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Abstract 
It is crucial to identify the most appropriate hypotheses if one is to apply 

probabilistic reasoning to evaluate and properly understand the impact of evidence. 

Subtle changes to the choice of a prosecution hypothesis can result in drastically 

different posterior probabilities to a defence hypothesis from the same evidence. To 

illustrate the problem we consider a real case in which probabilistic arguments 

assumed that the prosecution hypothesis “both babies were murdered” was the 

appropriate alternative to the defence hypothesis “both babies died of Sudden Infant 

Death Syndrome (SIDS)”. Since it would have been sufficient for the prosecution to 

establish just one murder, a more appropriate alternative hypothesis was “at least 

one baby was murdered”. Based on the same assumptions used by one of the 

probability experts who examined the case, the prior odds in favour of the defence 

hypothesis over the double murder hypothesis are 30 to 1. However, the prior odds 

in favour of the defence hypothesis over the alternative ‘at least one murder’ 

hypothesis are only 5 to 2. Assuming that the medical and other evidence has a 

likelihood ratio of 5 in favour of the prosecution hypothesis results in very different 

conclusions about the posterior probability of the defence hypothesis.  

1. Introduction 
Much has been written about the improper use of statistics in respect of Sudden Infant 

Death Syndrome (SIDS) in the Sally Clark case [1][2][5][6][7] (and others similar 

[8][9]).  In particular, the claim made by the prosecution’s key expert witness Roy 

Meadow at the original trial – that there was “only a 1 in 73 million chance of both 

children being SIDS victims” – has been thoroughly, and rightly, discredited. However, 

this was not the only statistical error made.  Instead, there was failure to compare the 

prior probability of SIDS with the (also small) probability of murder
2
. Probability 

experts used this lack of comparison as the focus for discrediting the original statistical 

claims [2][6]. However, another statistical issue was not considered and this paper will 

present this issue using the Sally Clark case to illustrate an alternative view.   
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2
 It is important to note that, although the focus of the statistical analyses have been on comparing 

the probabilities of SIDS and murder, these were not the only possible explanations for the deaths 

and this is now widely accepted. SIDS is partly a catch-all diagnosis for unexpected, 

unexplicable, spontaneous death of an infant while asleep. As stated in [6] the deaths could also 

have been the result of accidents or medical conditions that could have been explained with 

appropriate investigations. It was because no explanation was offered that SIDS was assumed to 

be the alternative explanation to murder. The implication of this assumption (which is now 

widely assumed to be untrue) is discussed further in the conclusions.  
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2. Errors in statistical arguments 
 

2.1 Previously noted errors 

 

There were two fundamental statistical/probabilistic errors which can be illustrated 

through the Sally Clark case: 

 

1. The figure of 1 in 73 million for the probability of two SIDS deaths in the same 

family was based on an unrealistic assumption that two deaths would be 

independent events, and hence that the assumed probability of 1/8500 for a 

single SIDS death could be multiplied by 1/8500.  The error is compounded 

when the resulting (very low) probability is assumed to be equivalent to the 

probability of Sally Clark’s innocence (this is an example of the prosecutor’s 

fallacy [3]). 

2. The (prior) probability of a SIDS death was considered in isolation, i.e. without 

comparing it with the (prior) probability of the proposed alternative, namely of a 

child being murdered by a parent
3
.  

 

Although error 1 has been the most widely discussed, it is error 2 that makes the real 

difference to the case. Assuming, as in [6], that error 1 can be fixed by noting that a 

second SIDS death given a previous SIDS death in the same family is not 1/8500 but  

5.7 times higher, i.e. 1/1491, it follows that the probability of  two SIDS deaths is 1 in 

12.6 million rather than 1 in 73 million
4
. To most lay people this difference might seem 

minor. That is why explaining and fixing error 2 was so critical, and this has been well 

documented in [1] (with longer version in [2]) and [6].  The key part of the explanation 

is based on comparing the prior probability of the SIDS hypothesis with the alternative 

murder hypothesis, i.e. specifically comparing the prior probabilities of the hypotheses :  

 

M :  Both babies were murdered.  
S :  Both babies died of SIDS. 
 

In [1] the author provided the following argument: 
 

“In 1996 there were 649,489 live births in the England and Wales.  On these 

babies, 14 were later classified as having been murdered in the first year of life.  

If we were to take the ratio 14/649,489 as our estimate of the probability that a 

single baby will be murdered in the first year of life, and manipulate it in exactly 

the same way as we did the SIDS rate, we would calculate that the probability of 

two babies in one family both being murdered is (14/649,489) times 

(14/649,489)
5
, which gives 1 in 2,152,224,291.  On this basis, the “logic” of 

paragraph 14 above would imply that we could essentially exclude the 

possibility that Sally Clark’s two babies were murdered.” 

 

So, using the same independence assumptions that led to a “1 in 73 million” figure for 

the prior probability of S, we end up with a much lower prior probability of “1 in 

2,152,224,291” for M.  We are therefore able to conclude that the prior probability of S 

is actually 30 times greater than the prior probability of M.  
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However, there is another hypothesis that could be considered.  To explain it we will 

make the same basic simplifying assumption as in [1][2][6], namely that SIDS and 

murder are the only two possible causes of deaths in the case.  
  
2.2 An alternative hypothesis and its probabilistic impact 
 
The major problem illustrated above is in the formulation of the two hypotheses M and 
S, which were accepted as the only hypotheses. Although the author in [6] used exactly 
the same hypotheses M and S as in [1][2] he was clearly aware of the potential for error 
in doing so, because he also stated the following in the Introduction: 
  

“…there is the possibility that the deaths were a mixture of SIDS and homicides. 
With this proviso in mind, it still seems to me that the most relevant comparison 
to make here is that of the chances of multiple SIDS against the chances of 
multiple homicide, the reason being that when a case of multiple deaths comes 
to trial, it is generally the case that the prosecution claims that the deaths are all 
homicide, while the defence claims that they are all SIDS.” 

 
In fact, while the prosecution

6
 might have claimed that both deaths were murder, it could 

have been sufficient for them to establish just one murder in order to get a convicton. 
This example highlights the importance of considering different hypotheses. In the Sally 
Clark case it was argued that only M should be considered, but a more relevant 
‘prosecution’ hypothesis could be: 
 

H:  At least one of the babies was murdered 
 
Hence, it is hypothesis H and not hypothesis M that should be compared to S.  
 
Note also that, unlike M, the hypothesis H is the logical negation of S; for reasons 
covered in detail in [4], the prosecution and defence hypotheses should ideally be logical 
negations of each other if we want to compare probabilities meaningfully when evidence 
is presented. What was considered in this case is only a partial hypothesis.  Before we 
examine the statistical implications in the case, it is useful to illustrate its importance 
with a very simple hypothetical example: 
 

Suppose  there are 100 raffle tickets numbered 1 to 100. Only tickets numbered 
1 to 5 win a prize.  Fred’s alleged ‘crime’ is that he did not win a prize.  The 
prior of the defence hypotheses Hd  (‘Fred selected a number less than 6’) is a 
very low probability, namely 1/20, illustrating the strength of the prosecution 
case.   
 
Now suppose that we try to counter the low prior probability of Hd by arguing 
that we should compare it against the hypotheses Hp: ‘Fred selected a number 
greater than 99’. The prior probability for Hp is 1/100, so this hypothesis is 
actually 5 times LESS likely than the defence hypothesis. While this is a valid 
conclusion for this particular hypothesis it is certainly not valid for the correct  
alternative hypothesis in this case, which is the logical negation of Hd :‘Fred 
selected a number greater than 6’ whose prior probability is, of course, 19/20. 
This is 19 times more likely than the defence hypothesis.  
 

In Section 2 we already noted that [1] provided an estimate for the prior probability for 
hypothesis M as 1/2,152,224,291. In order to demonstrate the impact of using the 
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the logical negation of the prosecution hypothesis. The Sally Clark case was unusual in that there 

was an assumed defence hypothesis (S) and the prosecution (in the form of Meadow’s expert 

testimony) challenged this hypothesis by arguing that its (prior) probability was very low. That is 

the reason why it makes sense in this context to focus on the defence hypothesis. 
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hypothesis H  rather than M, we can use the same assumptions in [1] to get an estimate 
of the prior probability of H (using the same independence assumptions): 

 
P(H) = P(at least one murder)  
        = P(double murder) + P(one murder, one SIDS) 
        = P(double murder) + P(child 1 murdered, child 2 SIDS)+  
                                            P(child 2 murdered, child 1 SIDS) 
        = 1/(2.15billion) + (1/8500 × 1/46,392) + (1/46,392 × 1/8500) 
  = 1/(2.15billion) + 1/394 million + 1/394 million  
  = approx 1/183 million 

 
This has to be compared with the prior probability of 1/73 million for the defence 
hypothesis S using the same ‘independence’ assumptions. So, whereas the prior defence 
hypothesis S is 30 times more likely than the hypothesis M it is only 2.5 times more 
likely than H.  
 
It is very important to point out that [1]  was not supporting the idea that it made sense 
to assume independence for the SIDS deaths. The author was simply making the case 
that if we used the same (incorrect) independence assumption for the prosecution 
hypothesis that was used by Meadow for the defence hypothesis, then you ended up with 
an even lower probability. This is a valid and powerful way to get across the importance 
of error 2. However, as we have shown, the impact of error 2 is significantly 
exaggerated if one does not use the correct prosecution hypothesis: by allowing for the 
possibility of one murdered baby, the defense hypothesis weakens significantly. 
 
2.3 The probabilistic impact upon additional evidence when the more appropriate 
hypothesis is used 
 
It is beyond the scope of this short paper to consider the extent to which the medical and 
other evidence presented in the case changes the prior probabilities of the different 
hypotheses. What we can do, however, is apply the same hypothetical assumptions about 
the medical signs observed as done in [1] and compare the results when we start with the 
more appropriate hypotheses. The assumptions in [1] were: 
 

“..the probability that the specific medical signs observed would in fact be 
observed, on the hypothesis that the babies were murdered, was assessed at 1 in 
20; while the probability of these same signs being observed on the hypothesis 
that they died of SIDS was taken to be 1 in 100.  The ratio of these figures is 5.” 

 
Using the prosecution hypothesis M of a double murder only (so the defense hypothesis 
was 30 times more likely than that of the prosecution),  it follows from Bayes’ theorem

7
 

that the prior odds (of 30 to 1 in favour of the defence) swing by a factor of 5 in favour 
of the prosecution hypothesis (since the likelihood ratio is 5). This means that, even after 
taking acount of the evidence, the posterior odds are still strongly in favour of the 
defence hypothesis by 6 to 1.  In contrast, using the alternative prosecution hypothesis H 
(where the defense hypothesis was only 2.5 times more likely) the swing by a factor of 5 
in favour of the prosecution hypothesis results in posterior odds 2 to 1 in favour of the 
prosecution hypothesis. So, with the same assumptions as were used in  [1] there is a 
critical difference between using the hypotheses M (double murder) and the alternative 
hypothesis H (at least one murder). Whereas with the former the posterior probability of 
the defence hypothesis is still much more likely after observing the medical signs, with 
the latter the prosecution hypothesis becomes more likely.  It is important to stress, of 
course, that the likelihood ratio of 5 (for the medical evidence) in favour of the 
prosecution hypothesis that was used in [1] was hypothetical; in reality, when all the 
evidence was considered the likelihood ratio may have been very different.  
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3. Summary and Conclusion 
 

For a number of reasons presented in [4] when using probabilities to compare a pair of 

alternative hypotheses in legal cases, it is preferable that the pair are mutually exclusive 

and exhaustive. Indeed, in order to draw conclusions about the probative value of 

evidence directly from the likelihood ratio of the alternative hypotheses it is proved in 

[4] that the hypotheses must be mutually exclusive and exhaustive. This is also 

recognized as a requirement in [2]. This is why it is so crucial to identify the most 

appropriate hypotheses if one is to apply probabilistic reasoning to evaluate and properly 

understand the impact of evidence. Using the hypothesis “At least one baby was 

murdered” as opposed to “Both babies were murdered” makes a significant difference to 

the prior odds of the defence hypothesis (“Both babies died of SIDS”).   

 

It was beyond the scope of this paper to consider a serious statistical analysis of the 

Sally Clark case taking account of all relevant prior probabilities. This would involve 

access to extensive information about all types of child deaths, all known instances of 

multiple child deaths within the same family, and information about dependencies 

between different deaths.  
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