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I was recently watching a re-run of the classic 1978 Michael Cimino film “The Deer Hunter”. 

It contains one of the most iconic scenes in cinema history involving a ‘game’ of Russian 

roulette forcibly played by two American soldiers held captive in Vietnam 

(https://youtu.be/4wv2K3J__X0). Although I have seen the film several times, this scene 

never seems to lose its impact. As I am currently teaching a new course on Risk Assessment 

and Decision Making, it also occurred to me that the scene provides a rich source of examples 

to illustrate core concepts of probability and risk including: probability and odds, basic 

probability axioms, conditional probability, risk and utility, absolute versus relative risk, event 

trees, and Bayesian networks. 

The context 

Life-long friends Mike (played by Robert DeNiro) and Nick (played by Christopher Walken) are 

captured American soldiers in Vietnam forced to play Russian roulette by their Viet Cong guards. The 

‘normal’ game - involving a single bullet and two or more participants – usually ends when a 

participant is killed. Mike and Nick have previously already played and survived. They are now forced 

to play again -  this time against each other.  

Realising that one of them is very likely to die, Mike proposes an alternative version of the ‘game’ – 

involving three bullets - which he believes will enable them both to escape by killing the guards. 

As the iconic clip https://youtu.be/4wv2K3J__X0 shows, Mike’s audacious plan works. 

 

Figure 1 Still from the scene 

The plan raises some very interesting questions about the ‘risk’ Mike was taking and the probability 

of success. In fact, many basic concepts in risk and probability are easily illustrated by comparing the 

‘risks’ involved in the two different games. 
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The Two Games 

The ‘normal game’ involves a single bullet loaded into one of the six 

chambers of a gun barrel. The barrel is spun before the game starts to 

ensure the chamber with the bullet is randomly located. 

The gun is then spun on the table to determine which player goes first 

(namely the player the gun points to). The player must pull the trigger 

with the gun pointed at their own head. If there is no bullet in the 

chamber when the trigger is pulled, the next player must point the gun at 

their own head and pull the trigger. The game continues until a bullet is 

fired (and in what follows we assume this always results in the death of 

the shooter). The only exception is when there is no bullet in the first five 

chambers triggered, i.e. when the only remaining chamber must contain 

the bullet. In this case the game ends with nobody shot.  

Those watching the game gamble on the outcome either at the beginning 

of the game or after each time the trigger is pulled without a bullet being 

fired. The reason why the game stops if the only remaining chamber must 

contain a bullet is because there is no uncertainty of the outcome and so 

no interest from a gambling perspective.  

The ‘alternative game’ proposed by Mike involves three bullets, rather 

than one, loaded (randomly) into the gun barrel. Otherwise the rules are 

the same (so again, in the unlikely event that the first three chambers are 

blank, the game ends with nobody shot).  

 

The possible outcomes (and their probabilities) for the 

‘normal’ game 

For the normal one-bullet game played with two players there are three 

possible (mutually exclusive) outcomes: 

 

 

 

 

 

Figure 2 The 'normal' game 

involves a single bullet in one of 

the six chamber of the gun barrel 

Note that pulling the trigger 

moves the barrel on to the 

next chamber (in a less 

interesting variation of the 

game the gun barrel is spun 

after each time the trigger is 

pulled, meaning that each 

time we have the same 

probability 1/6 of firing the 

bullet) 

 

Mutually exclusive 
outcomes or events 

A set of events or 
outcomes are mutually 
exclusive if at most one 
can happen.  

 

Probability of an event  

For any event or outcome X 
we write the probability of X 
as Prob(X). So, if X is the 
event “roll a 4 on a 6-sided 
die”  

Prob(X)=1/6 

All probabilities range from 0 
to 1 (although they are 
sometimes converted to 
percentages by multiplying by 
100), with 0 representing 
certainty the event does not 
occur and 1 representing 
certainty the event does 

occur. 
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To calculate the probabilities of these outcomes we must consider the 

different ‘events’ that can lead to them (an outcome is just a collection of 

events). In fact, there are six such mutually exclusive events: 

E1. Player 1 dies on the 1st trigger press 

E2. Player 2 dies on the 2nd trigger press 

E3. Player 1 dies on the 3rd trigger press 

E4. Player 2 dies on the 4th trigger press 

E5. Player 1 dies on the 5th trigger press 

E6. Neither player dies  

 

Each of these events is completely determined by the location of the bullet in 

the barrel (where chamber 1 represents the start chamber, which moves to 

chamber 2 when the trigger is pressed etc): 

Bullet location Event Probability 

Chamber 1 E1. Player 1 dies on the 1st trigger 1/6 

Chamber 2 E2. Player 2 dies on the 2nd trigger 1/6 

Chamber 3 E3. Player 1 dies on the 3rd trigger 1/6 

Chamber 4 E4. Player 2 dies on the 4th trigger 1/6 

Chamber 5 E5. Player 1 dies on the 5th trigger 1/6 

Chamber 6 E6. Neither player dies 1/6 

Since the one bullet is randomly located in one of the 6 chambers, the 

probability it is in any specific chamber is simply 1/6. This means that, at the 

start of the game, each of the six events has the same probability 1/6.  

Now outcome A (player 1 dies) is made up of the 3 mutually exclusive events 

E1, E3 and E5. Hence (see sidebar): 

Prob(A) = Prob(E1 or E3 or E5)  

               = Prob(E1)+Prob(E3)+Prob(E5) = 1/6 + 1/6 +1/6 = 1/2 

Similarly,  

Prob(B) = Prob(E2 or E4) = Prob(E2) + Prob(E4) =1/6 + 1/6 = 1/3 

Finally, 

Prob(C) = Prob (E6) = 1/6 

So, at the start of the game, the rational betting strategy (assuming ‘fair 

odds’ are offered – see sidebar) is to bet on Player 1 dying, since this is the 

most likely outcome. It is important to note, however, that the probability 

of all the events change (as explained in the sidebar ‘conditional 

probabilities’) as soon as we observe the outcome of E1 (and then again 

after further observed outcomes). 

Of course, as Mike and Nick are very close friends, it is only outcome C that 

is a ‘good outcome’ for them. Because the probability of a “a player dies” is 

the negation of event C, it follows (see sidebar) that: 

Prob(“a player dies”) = Prob(not C) = 1 - Prob(C) = 5/6 

The probability of a set of 
mutually exclusive events 

By an axiom of probability this 
is simply the sum of the 
individual probabilities. So if X 
and Y are mutually exclusive: 

Prob(X or Y) = Prob(X)+Prob(Y) 

 

 

Odds version of probability 

If Prob(X)=1/3 then we also 
say the:  “the odds are 2 to 1 
against X” 

In general, if Prob(X)= a/b 
then: the odds are “(b-a)/a” 
against X 

 

 

Conditional and marginal 
probabilities.  

Although the ‘starting’ 
probability of an event like E2 
is 1/6, once we know whether 
the preceding event E1 is true 
or false the probability of E2 
changes. For example, if E1 is 
false then the probability of 
E2 is 1/5. This called the 
conditional probability of E2 
given not E1. We write this as  

Prob (E2 | not E1 ) =  1/5 

In contrast, Prob(E2), which 

we know is 1/6,  is formally 

called the unconditional or 

marginal probability of E2.  

 

 

Negation of an event or 
outcome  

Another axiom of probability 

concerns the probability of 

the negation of an event or 

outcome X which is written as 

“not X”. Specifically, the 

probability of the negation of 

an event X is one minus the 

probability of X, i.e. 

Prob (not X) = 1 – Prob(X) 
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We could also have got to the same result by noting that the outcome “a players dies” is made up of 

the mutually exclusive events A and B whose probabilities 1/2 and 1/3 respectively also sum to 5/6. 

We can think of the probability of C, i.e. 5/6, as providing a baseline for the risk to the players. But – 

as we shall see – risk should also involve the notion of utility of outcomes. While any outcome other 

than C clearly has catastrophic negative utility, even outcome C has negative utility since it is only 

likely to delay both their deaths, while resulting in further torture. This will become clearer when we 

consider the alternative 3-bullet game and its possible outcomes, because we need to understand 

why Mike felt it was worth ‘taking the risk’ of insisting on playing the alternative game. 

Appendices 1 and 2 provide different ways of arriving at the above probability solutions for the one-

bullet game (one uses the event tree method and the other use a Bayesian network). 

The possible outcomes (and probabilities) for the ‘alternative’ 3-bullet game 

We have the same three outcomes we had for the normal game. However, the ‘good outcome’ C has 

a very different meaning, namely the one that Mike’s escape plan relies on. Specifically, this requires 

the following sequence of events all to be true2: 

1. Gun is spun to point to Mike (so Mike is chosen to pull the first trigger) 

2. No bullet in first chamber (So Mike triggers a blank) 

3. No bullet in second chamber (so Nick triggers a blank) 

4. There is a bullet in the third chamber that Mike uses to fire at the lead guard rather than at his 

own head.  

5. Mike uses the remaining two bullets to kill two other guards, enabling him and Nick to take their 

weapons and escape (we assume the remaining two bullets do not have to be in the next two 

chambers, i.e. there could be a gap). 

 

The simplest way of explaining the probability calculations in this case is to use the event tree shown 

in Figure 3 (an equivalent Bayesian network solution is provided in Appendix 3). 

 

Figure 2 Event tree showing probabilities for the alternative 3-bullet game 

 
2 Note that, although theoretically both survive if the first 3 chambers are empty, Mike does not consider this 
to be a ‘good outcome’. 
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This tree is based around the sequence of 5 events required for the 

plan to succeed. If any one of the events is false then the Plan fails. 

Hence, we have 5 separate “Plan fails” outcomes (we can refer to 

these as F1, F2, F3, F4, F5 respectively). So, if the first event “Gun 

points to Mike” is false the plan immediately fails, i.e. we arrive at F1. 

The second event “Bullet in 1st chamber” is only relevant if the first 

event was true. If “Bullet in 1st chamber” is true then the plan fails, 

i.e. we arrive at event F2 etc.  

Most of these probabilities are straightforward; for example, the 

probability there is a bullet in the first chamber is 1/2 because at the 

start of the game we know there are 3 bullets randomly located in 6 

chambers. But it is important to note that all the probabilities are 

conditional probabilities. For example, the reason for the probability 

3/5 in the “True” branch of “bullet in 2nd chamber” is because this 

event lies on a branch in which there was no bullet in the 1st chamber.  

So, let B1 be “bullet in 1st chamber” and B2 be “bullet in 2nd  

chamber”. Then the “True” branch from B2 represents the 

conditional probability, i.e.  Prob (B2 | not B1 ) =  3/5 

As explained in the sidebar for the normal game, this is NOT the same 

as Prob(B2), as the unconditional/marginal probability of B2 is 1/2.  

The only contentious branch probability is the last, i.e. “Shoot all 

guards”. For reasons explained in the sidebar we assume this is 1/3. 

As explained in the sidebar, to compute the outcome probabilities 

we multiply the probabilities on each branch of the sequence leading 

to that outcome. So, for example the “Escape” outcome is comprised 

of the following “True” events (each conditioned on the previous 

ones) 

• Gun points to Mike, which has probability 1/2 

• Not B1, which has conditional probability 1/2 

• Not B2, which has conditional probability 2/5 

• B3, which has conditional probability 3/4 

• Shoot all guards, which has conditional probability 1/3 

Hence, Prob(C) = Prob(escape) =  1/2 x 1/2 x 2/5 x 3/4 x 1/3 = 1/40 

So, the probability that Mike’s plan works is just 1/40, meaning there 

is a 39/40 probability that his plan fails.  

 

Probability versus risk: Did Mike make a rational 

choice? 

If we define risk purely by the probability of the ‘bad’ outcome (as 

many people do), then Mike’s decision to choose the alternative 

game rather than the normal game does not seem to make sense. 

The probability of a good outcome has dropped from 1/6 (16.67%) to 

Event Trees 

An event tree shows the 

sequence of events leading to 

each different outcome of 

interest. Each branch 

corresponds to whether the 

event it is linked from is true 

or false. The branch is 

labelled with either true or 

false and its probability.   

Computing the branch 

sequence probabilities 

To compute the probability of 

any outcome such as any of 

the “plan fails” outcomes or 

the “Escape” outcome we 

multiply the branch 

probabilities leading to that 

outcome. This actually 

follows from another 

probability axiom which says 

that if an event X is 

comprised of a set of 

independent events X1, X2, .., 

Xn then the probability of X is 

the product of the individual 

event probabilities. 

The probability for the event 

“Shoot all guards” 

We can only use subjective 

probabilities for this. What 

we know from earlier in the 

film is that Mike is an expert 

shooter (as the name of the 

film indicates, he is a deer 

hunter) and Nick is also very 

competent. But there are 

several guards, so we assume 

a probability of 1/3 (and note 

again that this probability is 

conditioned on all the ‘right’ 

outcomes of the previous 

steps). 



 
 

6 
 

1/40 (2.5%) while the probability of a bad outcome has increased from 

5/6 (=0.8333) in the normal one-bullet game to 39/40 (=0.975) in 

Mike’s alternative three-bullet game. 

These risk changes are typically measured either as change in relative 

risk or absolute risk (see sidebar): 

• The relative risk increase, which is (0.975 – 0.8333)/0.8333) is 17%. 

• The more meaningful absolute risk increase, which is (0.975 – 

0.8333) is 14% 

Mike’s decision only starts to make sense when we incorporate the 

utility (or its negation cost) of the outcomes. Crucially, the utility of a 

good outcome differs greatly for the two games, while the cost of a bad 

outcome is essentially the same.  

If the ‘cost’ of a lost life is, say $5 million, then the utility of a bad 

outcome in the normal game is -$5 million. The bad outcome in the 

alternative game is essentially the same (although there is a very small 

probability that both Mike and Nick could die).  

However, the good outcome in the normal game still results in Mike 

and Nick imprisoned, tortured, and facing almost certain death in 

future games. So, it also has a negative utility, but instead of -$5 million, 

let us say  -$4 million, allowing for an unlikely imminent rescue. In 

contrast, the good outcome for the alternative game results in freedom 

for both Mike and Nick. We assume this is worth $10 million.  

When there are choices (such as between the normal game and the 

alternative game) the optimal decision choice is the one which 

maximizes the overall expected utility (see sidebar). For the normal 

game this computes as: 

(
1

6
× −4,000,000) + (

5

6
× −5,000,000) = −666,666 − 4,1666,666

=  −4,833,333 

For the alternative game this computes as:  

(
1

40
× 10,000,000) + (

39

40
× −5,000,000) = 250.000 − 4,875,000

=  −4,625,000 

So, the optimal choice was indeed the alternative game - despite its low 

probability of success – because it has a higher expected utility (i.e. 

lower expected cost). Despite the low probability of success for Mike’s 

plan, he made a rational decision to attempt it. 

Further Reading 

Fenton, N. E., & Neil, M. (2018). Risk Assessment and Decision Analysis with Bayesian Networks (2nd 

ed.). CRC Press, Boca Raton. 

Spiegelhalter, D. (2019). The Art of Statistics: Learning from Data. Pelican Books 

Relative versus absolute 

risk increase 

If the probability of dying 

from lung cancer is 0.04 

(i.e. 4%) for non-smokers 

and 0.06 (i.e. 6%) for 

smokers then the relative 

risk of dying from lung 

cancer is 50% more for 

smokers than for non-

smokers. However, the 

probability of dying from 

lung cancer is still small 

for smokers. Hence, it is 

more meaningful to use 

the absolute risk 

measure which is simply 

the absolute increase in 

probability. In this case 

absolute risk increase for 

smoker compared to 

non-smokers is 0.02, i.e. 

2%.  

Expected utility 

Suppose a decision has a 

‘good outcome’ and a 

‘bad outcome’. Then the 

expected utility of the 

decision is defined as 

Prob (good outcome) x 

Utility (good outcome)    

  +       

Prob (bad outcome) x 

Utility (bad outcome) 
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Appendix 1: Event Tree representation of the normal game 

 

Figure 3 Event tree for 'normal' game 

 

Appendix 2: Bayesian network representation of the normal game 

The fully specified Bayesian Network (BN) is shown in Figure 5.  

 

It Figure 4 BN model 

 

It is based on two variables – the bullet location, and the Outcome. The ‘prior’ probabilities for the 6 

bullet locations are all 1/6. The conditional probability table for Outcome is shown and is self-

explanatory. Once these conditional probabilities are entered the BN tool automatically calculates the 

marginal probabilities for the Outcome states. The BN solution is not only extremely compact and 

simple, but it enables us to perform different types of analysis. For example, we can automatically 

perform backward inference by entering an observation in the Outcome node as shown in the 

example in Figure 6. 
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Figure 5 Backward inference. Computing the probability distribution for Bullet location given a particular outcome 

 

Appendix 3: Bayesian network representation of the 3-bullet game 

 

 


