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Consider the following problem: You are in 
charge of a critical system, such as a transport 
system or a nuclear installation. The system is 
made up of many components that you buy as 
black boxes from different suppliers. When you 
need a new type of component you invite a 
dozen suppliers to tender. If you are lucky you 
might be able to get some independent test 
results or even operational test data on the 
components supplied. Your task is to accept or 
reject a component. One of your key acceptance 
criteria will be the safety of the component. This 
might be measured in terms of the predicted 
number of safety related failures that the 
component can cause in a ten year life-span 
when integrated into your system. How do you 
make your decision and justify it?  
 
This is a classic risk assessment problem in 
which you have to come up with a quantified 
figure by somehow combining evidence of very 
different types. The evidence might range from 
subjective judgements about the quality of the 
supplier and component complexity, through to 

more objective data like the number of defects 
discovered in independent testing. In some 
situations you might have extensive historical 
data about previous similar components, whereas 
in other cases you will have none. Your trust in 
the accuracy of any test data will depend on your 
trust in the providence of the testers. Having 
little or no test data at all will not absolve your 
responsibility from making a decision and 
having to justify it. A decision based only on 
‘gut feel’ will generally be unacceptable and, in 
any case, disastrous in the event of subsequent 
safety incidents with all the legal ramifications 
that follow.  
 
Increasingly, the above type of risk assessment 
problem is being successfully addressed in a 
wide range of application domains using 
Bayesian Networks (BNs) [1,2,3,4]. BNs provide 
effective decision-support for problems 
involving uncertainty and probabilistic 
reasoning. In particular, they are uniquely 
effective in enabling quantitative assessments by 
combining the kind of diverse data above. 

 
Figure 1 - BN example for component safety assessment 
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A BN is a directed graph, like the one shown in 
Figure 1, in which each node has an associated 
probability distribution. The nodes represent the 
variables relevant to your problem. In this 
example some nodes like number of faults found 
in test are numeric, while others like quality of 
supplier are ranked with values ranging from 
“very low” to “very high”. The arcs represent 
causal or influential relationships between 
variables. For example, the number of faults 
found in test is influenced by the number of 
latent faults and the probability of finding a fault 
in testing . The strength of influence of the 
parents is captured by the probability distribution 
for the node. In this case the distribution is 
widely accepted to be a Binomial distribution. 
The distribution for other nodes, such as quality 
of solution, is much less obvious and will 
generally need to be elicited from domain 
experts with or without relevant data. In the 
worst case this requires them to define a 
probability value for each possible combination 
of parent and child states. However, in many 
situations a distribution based around a single 
expression (such as a weighted sum of the 
parents) may be sufficient. Where a node, such 
as quality of supplier, has no parents the 
probability distribution is the so-called prior 
distribution. Thus, if you believe that 30% of 
suppliers have high quality then the probability 
associated with the state “high” is 0.3 
 

The BN in Figure 1 is a simplified version of a 
model that we have used to solve exactly the 
kind of problem we introduced at the start. The 
yellow square nodes represent variables that we 
might expect to know for a given component. 
The system safety node will never be directly 
observed, but the node number of faults found in 
test might be. The round white nodes represent 
variables that we regard as ‘internal’ in the sense 
that they help us structure the model but are of 
no interest to the end-user of the model. Hence, 
we have hidden these in subsequent figures. 
  
The BN enables us to make observations about 
known variables and infer the probabilities of 
others, which have not as yet been observed. It 
does this by using probability calculus and Bayes 
theorem throughout the model (this is called 
propagation ). Thus, when we run this model in 
an appropriate BN tool such as AgenaRisk [6], 
we can view the status of any node given any 
number of observations made. By ‘status’ we 
mean the full probability distribution. For 
example, if we run the model with no 
observations we see the probability distribution 
for system safety as shown in Figure 2. 
 
The resulting so-called marginal distribution for 
system safety here can be regarded as the 
population distribution for all components that 
we might as sess. Thus, on average 48% of all 
components experience no failures in their 10-
year life-time of use within our system, while 
about 1.2% experience more than 50 failures. 

 

 
Figure 2 Marginal distribution for system safety 
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What we are really interested in, however, is 
how this distribution changes when we enter 
observations for a particular new component. We 
might have an acceptance criterion that the 
probability of more than 0 failures should be no 
less than some threshold value like 0.95. This is 
much higher than the starting point here of 0.48. 
Suppose we know that the quality of the supplier 
is “very high” and the complexity of the 
component requirements is “medium”. Then in 
the case where the operational usage is “high” 
the resulting revised distribution for safety is 
shown in Figure 3.  
 
Although the prediction is better news (0.7 
probability of 0 failures, compared to 0.48 
before)  it is clearly not good enough. Other than 
by lowering the operational usage of the 
component (the less it is used the less likely it is 
to fail) the only other way we can gain greater 

confidence in its safety is to subject it to 
independent rigorous testing. The best possible 
testing scenario is shown in Figure 4. Here, using 
the highest quality testing environment has 
resulted in 0 faults found. Consequently, our 
belief about the probability of 0 failures in 
practice increases to above the 0.95 target safety 
acceptance criterion. 
 
Note, however, that this decision is reversed if 
we find out that the quality of testing was very 
poor as shown in Figure  5 .Although testing 
revealed 0 defects, the fact that we now know 
that testing quality was “very low” means that 
the testing information essentially tells us 
nothing new – the distribution for safety reverts 
back to more or less what it was without testing 
information and we cannot accept the component 
on this basis. 

 

 
Figure 3 First revised prediction of safety 

 

 
Figure 4 Second revised prediction of safety given best possible testing information 

 



 

Page 4    

 
Figure 5 Third revised prediction of safety given revised testing information 

In addition to the above kind of decision-support 
for risk assessment, we can use the BN to do 
various types of ‘what-if’ and sensitivity 
analysis. This is because we can enter 
observations into any node (including a target 
node such as system safety); the BN propagates 
information backward as well as forward to 
update the distributions of all the unknown 
variables. For example, suppose we set as a 
requirement the system safety to be 0 failures. If 
we also know the operational usage is “high” 
then in Figure 6 the BN back propagates to find 
explanations for the observations. In this case the 
most likely explanation is that the complexity of 
component requirements must tend toward low, 

although we also believe (less strongly) that the 
supplier quality must tend toward high.  
 
Suppose we now observe that, in fact, the 
requirements complexity is “high” as shown in 
Figure  7. The model ‘explains away’ this 
observation by adjusting the belief about supplier 
quality, which is now almost certainly ay least 
‘high’. In fact, the BN model in these 
circumstances confirms that, given the 
operational and safety requirements, there is 
almost no chance that any supplier other than a 
high quality one could be used. The BN model is 
showing, in explicit probabilistic terms, that 
using anything other than the best supplier 
represents an intolerable risk. 

 

 
Figure 6 Example of backward inference 
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Figure 7 Revised belief about supplier quality given complexity of component requirements 

 

The example demonstrates that BN models can 
be used to  

• Communicate risk arguments easily and 
effectively 

• Explicitly and rigorously quantify risk 
and uncertainty 

• Combine diverse types of evidence 
including both subjective beliefs and 
objective data 

• Reason from effect to cause and vice 
versa  

• Overturn previous beliefs in the light of 
new evidence 

• Make predictions with incomplete data 

• Arrive at decisions based on visible 
auditable reasoning 

All of this is good news for risk assessors, since 
these points address known previous 
impediments to rational decision-making. Even 
better news is that recent technological 
breakthroughs mean that most of the scalability 
problems that turned people away from using 
BNs have now been solved [5,6,7]. This 
technology has, for example, been packaged into 
the AgenaRisk toolset which enables: 

• Users with minimal statistical 
knowledge to build and edit large-scale 
realistic models for a range of 
application domains. This has been 

achieved by a range of techniques 
including object oriented methods to 
support the structural model building, 
sets of pre-defined template models, 
and methods to enable large probability 
tables to be constructed very quickly 
using minimal expert involvement. For 
example, Philips, IAI and QinetiQ have 
been able to use these techniques for 
risk assessment in large-scale software -
centric projects with acclaimed results 
[7]. 

• Users to achieve results to arbitrarily 
high accuracy. All previous generation 
BN tools required users to define any 
numeric scale as a sequence of pre-
defined intervals (so, for example, 
instead of just specifying that the 
number of faults node ranges from 0 to 
1000, you would have to specify in 
advance how to break up 0 to 1000 into 
a manageable number of intervals). The 
more intervals you define, the more 
accuracy you can achieve, but at a 
heavy cost of computational 
complexity. This process (called 
discretisation) was made worse by the 
fact that you do not necessarily know in 
advance which ranges require the finer 
intervals. The BN results were therefore 
necessarily only crude approximations. 
AgenaRisk solves this critical problem 
by providing so-called dynamic 
discretisation, enabling maximal 
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accuracy with no need for user 
intervention or set-up. For example, 
QinetiQ are using AgenaRisk’s 
dynamic discretrisation to build 
complex, but accurate models to 
support critical decisions about vehicle 
obsolescence. 

• End users to interact via a 
questionnaire interface that hides all 
the model complexity. Once a model is 
completed it can be easily packaged for 
many different types of users. Previous 
generation BN tools provided no-
support for end-user decision makers; 
any decision support system based 
around a BN model had to be 
programmed from scratch. AgenaRisk 
enables non-programmers to tailor and 
generate attractive decision support 
systems based around a BN model in 
seconds. 

Using BNs for quantitative risk assessment is 
therefore no longer an expensive time-
consuming luxury. If you have to quantify risk 
using diverse information and communicate your 
decision to others then BNs are probably the best 
way to go about it. 
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