of
mutual exclusion, therefore two with commands for the same resource cannot
be executed simultaneously. In detail, with r when B do C endwith can be ex-
ecuted if the condition B is true and no other CCR for r is currently executing.
Otherwise its execution is delayed until both conditions are satisfied.

3

Notation We introduce some notation used throughout the paper. Given a
concurrent program Prg, let CCR(Prg) denote the set of all its conditional
critical regions. Let Res(Prg) be the set of resources defined in Prg and let
CCR(r,Prg), with r ∈ Res(Prg), be the subset of CCR(Prg) acting on resource
r. For C = with r whenB do C ′ endwith, we define guard(C) def= B, body(C) def= C ′

and res(C) def= r the guard, the body and the resource of the CCR C, respectively.

3.2 Storage Model and Symbolic Heaps

We describe the storage model and symbolic heaps: a fragment of separation
logic formulae suitable for symbolic execution [2, 6]. Let LVar (ranged over by
x′, y′, z′, . . .) be a set of logical variables, disjoint from program variables PVar ,
to be used in the assertion language. Let Locs be a countably infinite set of
locations, and let Vals be a set of values that includes Locs. The storage model
is given by:

Heaps def= Locs ⇀fin Vals Stacks def= (PVar ∪ LVar)→ Vals
States def= Stacks ×Heaps

Program states are symbolically represented by special separation logic for-
mulae called symbolic heaps. They are defined as follows:

E ::= x | x′ | nil Expressions
Π ::= E=E | E 6=E | true | Π ∧Π Pure formulae
S ::= E 7→E | ls(E,E) Basic spatial predicates
Σ ::= S | true | emp | Σ ∗Σ Spatial formulae
D ::= ∃x′. (Π ∧Σ) Disjuncts
H ::= D | H ∨H Symbolic heaps

Expressions are program or logical variables x, x′ or nil. Pure formulae are con-
junctions of equalities and disequalities between expressions, and describe prop-
erties of variables. Spatial formulae specify properties of the heap. The predicate
emp holds only in the empty heap where nothing is allocated. The formulaΣ1∗Σ2

uses the separating conjunction of separation logic and holds in a heap h which
can be split into two disjoint parts h1 and h2 such that Σ1 holds in h1 and Σ2 in
h2. In symbolic heaps some (not necessarily all) logical variables are existentially
quantified. The set of all symbolic heaps is denoted by SH. S is a set of basic
spatial predicates. In this paper we consider a simple instance of S. However,
our algorithm works equally well for other more sophisticated choices of spatial
predicates such those described in [1, 5]. The points-to predicate x 7→ y denotes a
heap with a single allocated cell at address x with content y, and ls(x, y) denotes
a non-empty list segment from x to y (not including y).

3.3 Bi-Abduction

The notion of bi-abduction was recently introduced in [4]. It is the combination
of two dual notions that extend the entailment problem: frame inference and

4

abduction. Frame inference [2] is the problem of determining a formula F (called
the frame) which we need to add to the conclusions of an entailment H ` H ′ ∗F
in order to make it valid. In other words, solving a frame inference problem
means to find a description of the extra parts of heap described by H and not
by H ′. Abduction is dual to frame inference. It consists in determining a formula
A (called the anti-frame) describing the pieces of heap missing in the hypothesis
and needed to make an entailment H ∗ A ` H ′ valid.

Bi-abduction is the combination of frame inference and abduction. It consists
in deriving at the same time interdependent frames and anti-frames.

Definition 1 (Bi-Abduction). Given two heaps H and H ′ find a frame F and
an anti-frame A such that H ∗ A ` H ′ ∗ F

Many solutions are possible for A and F. A criterion to judge the quality of
solutions as well as a bi-abductive prover were defined in [4]. A modified version
of bi-abduction was proposed in [8].

Bi-abduction was introduced as a useful mechanism to construct composi-
tional shape analyses. Such analyses can be seen as the attempt to build proofs
for Hoare triples of a program. More precisely, given a program composed by
procedures p1(x1), . . . , pn(xn) the proof search automatically synthesizes pre-
conditions P1, . . . , Pn and postcondition Q1, . . . , Qn such that the following are
valid Hoare triples:

{P1} p1(x1) {Q1}, . . . , {Pn} pn(xn) {Qn}

The triples are constructed by symbolically executing the program and by com-
posing existing triples. The composition (and therefore the construction of the
proof) is done in a bottom-up fashion starting from the leaves of the call-graph
and then using their triples to build other proofs for procedures which are on
a higher-level in the call-graph. To achieve that, the following special rule for
sequential composition —called the Bi-Abductive Sequencing Rule [4]— is used

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ A}C1;C2 {Q2 ∗ F}

Q1 ∗ A ` P2 ∗ F
(1)

In this paper we show that bi-abduction can be useful to achieve compositional
proofs of concurrent programs.

Throughout this paper we will write the frame and anti-frame to be deter-
mined in the bi-abduction problem in “frak” fonts (e.g., A,F,B . . .), this will
help to distinguish them from the known parts of the entailment.

4 Comparing Resource Invariants

In this section we study the space of possible solutions to the resource invariant
inference problem, and define an order used to compare those solutions. An
optimal invariant w.r.t. that order always exists.

5

Safe Resource Invariants. Given a precondition P which holds before entering
a CCR with body C (and ignoring the guard for simplicity), we say that I is a
safe resource invariant starting from P if the following Hoare triple holds

{P ∗ I}C {I ∗ true}

In other words, I describes resource large enough for C to execute safely, yet
I is weak enough that C can re-establish it. For example, x 7→ 3 is too strong
if C is [x] := 4 (cannot be re-established), and emp does not describe enough
resource for C to execute safely. Perhaps surprisingly, these two requirements
are compatible with an order relation which admits an optimal solution, which
we describe below.

Best Resource Invariant. If I and I ′ are resource invariants, we define the pre-
order I ≤ I ′, meaning that I is better (or smaller) than R′, as follows:

I ≤ I ′ ⇐⇒ I ′ |= I ∗ true

When I ≤ I ′ we sometimes say that I ′ extends I. Note that ≤ is not antisym-
metric as I ≤ I ′ and I ′ ≤ I does not imply I = I ′. However, it implies min(I) =
min(I ′), where min is an operation that removes non-minimal states, defined as
follows: (s, h) |= min(X)⇐⇒ (s, h) |= X and ∀h′. s, h′ |= X implies h ≤ h′.

Therefore, ≤ is antisymmetric modulo the equivalence relation I ∼ I ′ ⇐⇒
min(I) = min(I ′). For example, emp ≤ true and true ≤ emp, but min(emp) =
min(true) = emp. We call emp the canonical representative of the equivalence
class.

Notice that if I1 and I2 are safe resource invariants starting from P , then
so is I1 ∨ I2, by direct application of Hoare’s disjunction rule. Since I ′ ⇒ I
implies I ≤ I ′, it can be readily seen that a (unique modulo ∼) minimal resource
invariant Ibest exists, and can be described directly as

Ibest
def=

∨
I r.i. for all CCR’s

I

Hence the best invariant is logically weakest and spatially smallest. The goal of
the invariant synthesis algorithm is to find the minimal I which is an invariant
for all the CCR’s in the program and allows to prove the program race free.

5 The Invariant Synthesis Algorithm

Algorithm 1 computes the set I of resource invariants for the program Prg or
returns failure. I is a function I : Res → SH associating to each resource r a
resource invariant I(r). The basic idea is to start with the minimal invariant emp
and then repeatedly refine it to a bigger one w.r.t. ≤ during symbolic execution.
The role of (perfect) abduction is to refine it by the minimum amount necessary
for the symbolic execution to go through. So the informal argument for each

6

Algorithm 1 InvariantSynthesis(Prg)
1: I := {(r,

W
Cr∈CCR(r,Prg)(emp ∧ guard(Cr))) | r ∈ Res(Prg)};

2: Failed := ∅;
3: while I /∈ Failed do
4: (Specs, I) := CompSpecs(I);
5: if ProofSearch(Prg, I,Specs) fails then
6: Failed := Failed ∪ {I}
7: C1; · · · ;Cj := FailingPath(Prg, I,Specs);
8: I := RefineOwnership(C1; · · · ;Cj , I);
9: else

10: return I
11: end if
12: end while
13: return failure

refinement from I to I ′ is of the form “if there exists a safe invariant, it must
be ≥ I ′”. The initial approximation emp models a situation where resources are
neither protected nor transferred; only if the program requires it, is the invariant
refined into one which does so. More precisely, the basic idea is implemented as
follows. Initially the resource invariant of every resource r is initialized to be
a disjunction of emp and the guard of its CCRs (Step 1).1 This gives the first
approximation for I. Specs is the set of Hoare triples {P}C {Q} defining a spec-
ification for all CCRs in the program. Specs is computed by using the function
CompSpecs which is applied the current guess of the invariants. CompSpecs is
explained in detail in Sec. 5.1, and while it generates specifications it may mod-
ify I giving a first refinement. CompSpecs returns a set of pairs (Specs, I ′) or
fails. ProofSearch(Prg, I,Specs) (see Sec. 5.2) is a procedure that tries to build
a separation logic proof of Prg using the specifications Specs and the resource
invariants I. The set Failed contains those invariants for which the algorithm
failed to build a proof. The loop starting at step 3 attempts to build a proof with
the result of CompSpecs. If the proof succeeds, the algorithm terminates with
success and returns the computed resource invariants. Otherwise, the algorithm
tries to refine the current guess. In that case, the invariant of the failing CCR
is refined using the procedure RefineOwnership (see Sec. 5.3). After I is refined
the set of CCR specifications is updated accordingly before attempting a new
proof of the program. The algorithm fails in case the refinement process returns
an invariant which was tried before with no success. Notice that CompSpecs is a
partial function, therefore, the algorithm fails also in case CompSpecs does not
return a value.

1 The rationale for adding CCRs’ guards to the initial invariant is that, when the
algorithm refines I(r) by examining a CCR Cr, the missing part will be added
only to the disjunct corresponding to Cr. This disjunct is determined by guard(Cr).
Adding ∗-conjuncts only to one disjunct (rather than to all of them) provides us
with a better invariant w.r.t. the defined order ≤.

7

5.1 Computing Specifications for CCRs

The computation of CCRs’ specifications requires an abstraction function for
symbolic heaps α : SH −→ SH. Given the kind of symbolic heaps used in this
paper, it is enough to have α defined as in [6], although our algorithm is not
dependent on a specific choice. Moreover, let [P]locQ be a function that replaces
shared variables2 in P using equalities in Q. [·]loc : SH×SH−→ SH is defined as:

[P]locQ = P [x1/c1, · · · , xn/cn]

where xi are local variables, ci are shared variables, and Q ≡ x1 = c1∧· · ·∧xn =
cn ∧Q′ and in Q′ there are no further equality terms between local and shared
variables.3 Similarly, define [·]sha as the dual function which tries to replace local
variables with shared variables.

Computing the specification of a single CCR. The computation of a specification
for the CCR with r when B do C endwith is done by performing a compositional
bottom-up analysis ([4] and Sec. 3.3) on the body C. The analysis starts from
the following precondition: B ∧ emp ∗ I(r).

This is different from [4], where the analysis started with precondition emp.
The bottom-up analysis will construct a proof of C by synthesizing P and Q
such that the triple

{B ∧ P ∗ I(r)}C {Q} (2)

holds.4 Once (2) is computed, a specification for the with command is obtained
by applying the following new rule (called BA-with):

{B ∧ (P ∗ I(r))}C {Q}
{P ∗ [A]locQ } with r when B do C endwith {α(∃c.F)}

Q ∗ A ` I(r) ∗ F

with additional side conditions:

1. no variable occurring free in [A]locQ is modified by C,
2. no other process modifies variables free in P ∗ [A]locQ or α(∃c.F).

Starting from a proof of the CCR’s body (2), this rule uses bi-abduction to de-
rive two symbolic heaps A and F. The anti-frame A needs to be added to the
precondition P to re-establish r’s resource invariant I(r). The frame F corre-
sponds to the postcondition of the with statement. Both frame and anti-frame
are massaged before using them in the specification to remove terms related
to shared variables. In particular in the anti-frame A, terms containing shared

2 Shared variables are those listed in the resources declaration (see Sec 3.1).
3 [·]loc is a well defined function if a fixed order among local variables is chosen.
4 The reason for not using a simple forward symbolic execution starting from emp ∗
I(r)∧B to build a proof of C is that, in general, this precondition is not enough for
proving C. Hence a precondition P 6= emp needs to be derived, and this is done by
the bottom-up analysis.

8

Spec(I, Cr) = {P}Cr {Q}
L, I −→1 L, I[r ← Ir]

Shared(P) 6= ∅ and I(r) ≤ Ir and Cr /∈ L
Ir = α(I(r) ∗ PShared)

L, I −→2 L, I[r ←
W

i∈X Di]

I(r) = D1 ∨ . . . ∨Dn

X ⊆ {i | 1 ≤ i ≤ n}

Spec(I, Cr) = {P}Cr {Q}
L, I −→3 {Cr} ∪ L, I

Shared(P) = ∅ and Cr /∈ L

Table 1. Transition rules for computing Specs and (possibly) refine I.

variables are rewritten (when possible) in terms of local variables using known
equalities in Q. The frame F is simplified by replacing uses of shared variables by
local variables whenever possible using the existing equalities, and by dropping
pure formulae involving shared variables. This is achieved by first existentially
quantifying shared variables in F and then applying the abstraction α.

Lemma 1. The BA-with rule is sound.

The function CompSpecs. The computation of specifications for all the CCRs
in the program is performed by CompSpecs. Given a set of resource invariants
I, this function has type

CompSpecs : (Res → SH) −→ P(SH× Comm × SH)× (Res → SH)

and it is defined as

CompSpecs(I) = ({Spec(I ′, Cr) | Cr ∈ CCR(Prg)}, I ′)
when (∅, I) −→∗1−→∗2−→∗3 (CCR(Prg), I ′)

This definition uses the transition rules in Table 1 in three distinct phases: invari-
ant refinement (−→∗1), pruning of disjuncts (−→∗2), and checking of the result
(−→∗3). Let Shared(P) be the set of shared variables occurring in P , and let
PShared be the sub-formula of P containing only shared variables. The invari-
ant of the →− rules is that the first component L contains CCRs for which
specifications have been (successfully) computed so far. The rules are applied
to CCR(Prg) \ L and I until a specification has been computed for all CCRs.
The function Spec(I, Cr) computes the specification for the CCR Cr w.r.t. I
as described above (i.e., using bottom-up analysis and BA-with). The rule −→1

builds a tentative triple {P}Cr {Q}. The side condition checks the integrity of
the obtained precondition P by verifying whether it requires heap described by
shared variables. In this case r’s resource invariant is not strong enough. The
rationale is that if shared state is needed by the critical region this should be
provided by the resource invariant and not by the precondition.5 The rule there-
fore tries to refine I(r) by adding the terms with shared variables in P . If the
5 Recall that precondition computed by bi-abduction corresponds to the footprint of
C, therefore it expresses the state needed to run the command.

9

resulting invariant Ir extends the current guess for r, then this extension is used
to replace I(r). Rule −→2 can be applied when −→1 cannot refine I(r) any
further. The task of −→2 is to remove from I(r) those disjuncts that cannot be
re-established by the CCR’s body. Finally, rule −→3 records the fact that a spec
for Cr has been found, by extending the set L of completed CCRs.

Lemma 2. If the number of program variables in Prg is finite then the transition
system defined in Table 1 is finite.

The immediate consequence of this lemma is that CompSpecs can be effectively
computed by a fixed-point computation which applies systematically the rules
avoiding to re-apply them to previously visited states. Hence we have:

Corollary 1. The computation of CompSpecs terminates.

We now illustrate with some examples the derivation of specifications for CCRs.

Example 1. Assume the resource invariant I ≡ (¬full ∧ emp) ∨ (full ∧ emp). We
show the induced specifications for the CCRs in Fig. 1. Using emp as precondi-
tion, for put(x) we have the following derivation:

{¬full ∧ emp ∗ I}
c := x;
{¬full ∧ c=x ∧ emp}
full := true;
{full ∧ c=x ∧ emp}

That is we have the triple {¬full∧emp∗I} c := x; full := true {full∧c=x∧emp}.
From this, the bi-abduction engine is queried to derive F and A for the entailment

full ∧ c=x ∧ emp ∗ A ` I ∗ F

The solution is A ≡ emp and F ≡ c=x∧emp. This is further simplified to remove
terms with shared variables: [emp]locc=x∧I = emp and α(∃c. c=x ∧ emp) = true ∧
emp. Therefore by the application of the rule BA-with we obtain the specification

{emp} put(x) {emp}

Similarly for the CCR get(y), using emp as precondition of BA-with we have:

{full ∧ emp ∗ I}
y := c; full := false
{¬full ∧ y = c ∧ emp}

Now we appeal to bi-abduction for the query ¬full ∧ y = c ∧ emp ∗ A ` I ∗ F.
The solution is A ≡ emp and F ≡ y=c ∧ emp and hence after the simplification
of [·]loc and α and by BA-with rule we obtain the specification

{emp} get(y) {emp}.

10

alloc(x) = with mm when (true) do {
if (f=nil) then x := new();

else x := f; f:=[x];

}

dealloc(y) = with mm when (true) do {
[y] := f; f:= y;

}

Fig. 3. alloc(x) and dealloc(y) definitions.

Example 2. Consider now a different resource invariant I ≡ (¬full∧emp)∨(full∧
c 7→−). As in the previous example, we show the induced specifications for the
CCRs in Fig. 1, using this invariant instead. For put(x) we can derive:

{¬full ∧ emp ∧ I}
c := x; full := true;
{full ∧ c=x ∧ emp}

That is we have the triple {¬full∧emp∗I} c := x; full := true {c=x∧ full∧emp}.
The bi-abduction engine derives for the question c=x ∧ full ∧ emp ∗ A ` I ∗ F
the solution A ≡ c 7→− and F ≡ c=x ∧ emp. By simplifying the anti-frame
we obtain [c 7→−]locc=x∧full = x 7→− whereas for the frame we have α(∃c. c=x ∧
emp) = true ∧ emp. Therefore the application of BA-with gives the specification
{x 7→−} put(x) {emp}.

Similarly for get(y) we have:

{full ∧ emp ∗ I}
{full ∧ c 7→−}
y := c; full := false
{¬full ∧ y=c ∧ c 7→−}

When posed the query ¬full ∧ y=c ∧ c 7→ − ∗A ` I ∗ F the bi-abduction engine
finds the solutions A ≡ emp and F ≡ y=c ∧ c 7→−. A is already simplified,
whereas F is simplified to α(∃c. y=c ∧ c 7→−) = y 7→−. Hence BA-with returns
the specification {emp} get(y) {y 7→−}.

Example 3. We now consider a more involved example that shows the compu-
tation of the function CompSpecs. Here we use the memory manager described
in [9] and reported in Fig. 3. We start by computing the specification of alloc(x)
using I0 ≡ true ∧ emp. We can prove the triple

{P0} alloc(x) {x 7→−}

where P0 ≡ (f=nil ∧ emp) ∨ (f 7→−). However, the precondition specifies prop-
erties of the shared variable f , so we need to apply rule −→1 of Table 1. The
invariant is refined by adding P0 to the current I0 and then abstraction α:

I1 = α(I0 ∗ P0) = (f=nil ∧ emp) ∨ (f 7→ f ′)

11

where we have explicitly named the existential variable f ′ because it will be used
in the next iteration. When recomputing the specification of alloc(x) using I1
we obtain the following triple:

{P1} alloc(x) {x 7→−}

where P1 ≡ (f=nil∧ emp)∨ (f 6=nil∧ f ′=nil∧ emp)∨ (f 6=nil∧ f ′ 7→−). Again by
rule −→1 we obtain

I2 = α(I1 ∗ P1) = α((f=nil ∧ emp) ∨ (f 7→ nil) ∨ (f 7→ f ′ ∗ f ′ 7→−))
= (f=nil ∧ emp) ∨ (f 7→ nil) ∨ ls(f, f ′)

A further iteration of −→1 produces the same P1 and

I3 = (f=nil ∧ emp) ∨ (f 7→ nil) ∨ ls(f, f ′) ∨ ls(f, nil)

The candidate I3 is a fixpoint w.r.t. −→1 but it still produces the same P1,
therefore rule −→3 cannot be applied yet. This is caused by the disjunct ls(f, f ′),
which is too weak: starting from ls(f, f ′) the candidate invariant I3 cannot be
re-established. But now, rule −→2 can fire to remove disjunct ls(f, f ′) and obtain

I3 −→2 I4 = (f=nil ∧ emp) ∨ (f 7→ nil) ∨ ls(f, nil)

Now rule −→3 can be applied, so I4 is a resource invariant for alloc(x). The
final specification of alloc(x) using I4 is {emp} alloc(x) {x 7→−}.

Finally, I4 directly allows us to obtain {y 7→−} dealloc(y) {emp} as speci-
fication for dealloc(y).

5.2 Proof Search

This phase attempts to build a compositional proof of the program by trying to
prove each thread in isolation. The building process is done using the bottom-up
analysis which starts from the beginning of the thread and tries to construct a
valid Hoare triple by symbolically executing the program as described in Sec. 3.3.
Let the concurrent program be

Prg = init ; resource r1(x1), . . . , rm(xm); C1 ‖ · · · ‖ Cn

Given PCi , a precondition for the thread Ci we can execute a proof search for Ci

by ProofSearch. This procedure uses the Bi-Abductive Sequencing rule to build
the proof but requires that at every application of this rule we have A ≡ emp.
This condition ensures that a proof for the thread Ci can actually be built from
the precondition PCi

. In fact, it provides us with a notion of failure for a proof
attempt. We say that the proof search for Ci = C ′i;C

′′
i (from PCi) fails if by an

application of Bi-Abductive Sequencing Rule we obtain the triple

{PCi ∗ A}C ′i {Q}

12

Algorithm 2 RefineOwnership(C1; . . . ;Cj ;C, I)
1: ρ = {i ∈ [1, j] | Ci is a CCR};
2: do
3: k := max ρ;
4: ρ := ρ \ {k}
5: I ′ := RefOwn((C1; · · · ;Ck), (Ck+1; · · · ;Cj ;C))
6: while I(res(Ck)) = I ′ ∧ ρ 6= ∅;
7: return I[res(Ck)← I ′];

for some Q ∈ SH and ¬(A ≡ emp). We are usually interested in the shortest
prefix C ′i which makes the proof fail. The synthesis algorithm uses this notion
of failure to detect when and where the invariant needs to be refined because of
possible ownership transfer.6

5.3 Refining Resource Invariants for ownership transfer

Algorithm 2 defines the procedure RefineOwnership. It is called by InvariantSynthesis
when the proof search fails, typically because some ownership transfer is needed
for the program to be safe, but is not enabled by the current invariants I.
RefineOwnership takes as parameter a sequence of commands containing a CCR
for which a proof attempt has failed. Consider the sequence C1; · · · ;Cj ;C where
the failure of the proof occurred in C. Let ρ ⊆ [1, j] be the indexes of all the
CCRs in the sequence. The algorithm starts from the last CCR, i.e. Ck where
k = max ρ, and tries to refine its invariant using function RefOwn. If no refine-
ment is possible (i.e. the invariant remains unchanged), then the algorithm tries
to refine the invariant of the previous CCR in the sequence, and so on until no
further CCR exists.

We now describe how the function RefOwn((Ĉ;Cr), Ĉ ′) operates, where Cr ≡
with r when B do C ′′ endwith is the CCR whose invariant will be refined, and
the Ĉ notation is used for sub-sequences of the failing sequence. Let P be the
precondition of the current thread, and let {P} Ĉ {Q} the result of the forward
analysis just before Cr and {B∧(Q∗I(r))}C ′′ {Q′′∗I(r)} the results of forwards
analysis until before exiting the CCR Cr. Let also {P ′} Ĉ ′ {Q′} be the result of
spec inference for the continuation Ĉ ′. We can then define

RefOwn((Ĉ;Cr), Ĉ ′) def= ((B ∧ [A]sha(Q′′∗I(r))) ∨ (¬B ∧ emp)) ∗ I(r)
if (Q′′ ∗ I(r)) ∗ A ` (P ′ ∗ I(r)) ∗ F

where recall that [·]sha, defined in Sec. 5.1, tries to replace local variables with
shared variables.

Intuitively RefOwn takes a trace ending in a CCR Cr and its continuation
Ĉ ′, and returns a refined resource invariant for r which is updated only for

6 Clearly the proof can fail for other reasons than the resource invariant. Other issues
for failure can be manifested in the fact that ¬(A ≡ emp).

13

the part related to Cr and which takes into account the heap needed by Ĉ ′.
The refinement is computed by solving a bi-abduction question involving the
symbolic state inside Cr before releasing the invariant, and the precondition of
the continuation suitably augmented with the invariant. In addition, only the
part of the anti-frame A involving shared variables is taken to refine the invariant.

Soundness and Termination. We now give some results about our invariant
generation method. For space reasons the proofs are reported in the appendix.

Theorem 1. The InvariantSynthesis algorithm is sound.

Corollary 2. If InvariantSynthesis(Prg) returns a set I then Prg is race-free.

Theorem 2. Algorithm 1 InvariantSynthesis terminates provided that the under-
lying forward analysis does.

5.4 Full Examples

Example 4. We describe the execution of the synthesis algorithm on the pro-
gram on the left side of Fig. 2 which performs transfer of ownership. The first
approximation of the resource invariant for resource buf is I0 = Iput∨Iget where

Iput = ¬full ∧ emp Iget = full ∧ emp (3)

Using I0 we obtain the first approximation of put(x) and get(y) specifications
(see Ex. 1 for the detailed derivation of these specs):

{emp} put(x) {emp} {emp} get(y) {emp} (4)

We then execute the ProofSearch procedure of both threads using I0 and emp as
preconditions. By Bi-Abductive Sequencing Rule (1) for the LHS thread we have:

{emp}x = new() {x 7→−} {emp} put(x) {emp}
{emp}x = new(); put(x) {x 7→−}

by taking A ≡ emp and F ≡ x 7→−. Since A is emp, no refinement of I is required
and this completes the proof of the LHS thread. For the RHS we have:

{emp} get(y) {emp} {y 7→−} dispose(y) {emp}
{y 7→−} get(y); dispose(y) {emp} (5)

However, we obtain this derivation by the anti-frame A ≡ y 7→−, and by our
notion of failure of the proof search introduced in Sec. 5.2 this means that we
cannot actually prove the RHS thread. The algorithm starts the refinement of
the invariant by inspecting the RHS and using the body of the CCR get(y):7

{(c = c′∧y = y′∧emp)∗(full∧I0)} y=c;full=false {c = c′∧y = c′∧¬full∧emp}
7 As in [4], we use auxiliary variables to record the initial value of program variables.

14

According to the definition of RefOwn we have to solve

(c = c′ ∧ y = c′ ∧ ¬full ∧ emp) ∗ A ` (I0 ∗ y 7→−) ∗ F

Here we have A ≡ y 7→− and [A]sha(c=c′∧y=c′∧¬full∧emp) ≡ c 7→−. Following the
algorithm, we extend the full disjunct of I0 to obtain a new candidate invariant:

I1 = (¬full ∧ emp) ∨ (full ∧ c 7→−) (6)

CompSpecs then updates the specifications for put(x) and get(y) using the
new invariant and the rule BA-with. As shown in Ex. 2 we obtain:

{x 7→ } put(x) {emp} {emp} get(y) {y 7→−} (7)

The algorithm then uses the new specs in an attempt to prove LHS and RHS.

{emp}x = new() {x 7→−} {x 7→−} put(x) {emp}
{emp}x = new(); put(x) {emp}

{emp} get(y) {y 7→−} {y 7→−} dispose(y) {emp}
{emp} get(y); dispose(y) {emp}

This time the proof succeeds, and the algorithm returns I1 as resource invariant.

Example 5. Here we discuss the execution of the synthesis algorithm on the
program on the right of Fig. 2, which does not involve ownership transfer. As in
Ex. 5 the algorithm initializes the resource invariant for buf to I0 = Iput ∨ Iget,
where Iput an Iget are defined as in (3). Moreover, the initial specs for put(x)
and get(y) are again as in (4). The forward analysis then easily proves the
following triples (at each step Bi-Abductive Sequencing rule gets A ≡ emp) :

{emp}x = new(); put(x); dispose(x) {emp} {emp} get(y) {emp}

Hence the algorithm returns I0 as a suitable resource invariant for this program.

Example 6. We now discuss a complex program which combines the one-place
pointer transferring buffer and the memory manager [9]:

alloc(x);
put(x);

get(y);
dealloc(y);

Step 1 of Algorithm 1 initializes the resource invariants to

I0
buf = (¬full ∧ emp) ∨ (full ∧ emp) I0

mm = true ∧ emp

CompSpecs derives specifications for the CCRs, and, as seen in Ex. 3, it refines
I0
mm to obtain a resource invariant I1

mm for the CCRs of resource mm. We have

{emp} put(x) {emp} {emp} get(y) {emp}
{emp} alloc(x) {x 7→−} {y 7→−} dealloc(y) {emp}

I1
mm = (f=nil ∧ emp) ∨ (f 7→ nil) ∨ ls(f, nil)

15

As in Ex. 1, using such specifications we can derive a proof for the LHS:

{emp} alloc(x) {x 7→−} {emp} put(x) {emp}
{emp} alloc(x); put(x) {x 7→−}

However, we cannot derive a proof for RHS since we get a non-empty anti-frame:

{emp} get(y) {emp} {y 7→−} dealloc(y) {emp}
{y 7→−} get(y); dealloc(y) {emp}

Therefore, refinement is required. This is done as in Ex. 4 where we get Ibuf ≡
(¬full ∧ emp) ∨ (full ∧ c 7→−) and specifications {x 7→−} put(x) {emp} and
{emp} get(y) {y 7→−}. Using them, both LHS and RHS are then proved.

6 Related Work

Our method for computing resource invariants uses bi-abduction, a technique
which was recently introduced in [4] for discovering specifications of sequential
programs. For simplicity, we have assumed that each resource declaration is
annotated with the set of global variables it protects. Such annotations need not
be given always by the user, as they can often be inferred by systems such as
Locksmith [10].

The only shape analysis based on concurrent separation logic that attempts
to calculate resource invariants is the thread-modular shape analysis by Gotsman
et al. [7]. This uses a heuristic to decide how to partition the state into local and
shared after each critical region. As a result, this method cannot use the same
heuristic to verify both programs in Fig. 2.

Note that these small programs can be verified with analyses that are not
thread-modular: e.g. by considering all thread interleavings as in Yahav [12],
or by keeping track of the correlations between the local states of each pair of
threads as in Segalov et al. [11]. The drawback of such analyses is that they
do not scale very well to large programs. In contrast, as we use compositional
techniques for discovering resource invariants, we are hopeful that our algorithm
will scale to large programs.

7 Conclusion

In this paper, we have proposed a sound method for automating concurrent
separation logic proofs by synthesizing suitable resource invariants. Our method
is thread-modular in that it requires isolated inspection of sequential threads
instead of the global parallel composition. The strength of our method relies on
the ability to address one of the main open issues in the automation of proofs for
concurrent separation logic. This is the ability to discern, in a thread local way,
the cases where the resource invariant needs to describe the transfer of owner-
ship (among threads), from those cases where no transfer should be involved.

16

This inherent complication has been described by O’Hearn by the expression
“ownership is in the eye of the asserter”. The technique proposed in this paper
pushes the state of the art in automatic generation of proofs towards the more
ideal situation where “ownership is in the eye of the mechanical method”. We
believe that this will open-up interesting possibilities for achieving more scalable
automatic techniques for concurrent programs.

Acknowledgements. We thank Peter O’Hearn and Noam Rinetzky for invaluable
comments.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang.
Shape analysis of composite data structures. In CAV’07, 2007.

2. J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation
logic. In APLAS’05, 2005.

3. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Automatic modular assertion
checking with separation logic. In 4th FMCO, pp115-137, 2006.

4. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape
analysis by means of bi-abduction. In POPL, pages 289–300. ACM, 2009.

5. B. Chang, X. Rival, and G. Necula. Shape analysis with structural invariant check-
ers. In SAS’07, 2007.

6. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In TACAS’06, 2006.

7. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
In PLDI, 2007.

8. B. Gulavani, S. Chakraborty, G. Ramalingam and A. Nori. Bottom-up Shape
Analysis. To appear in SAS 2009.

9. P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1-3):271–307, May 2007.

10. P. Pratikakis, J. S. Foster, and M. Hicks. Context-sensitive correlation analysis for
detecting races. In PLDI, June 2006.

11. M. Segalov, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv. Efficiently
inferring thread correlations. Unpublished, 2009.

12. E. Yahav. Verifying safety properties of concurrent java programs using 3-valued
logic. In POPL, pages 27–40, 2001.

A Proofs

Lemma 1 The BA-with rule is sound.

Proof. BA-with is derivable from the Frame, Conseq, and WithRes rules of Con-
current Separation Logic, by observing that Q ∗ A ⇐⇒ Q ∗ [A]locQ and that
F =⇒ α(∃c.F). ut

17

Lemma 2 If the number of program variables in Prg is finite then the transition
system defined in Table 1 is finite.

Proof. To see why the transition system has a finite number of states, it is
enough to observe that |L| ≤ |Prg|. Moreover, we consider resource invariants
and specifications which do not contain (redundant) equivalent disjuncts. Then,
given that each disjunct is in canonical form (by the abstraction α), and that
there are only a finite number of those (see Proposition 9 in [6]), we have that
the number of possible resource invariants and specifications is finite. ut

Theorem 1 The InvariantSynthesis algorithm is sound.

Proof. First notice that the set Specs built by the algorithm contains valid Hoare
triples. Secondly, if the algorithm terminates without failure then the procedure
ProofSearch(Prg, I,Specs) builds a proof of Prg in Concurrent Separation Logic.
Therefore, the soundness of the algorithm follows directly from the soundness of
Concurrent Separation Logic8. ut

Theorem 2 Algorithm 1 InvariantSynthesis terminates provided that the under-
lying forward analysis does.

Proof. Algorithm 2 RefineOwnership terminates since it inspects a finite number
of CCRs. Since the underlying forward analysis terminates by assumption, and
since CompSpecs terminates by Corollary 1, then termination of InvariantSynthesis
follows from the observation that the loop starting at line 3 is executed a finite
number of times. To see why, observe that there is only a finite number of sym-
bolic heaps in canonical form. Therefore there is only a finite number of pairs
(Specs, I). Moreover, Failed ensures that only invariants which did not fail be-
fore are inspected. Hence InvariantSynthesis terminates. ut

8 As in [7], we take advantage of the fact that the Conjunction Rule of Hoare Logic is
not used in the proof to lift the restriction that resource invariants be precise [9].

18

