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ABSTRACT 
The potential for applying Machine Learning (ML) to Electronic Health Records (EHRs) has 
been widely agreed but practical progress has been slow. One reason why EHR data are not 
immediately usable for ML is lack of information about the meaning of the data. An improved 
description of the data would help to close this gap. However, the description needed is of the 
data journey from the original data capture, not just of data in the final form needed for ML. We 
use a simplified example to show how typical EHR data has to be transformed in a series of steps 
to prepare data for analysis or modelling building. We outline some of the typical transformations 
and argue that the data transformation needs to be visible to the users of the data. Finally, we 
suggest that synthetic data could be used to accelerate the interaction between medical 
practitioners and the ML community. 

1. ML AND EHR 
An Electronic Health Record (EHR) system contains a collection of digitised patient and population health 
information that has been collected as part of routine clinical care, including the management and financial 
functions. The records include various types of data, such as patient demographics, medical history, 
administrative information, laboratory tests, radiology images, and billing information. There are millions of 
patient records in EHRs with billions of data points that potentially can help people make better-informed 
decisions. Machine Learning (ML) techniques can potentially use this vast data to improve medical decision-
making and assist with research goals such as disease prediction, biomarker discovery, phenotype 
identification and quantification of intervention effect (Shickel et al., 2017). 

Yet surprisingly, machine learning has, in practice, had little impact in medical decision-making 
(Rajkomar et al., 2019, McLachlan et al., 2019).  Generally, the engagement of the research community with 
data has been the key to the success of ML development. For example, the UCI repository1 provides a range 
of benchmark datasets that is freely accessible to everyone, and competitions such as Kaggle2, encourage 
many researchers to tackle various practical problems using data science and ML techniques. These 
platforms help shape the popularity and the development of ML algorithms and have inspired novel 
applications in many fields. However, because of the confidentiality of healthcare data most researchers have 
no direct access to health data and there is less interaction between the health and ML communities.  

Efforts have been made to bridge this gap by sharing some of the anonymised health data for research 
purposes. The MIMIC III database3 is one example, with more than 60,000 intensive care unit stays spanning 
from 2001 to 2012 in the US. The database contains data such as demographics, vital signs, and laboratory 
tests, and has been used for studies using ML techniques. In the UK, an initiative called CLOSER4 was 
established in 2012 to provide access to data from several longitudinal studies. The data within the repository 
are provided with descriptive statistics on each variable and are openly available under licences. The project 
shows the type of information needed about data for it be widely usable: before requesting data from an EHR 
an ML researcher would need an understanding of the shape and statistics of the data. However, the 
CLOSER data was not collected as part of routine care; instead, major resources were committed to these 
studies, and each of them has their own aims and objectives, which have influenced the designs of the 
extracted data.  

                                                        
1 https://archive.ics.uci.edu/ml/index.php 
2 https://www.kaggle.com 
3 https://mimic.physionet.org 
4 https://www.closer.ac.uk/ 
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This paper proposes a research direction to realise the potential for ML from EHRs. Section 2 describes 
the typical steps undertaken to transform raw EHR data for analysis by clinical researchers. Using a 
simplified example based on a case study we explain why this process hampers the use of ML modelling 
techniques. In Section 3, we propose a way forward. We argue that it is necessary to improve the visibility of 
these transformations with descriptions of both data and the process that generates the analysis data from the 
raw data. We argue that synthetic data could be used to do this, increasing the effectiveness of the interaction 
between medical practitioners and ML researchers. Section 4 concludes this paper. 

2. UNDERSTANDING EHR DATA 
In the following, we introduce an example to show how data currently travels and is processed before 
analysis; we outline how it is possible to improve this situation. 

2.1  The Data Journey: Collection, Linkage and Transformation   

In England, health providers (e.g. hospitals and clinics) submit health data to a data warehouse called 
Secondary Uses Service (SUS), linking records from Admitted Patient Care (APC), Outpatient (OP) 
appointments to Accident and Emergency (A&E). This data warehouse is primarily used by commissioners, 
such as Clinical Commissioning Group (CCG), to keep track of treatment and care activities of the service 
providers. At pre-arranged dates during each financial year, data in SUS undergoes cleaning, quality checks 
and then is further compiled by Commissioning Support Unit (CSU) as Hospital Episode Statistics (HES) to 
a wider community. In the financial year 2018/19 (April to March), around 168 million hospital episodes 
from 558 NHS providers and 1426 independent providers were recorded in HES.  

Apart from commissioning of services and tariff reimbursement purposes, health data in SUS or HES are 
often further transformed and used for secondary purposes including research and healthcare planning. One 
example of transformation is the aggregation of individual diagnostic categories into broader categories. 
Further, the data from one source become more useful when linked with data from other sources: for 
example, primary and secondary data can be linked.  

 
Figure 1. Health Data Journey to Local CCG. 

2.2  An Example Data Analysis  

We experienced the data journey as collaborators on a project with a local CCG. The project aim was to 
investigate the impact of mental health service availability on patient A&E usage, covering both mental 
health conditions and ‘physical’ co-morbidities (such as diabetes and heart disease). The project planned to 
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use a mix of data analytic methods and ML, with the aim of creating tools to help plan expenditure. Figure 1 
summarises how the data used in this project was collected, linked and transformed.  

The SUS dataset is collated at CSU and flows to CCG, which links the SUS dataset with GP data and data 
from other service providers (e.g. mental health service providers) through unique patient identifiers. The 
linked EHRs consist of a wide variety of data fields and these data fields are structured following the national 
Commissioning Data Sets (CDS) standard. For example, the CCG data has demographic information such as 
age, gender, and ethnicity.  

A range of additional fields that are derived by the CSUs. Figure 2 gives an example of a common 
transformation made within a medical organisation. Read codes, a clinical terminology system that encodes 
patient conditions such as clinical signs, symptoms, and diagnoses, are used in the GP data. However, codes 
are too numerous to be used directly in modelling, so flags are derived from these codes to tag whether a 
patient has conditions of interest. Each flag is defined by a set of codes. For example, in 2017, Patient 10001 
was assigned with a 1BT...11 Read code and a Eu34114 Read code from two separate visits. These two visits 
are merged into one record in the GP snapshot in the financial year 2017/18 record. Three flags are raised for 
this patient: low mood, depression, and anxiety. The snapshot is further transformed at CCG for research 
purpose. The flags are aggregated into a variable by counting the number of mental health conditions.  

 
Figure 2. Data Transformation. 

2.3  Data Challenges  

Although data analysis always faces challenges, the complexity of the data journey creates specific 
challenges. Most importantly, the contents of the data are not well documented, but it is not clear how this 
should be achieved. The meaning of the data derives both from its collection (‘how is this field used in the 
GP’s EHR?’) and from the transformations that occur in the data’s journey from their origin. The recipients 
of the processed dataset may lack information about the transformations that have occurred on this journey.  

In the mental health study, it was hard to establish at the outset if the data were sufficient to support the 
intended modelling. The sufficiency of the data depends on the proposed used: for example, training a 
decision support system requires data on clinical outcomes whereas predicting length of stay in hospital does 
not. Our challenge was obtaining sufficient detail about the use of A&E resource. The A&E data came from 
one of the linking steps, with uncertainty about both how it was linked and the original contents.   

Several specific challenges were apparent in the mental health study: 

1. Data is held by the CCG in a relational database management system, but there is no direct access to 
this for the analysis team. The overall structure of the original data is a sequence of encounters (GP 
appointments or hospital stays). It is assumed that analysis will require a flat dataset, but this limits 
the ways that encounters can be combined. For example, suppose a GP patient had two 
appointments and was tagged with a low mood indicator in visit 1 and persistent anxiety depression 
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in visit 2. The sequence of these events will be missed in the derived data: they are both considered 
as events happening in a given year. 

2. Issues occurred in the aggregation of diagnostic codes to create flags. The information about the sets 
of codes used was not immediately available; when found, not all the decisions made were 
considered valid. In addition, some information can be lost during the transformation. In our 
example, codes Eu34114 and Eu41211 are both flagged as ‘depression’ and ‘anxiety’ in the 
snapshot, losing the descriptive information ‘persistent’ and ‘mild’.  

3. A comparison of drug prescriptions with recorded diagnoses provided evidence of under-reporting 
of certain mental health conditions in the GP data. Discussions with practicing GPs suggested 
several mechanisms for this, some relating to possible cultural biases. However, having only 
aggregated data made investigation of this difficult.  

4. Just as the uncertainty created in the original data collection may be disguised in the 
transformations, these transformations may create additional uncertainty. As pointed out by 
Goldstein et al., 2012, when linking data from different sources, matches are often treated as perfect, 
whereas in fact uncertainty may be introduce in the data linkage process. 

The context of the challenges is the need for confidentiality and information governance. It is not possible for 
EHR data simply to be made available in its entirety. Instead, at least the data linkage and much data 
transformation must take place in a secure environment. It may be possible for anonymised data to be 
transferred to another (still secure) environment for modelling building, but this requires the precise data 
needed to be requested. These constraints limit the interaction between the EHR data controllers and the ML 
community who wish to experiment with novel algorithms and models. 

3. MAKING THE DATA JOURNEY VISIBLE 

We propose that the interaction of the ML community with EHR data can be improved using a combination 
of existing techniques applied across the data journey. Although data cannot be made public, documentation 
of the contents of datasets does not need to be confidential. This documentation needs to be available at all 
stages of the data journey, covering both the original data, its linkage and transformation. Provided that the 
form of the documentation is sufficiently rigorous, it could be used to achieve two types of automation. 
Firstly, some transformations could be automated, allowing them to be tailored to the specific needs of an 
analysis or modelling project. Secondly, the documentation can be made executable so that synthetic data can 
be generated, using available knowledge about the uncertainties introduced at each stage of the data journey. 
The synthetic data can be made available for experimentation and preparation, accelerating the process of 
model building with real, confidential, data in the secure environment. 

3.1  Data Dictionaries and the Data Schema 

Techniques for documenting data are well known. Clinical Practice Research Datalink (CPRD)5 is an 
example of a project that summarises a list of data dictionaries across various datasets, with each containing 
data field information such as type, format, and source of data, valid range and field description.  

Several tools are available to automatically capture the data dictionary information from the metadata. For 
example, SchemaSpy is a Java-based tool that analyses the metadata and generates an XML file 
corresponding to the schema in a database and a graphical representation of it in an HTML site and textual 
document. SchemaSpy can automatically reverse engineer the Entity-Relationship (ER) diagrams of the 
database and allows us to click through the hierarchy of tables by both HTML links and ER diagrams. It also 
identifies a list of potential anomalies in the database that fail to meet constraints between keys. 

3.2  Documenting Data Transformations  

Different projects may require different transformation procedures. Hence, we need transparent documented 
procedures. A project like CALIBER6 is an example that aims to do this by sharing coding lists and 
programming scripts used to extract both data and clinical coding to researchers. This approach can be 
extended to other transformations, represented in a library of parameterised transformations. Setting the 

                                                        
5 https://www.cprd.com/home 
6 https://www.ucl.ac.uk/health-informatics/caliber 
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parameters of the transformation will serve both to show clearly what has been done and to allow 
transformation in a secure environment to be automated to suit the needs of a particular project. 

3.3  Synthetic Data and Automating Transformation 

Even with detailed documentation, requesting data for analysis still requires interaction between data 
controllers and ML researchers. This interaction can be expensive if the data extraction is repeatedly refined. 
More likely, on many projects such refinement is not possible because of resource limitations. A further step 
is to allow the researchers to play with the data while preserving the confidentially using synthetic EHR data. 

There has been much research on generating synthetic populations. However, methods either lack validation 
or can only handle very limited variables (Baowaly et al., 2018). McLachlan et al. (2016) developed a 
methodology to generate EHRs from health incidence statistics and clinical practice guidelines. Park et al. 
(2013) proposed generating synthetic data from an algorithm that learn the statistical characteristics of a real 
EHR, but their methods only work on low dimensional binary data. Choi et al. (2017) developed an approach 
called medical Generative Adversarial Network which learns from real patient records – the synthetic data 
are statistically sound but only works with discrete variables such as binary flags and counts.  

Probabilistic methods focusing on estimating the joint probability distribution of data can be used to model 
more detailed population synthesis. Sun and Erath (2015) proposed learning the conditional dependencies 
between variables through a scoring approach in the form of a Bayesian Network (BN) and sample synthetic 
data from the joint distribution. This method has been extended into a hierarchical mixture modelling 
framework in Sun et al. (2018), where the model can generalize the associations of individual variables as 
well as the relationships between cluster members. Unfortunately, their study is restricted to discrete data. 
Key EHR variables are continuous (e.g. spending, blood pressure). However, inference algorithms for BNs 
with both continuous and discrete variables (e.g. dynamic discretisation in Neil et al. (2008)) make it possible 
to learn the statistical features of EHRs with both continuous and discrete variables. With the learned 
probabilistic models, we can sample the population statistical distributions to generate realistic synthetic 
EHRs. 

In the mental health case study, we used a probabilistic model to generate synthetic data. This allowed the 
model building code to be created outside the secure environment, speeding up the development cycle. The 
probabilistic model generated data that corresponded in form but only approximated what we knew about the 
distributions of the data. It did not need to be an accurate sample of the real data. However, the synthetic data 
was limited to the final stage of the data journey: the future goal is to extend this across the data journey. 

Executable data documentation would combine the different elements: data dictionary, schema, 
transformations and probabilistic models. The first goal is to be able to generate data with the correct ‘shape’ 
– covering, fields and types, so that the generated data can be used to develop and debug models, before they 
are applied to real data. For this goal, conditional probability distributions with only a few parents could be 
learnt from data or estimated from knowledge, since it is not necessary for the synthetic data to be an 
accurate sample of the real data. However, a second goal is also possible. As shown in our case study, 
uncertainty is introduced when data capture is imperfect, such as under-recording of diagnoses that carry a 
social stigma. This cannot be detected in the data but useful information can be elicited from practitioners 
and documented using a probabilistic model. 

4. CONCLUSION 
To increase the application of ML modelling to EHR data we must improve the understanding and 
accessibility of medical data, communication between the medical practitioners who originate data, those 
who control it and ML researchers is simpler and more efficient. Using an example, we have illustrated how 
health data travels across organisations and is transformed, emphasizing the importance of transparent 
documentation and data description. We propose that the documentation of data should be executable so that 
it is possible to generate and share synthetic data that captures the precise form of the real data and 
approximates its statistics. Machine learning researchers would be able to exploit such data and hence help 
achieve the goal of true ‘learning health systems’. Our project aims to build a website that allows users to 
explore data fields and relationships captured from metadata. When users select variables, we would generate 
synthetic data through sampling from a pre-trained probabilistic model learned from real EHRs.  
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