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Abstract 
Bayesian Networks (BNs) are graphical probabilistic models that have proven popular in medical 

applications. While numerous medical BNs have been published, most are presented fait accompli 

without explanation of how the network structure was developed or justification of why it represents 

the correct structure for the given medical application.  This means that the process of building 

medical BNs from experts is typically ad hoc and offers little opportunity for methodological 

improvement.  This paper proposes generally applicable and reusable medical reasoning patterns to 

aid those developing medical BNs. The proposed method complements and extends the idiom-based 

approach introduced by Neil, Fenton, and Nielsen in 2000. We propose instances of their generic 

idioms that are specific to medical BNs. We refer to the proposed medical reasoning patterns as 

medical idioms. In addition, we extend the use of idioms to represent interventional and 

counterfactual reasoning. We believe that the proposed medical idioms are logical reasoning patterns 

that can be combined, reused and applied generically to help develop medical BNs. All proposed 

medical idioms have been illustrated using medical examples on coronary artery disease. The method 

has also been applied to other ongoing BNs being developed with medical experts. Finally, we show 

that applying the proposed medical idioms to published BN models results in models with a clearer 

structure.  
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1. Introduction 
Each year many hundreds of novel Bayesian Networks (BNs) are presented in the literature, with 

medicine being a popular application domain  [1], [2], [3], [4], [5].  Most published BNs are present as 

faits accomplis: with little explanation of how the network structure was developed and without 

justifying whether the structure is correct for a given scientific application. This problem is even more 

evident for medical BNs [5]. The process of building medical BNs, with medical experts, is typically ad 

hoc and offers little opportunity for repeatability and standardisation. However, a clear description of 

the modelling approach is necessary if clinical and patient communities are to adopt the methodology 

or resulting BN into healthcare practice.  

 

Building a BN involves two main tasks [6]: (1) determine the BN structure; and (2) specify the 

parameters. Both the BN structure and parameters can be built: (a) by automated learning from data 

if sufficient data are available [7], [8], [9]; (b) “by-hand” using knowledge elicitation methods to 

capture domain expert knowledge and extract necessary information from the literature [1], [10], [11], 

[12]; or, (c) through a combination of both [13], [14]. In many medical problems it is not feasible or 

appropriate to use automated techniques and the structure and/or parameters of the BN must be 

elicited from experts. Much research has focused on knowledge elicitation methods and considers 

how to elicit parameters from experts [15], [16] [17], [18], [19], [20], or statistically estimate them 

[21], [22], [23]. However, as articulated convincingly in [24], less attention has been paid to the 

problem of eliciting the BN structure and, in particular, causal knowledge before considering any 

learning from data [25]. Hence, in summary, the literature lacks a systematic, repeatable method for 

building medical BNs from experts and literature. 

 

There are impediments that make determining the right structure for a BN difficult, and several groups 

have proposed guidelines to help avoid spurious or unreliable models[26], [27]. Neil et al. found that 

by applying natural reasoning patterns, called idioms, BN development could be faster and deliver 

better-quality BNs. Idioms are abstract reasoning patterns from which specific cases, called instances, 

can be constructed. For example, instances of idioms have been used to develop BNs for assessing 

legal arguments [28], [29]. While Neil et al’s generic idioms are capable of broad application to many 

subject domains, this paper proposes new types of idioms specifically to develop medical BNs. We 

refer to these as medical idioms, and we extend the use of idioms to represent additional types of 

reasoning relevant in medical decision-making, including: (1) interventional; and, (2) counterfactual 

reasoning.  

 



This paper proposes a systematic and repeatable method for developing medical BNs that both 

complements and extends Neil et al’s idiom-based approach. We believe the proposed medical idioms 

can provide a basis for standardised and consistent development of medical BNs. The remainder of 

this article is organised as follows: in Section 2 we provide an overview of the foundations of BNs and 

idioms. In Section 3 related work is presented. Our proposed medical idioms are explained in Section 

4, and we include an example of how they are combined into a core BN model of coronary artery 

disease. Assessment of medical idioms against established BN models is presented in Section 5. All BN 

examples and models were implemented in AgenaRisk [30]. Our conclusions and recommendation for 

further work are presented in Section 6.   

2. Background: Bayesian networks and idioms 

2.1 Bayesian Networks 

A BN is a directed acyclic graph with qualitative and quantitative parts [31]. The qualitative part is the 

graph comprised of nodes representing random variables (discrete or continuous) and directed edges 

representing causal or influential relationships. If a directed edge connects variables A and B, such as 

A → B, then A is called parent node or ancestor of B, and B is a child node or a successor of A. For 

instance, in Figure 1a smoking is a parent of lung cancer, indicating that smoking has a causal impact 

on lung cancer. The quantitative part of a BN comprises a set of conditional probability functions 

associated with each node – captured by a Node Probability Table (NPT) - to represent the conditional 

probability distribution of each node in the BN given its parents (Figure 1b). 

 
Figure 1. (a) A three-node BN example. (b) A three-node BN example with Node Probability Tables shown 

Once values for all NPTs are provided the BN is fully parameterised and a variety of probabilistic 

reasoning processes can be performed. Bayesian probabilistic reasoning describes the process of 

updating our prior belief about an uncertain hypothesis in light of new evidence. Our initial belief is 

termed prior probability, while our updated belief is termed posterior probability.  



Once evidence is entered in the BN, the probabilities of remaining unobserved variables are updated. 

There are two ways of reasoning when evidence is entered: 

 

1. Forward reasoning: The reasoning process follows the direction of the arc. For instance, 

knowing that the patient is a smoker, increases the probability of lung cancer from 6.4% 

(Figure 2a) to 10% (Figure 2b). Forward reasoning is described as causal reasoning when the 

BN structure represents true causal relationships rather than simple associations, which is not 

an absolute requirement when we reason from evidence. 

2. Backward reasoning: The reasoning process is counter to the direction of the arc. For instance, 

knowing that the patient’s X-ray is positive increases the probability of lung cancer (Figure 2c). 

Background reasoning is also described as diagnostic reasoning when the BN structure 

represents true causal relationships. 

 

 
Figure 2. (a) BN example with marginal prior probabilities. (b) BN example, where causal reasoning is performed (Scenario 1 
appears when evidence is entered in AgenaRisk). (c) BN example, where diagnostic reasoning is performed 

A particular case of diagnostic reasoning is a phenomenon called explaining away [32], or discounting 

[33]. Explaining away occurs when a child node has more than one independent parent node. If the 

child node, or one of its ancestors, is observed, the probability of each of the parent nodes changes 

(diagnostic reasoning). But if one of the parents is known, then the probabilities of the other parents 

change. This is because the change on the child node can be explained by changes in either of the 

parent nodes, hence making the parent nodes dependant. 



BNs can also be used to answer hypothetical questions such as what will happen if an intervention is 

made. Reasoning about interventions can only be performed when relationships among the variables 

are causal because an intervention is an exogenous action that fixes the state of the variable we have 

intervened upon, making it independent of its causes [34], [31], [35]. Contrary to reasoning about 

evidence, interventional reasoning does not allow diagnostic reasoning from the intervened variable 

[36]. For instance, when we observe a high body temperature on the thermometer, we can argue that 

we have fever. However, if we arbitrarily start rubbing the thermometer to reach a specific 

temperature, it can no longer be argued that fever is present. According to Pearl [31], an externally 

imposed intervention is presented using the do operator, as in the previous example: the probability 

of having fever given that we intervened by rubbing the thermometer is presented as 𝑃(𝐹𝑒𝑣𝑒𝑟 =

𝑌𝑒𝑠|𝑑𝑜(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟 = 𝐻𝑖𝑔ℎ 𝐵𝑜𝑑𝑦 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)). The process of making the intervened 

variable independent of its causes by removing all the edges pointing towards that variable is known 

as graph surgery. 

 

BNs can also be used to answer counterfactual questions such as what would have happened if events 

other than those observed had happened. In BNs, counterfactual reasoning combines both evidence 

and interventions. Using the process of twin-networks proposed by Pearl [31], the actual world is 

modelled based on evidence while the hypothetical counterfactual world is altered using 

interventions. In a twin network both networks have identical structures except for the arrows 

towards the variable that we intervene upon, which are missing in the hypothetical world. The 

posterior probabilities of the variables, which remain the same in both worlds, are called background 

variables, and are shared between the two networks. The main difference between counterfactuals 

and interventions is that for the former we know the values that some or all the variables had in the 

actual world. By contrast, when we intervene, we are unaware of the values of the predecessor 

variables in the network. 

2.2 Idioms 

Neil et al. [26] introduced an idiom-based approach to describe how elicited variables should be 

connected. In their book [37], Fenton and Neil present four idioms that cover a wide range of 

modelling tasks:   

1. Cause-consequence idiom: Models uncertainty of a causal process with observable 

consequences. The cause-consequence idiom has a chronological order: the consequence 

follows the cause and not the other way around. For instance, as shown in Figure 3, a car 

accident causes head injury.  



 
Figure 3. A medical example of the cause-consequence idiom proposed by Fenton and Neil (2018) 

2. Measurement idiom: Models uncertainty surrounding the accuracy of any type of 

measurement. The causal directions here can be interpreted in a straightforward way. The 

actual value of the attribute must exist before it is measured (by a person or machine). The 

measurement has a known accuracy. The higher the accuracy, the closer the assessed value 

is expected to be to the actual value of the attribute. For example, as shown in Figure 4, the 

result of an X-ray test is a measurement for assessing internal chest bleeding. Although a 

positive or negative result is strongly indicative of whether there is internal chest bleeding or 

not, there are inevitably false positives and false negatives. In Figure 4a the full version of the 

measurement idiom is presented, where the X-ray accuracy is either standard (having 1% false 

positive and 5% false negative rate), or perfect. In Figure 4b, only a standard X-ray test is 

assumed. Diagnostic reasoning is performed. The latent or difficult to observe/measure 

attribute becomes a special case of the measurement idiom. 

 
Figure 4. (a) A medical example of the standard measurement idiom proposed by Fenton and Neil (2018). (b) A medical 
example of the implicit measurement idiom proposed by Fenton and Neil (2018) 

3. Definition/synthesis idiom: Models synthesis or combination of many nodes into one synthetic 

to cover the following cases: (1) defining a synthetic node in terms of its parents (Figure 5a); 

(2) combining variables using a hierarchical structure (Figure 5b); or, (3) combining different 

nodes together to reduce the parameters in the NPTs (Figure 5c).    



 
Figure 5. (a) A medical example of the definitional/ synthesis idiom for case 1; definitional relationship between variables, 
proposed by Fenton and Neil (2018). (b) A medical example of the definitional/ synthesis idiom for case 2; hierarchical 
definitions, proposed by Fenton and Neil (2018). (c) A medical example of the definitional/ synthesis idiom for case 3; reduce 
effects of combinatorial explosion, proposed by Fenton and Neil (2018) 

4. Induction idiom: Models uncertainty related to inductive reasoning based on populations of 

similar or exchangeable members. The induction idiom is a general model for any type of 

statistical inference represented using a BN. The main difference is that an unknown or 

partially known population parameter is learned from known data (Figure 6).   

 
Figure 6. A medical example of the induction idiom proposed by Fenton and Neil (2018) 



3. Related work 
Several knowledge engineering methods have been proposed to support development of complex BN 

structures. For example, Laskey and Mahoney [38], [39], [40] recognised that BN construction requires 

a method for specifying meaningful building blocks which they called network fragments. A network 

fragment consists of a set of related random variables together with knowledge about how they are 

related. Ideally, fragments should make sense to the domain expert who must supply some underlying 

motive or reason for their existence. Koller and Pfeffer [41] proposed an abstract approach to support 

the construction of large BNs, known as Object-Oriented BNs (OOBNs). An OOBN is made up of classes 

that contain both ordinary BN nodes as well as abstract objects, representing instances of other 

classes. A class can be considered as a network fragment. OOBNs are particularly useful for complex 

models that contain repeated fragments, where objects can be reused to decrease the modelling 

effort. Network fragments and OOBNs are both useful when organising and decomposing a large, 

complex BN, but they do not explain the connection and reasoning among variables elicited from 

domain experts. 

 

More guidance for developing a BN is given from the following types of dependency connection, 

known also as d-connection: 

1. Serial connection: C is conditionally dependent on B, which is conditionally dependent on A. A 

and C become conditionally independent, also known as d-separated, given that B is known 

(Figure 7a). 

2. Diverging connection: A and C are conditionally dependent on B. A and C become conditionally 

independent given that B is known (Figure 7b).  

3. Converging connection: B is conditionally dependent on A and C. A and C are conditionally 

dependent only when B or any of its descendants, if available, are known (Figure 7c).  

 

 
Figure 7. (a) Serial connection. (b) Diverging connection. (c) Converging connection 

These three conditional dependencies can aid in connecting a small number of variables and verifying 

the reasoning process between them. However, in practice, experts do not think in terms of 

conditional dependencies. Medical BNs are complex and are composed from many variables. Thus, 

using the proposed dependency connections as the only guidance for developing medical BNs can be 

problematic.  

 



Few semantic approaches have also been proposed for assisting the development of BNs. Kjaerulff 

and Madsen [25] propose an overall causal BN structure using abstract variables classes. Other 

researchers have explained the BN structure using abstract templates, where relationships between 

elicited variables were implicitly described. For instance, Helsper and van der Gaag [42] propose a 

methodology for building a BN for the domain of oesophageal cancer from ontologies. Derivation of 

the structure from the proposed ontology is conducted by addressing semantically meaningful units 

of knowledge. Seixas et al. proposed a three-level diagnostic BN structure [43]. Shwe et al. proposed 

a Quick Medical Reference (QMR) network built on statistical and expert knowledge [44]. The QMR 

belief network is a two-level graphical model, where the top level contains binary nodes representing 

diseases and the bottom level contains binary nodes representing findings. There are several 

conditional independence assumptions that restrict the QMR network structure. First, the diseases 

are assumed to be marginally independent, thus it does not entertain established comorbidities 

routinely observed in clinical practice. Second, findings are assumed to be conditionally independent 

given the known diseases’ states. Third, and finally, findings are all modelled as manifestations of the 

disease, an assumption that is incorrect when modelling historical findings. In a later version of QMR 

network proposed by Pradhan et al. [21], background variables representing predisposing factors 

were included. This resulted into a three-level BN structure. Velikova et al. [45] present a template on 

how to model temporal BNs where the relationships between a few key medical variables were 

described. Still other have instead focused on proposing a pattern for modelling specific parts of a 

medical BN, such as the coexistence of two or more comorbid conditions [46], [47]. Luciani and 

Stefanini [48], [49] propose an automated interview for eliciting specific medical variables from 

experts and a way to connect them. The described templates and semantics are beneficial under 

certain circumstances; however, they are either too narrow, targeting only specific variable types, or 

they offer an overall structure without some underlying method or an explanation of the reasoning 

patterns to encourage reusability.    

4. Medical idioms 
 
As illustrated in Figure 8 and established from literature on the classical approaches to diagnosis and 

treatment, while there is much information and many tests that can help clarify the medical condition 

[50], [51], it remains difficult for humans alone to detect, comprehend and correctly identify the 

presence of the underline cause [52], [53]. It is in the feedback loops, presented in Figure 8, where 

conditions are diagnosed and treatments selected that many believe Artificial Intelligence (AI), of 

which BNs are one type, can help [54], [55], [56]. Further, it is as a novel component of the resource-

intensive and multidisciplinary process of developing that AI where we position our medical idioms as 



one methodology capable of helping bridge the barriers between medical knowledge and decision 

science, with the effect of simplifying the elicitation task. 

 

 
Figure 8: The Classical diagnostic and management loops 

A medical BN should capture all relevant clinical variables and follow the causal mechanisms of the 

medical problem and care as described in Figure 8. When building a medical BN using knowledge 

elicitation methods, the model expert follows logical causal patterns to connect elicited variables. 

Idioms represent natural and reusable reasoning patterns that follows human reasoning processes. 

Consequently, idioms form the basis of our methodology for developing medical BNs. However, each 

generic idiom presented in Section 2.2 covers many medical scenarios that should be differentiated. 

Therefore, we propose instances of the generic idioms that represent specific medical patterns. The 

BN structure, as well as the medical idioms, are highly related to the type of reasoning that is taking 

place. For that reason, we extend the use of idioms beyond only reasoning about evidence. We 

propose medical idioms that represent additional types of reasoning, such as interventional and 

counterfactual reasoning - analyses which are not uncommon in medical applications. 

 

Idioms act as a library of patterns for BN development. The model expert connects elicited knowledge 

with idioms and reuses the most appropriate. Consequently, for developing medical BNs the model 

expert must first understand the role each elicited variable plays as a component of clinical reasoning, 

and then select the medical idiom best describing the related reasoning process. So, before developing 

the BN structure using idioms, elicited variables should be classified, based on their role in clinical 



reasoning as illustrated in the classical diagnostic and management feedback loops described in Figure 

8: 

1. Conditions (C) indicate states of health, whether normal or abnormal. A condition might be 

further distinguished as a disease, a disorder or a syndrome. However, we use the term 

condition as a broad-neutral term.  

2. Manifestations (M) are observable consequences of a condition. They are regarded as part of 

the condition’s semiotics and are classified according to the condition that triggers them.  

Manifestations can be further grouped into the following categories:  

a. Symptom (Sy) is a subjective feeling or departure from normal function which is 

apparent only to a patient (e.g fatigue) 

b. Sign (Si) is an objective indication of the condition that can be observed by clinicians. 

c. Medical Test (MT) is a procedure performed to diagnose or monitor a medical 

condition and/or a sign. 

3. Risk Factors (RF) are observable attributes, characteristics or exposures of an individual that 

increase his likelihood of developing a medical condition or a manifestation of it. Risk factors 

are regarded as part of condition’s aetiology and are classified according to the condition that 

they influence.  

4. Pathogenic Mechanisms (PM) are unobservable mechanisms that describe the pathogenesis/ 

development of a condition. They are also part of a condition’s aetiology as they explain the 

impact of some risk factors on the condition. Pathogenic mechanisms can be distinguished 

from conditions as they normally cannot explain manifestations [48]. However, as more 

diagnostic tools become available, the boundary between conditions and pathogenic 

mechanisms becomes weaker. 

5. Treatment (T) represents the clinical management to treat or cure a condition, described as 

healthcare. 

6. Comorbidities (CC) are medical conditions that exist simultaneously in the same patient [57]. 

The origin of a comorbidity may lay in the anatomical proximity of the diseased organs, the 

singular pathogenic mechanism of the number of conditions or the cause-effect relationship 

between conditions. Comorbidities play a crucial role in diagnosis and treatment 

recommendations [46], [47]. Two comorbid conditions can be entirely unrelated. On the other 

hand, when two comorbid conditions are related, the second or subsequent condition can 

cause, be caused, or be otherwise related to the first condition.  

7. Complications (Cm) are unfavourable elevations or consequences of a condition or a 

treatment. The condition itself can exacerbate, manifesting more severe symptomology or 



even causing another condition, a comorbidity. A treatment can also result in adverse events. 

A complication is so named because it complicates the situation. Thus, accounting for it is an 

important step for prognosis or treatment selection.   

The above classifications represent the information that clinicians normally use for describing a 

condition.  Thus, these are variables that are usually present in a medical BN. We do not claim that a 

variable necessarily has a unique classification. The role of a variable in the clinical reasoning might 

vary in different medical contexts. For example, clinicians in a cardiac clinic may see obesity as a risk 

factor, while in another clinic obesity might be the condition in question. However, when developing 

a BN for a specific medical problem, a unique variable classification should be feasible, although there 

might still be cases where a variable has more than one classification. The multipurpose of a variable 

may be due to different variables that trigger, or are triggered by, it. For instance, a long bone fracture 

can be a sign of limb injury but also a risk factor for bleeding. This is not an issue when using medical 

idioms as overlap among idioms is allowed.   

After classifying each elicited variable, the model expert should consider how the classified variables 

relate to one another. This should lead to subset of variables grouped together. Each subset should 

then be examined in terms of the flowchart shown in Figure 9 to determine which idiom is best 

represented. In the remainder of this section the proposed medical idioms are defined in detail. 

 



 

Figure 9. Flowchart for selecting the right medical idiom 



4.1 Manifestation idiom 

The manifestation idiom models the uncertain causal relationship between a condition and related 

manifestation variables. It can be considered an instantiation of the measurement idiom, where 

diagnostic inference is normally performed. As mentioned in the measurement idiom presented in 

Section 2.2, the condition should exist before its effects are manifested. Figure 10 illustrates an 

example of the examination idiom, where coronary artery disease is the unknown condition clinicians 

are seeking to diagnose or rule out using manifestation variables including medical test results and 

the patient’s signs and symptoms.  

 
Figure 10. An example of the manifestation idiom 

The inaccuracy of each manifestation variable, such as what an observed manifestation variable tells 

us about the condition, is captured as false positive and false negative rates. Another source of 

inaccuracy is the human actors’ reliability in providing and interpreting the examination variables. This 

leads to the following extension of the manifestation idiom. 

4.2 Manifestation reliability idiom 

The manifestation reliability idiom models reliability of manifestation variables observed or 

interpreted by human actors. It makes explicit the notion that evidence provided or interpreted by 

human actors can be fallible. The manifestation reliability idiom shown in Figure 11 is an instance of 

the measurement idiom. The reliability of a reported symptom represents certainty on the degree of 

truthfulness and accuracy the observer uses to weight the patient’s description of their own condition. 

The reliability of a symptom might be defined by many factors, such as the patient’s objectivity and 

veracity (Figure 12a). This version of the idiom can also be represented using an object-oriented 

structure as shown in Figure 12b. The proposed decomposition of reliability is simply an instance of 

the definition/synthesis idiom. Patient’s objectivity and veracity can be modelled either as Boolean 



(Yes/No) or ranked nodes (e.g. underestimate, correct, overestimate). Ranked scales are particularly 

useful for chronic conditions. For example, suffering from a chronic condition can also bring about 

concomitant physiological and psychological disorders such as depression. A patient with depression 

may overestimate some of their symptoms, such as fatigue. Alternately, a patient suffering from a 

chronic condition may become conditioned to some symptoms. For instance, someone suffering with 

arthritis can become used to pain. This can result in underestimation of recurring pain. When a 

clinician treats that patient for many years, they may recognise whether a patient’s self-assessment 

needs to be recalibrated for under- or overestimation. The reliability of a sign represents a clinician’s 

certainty of observation. If we do not assume the clinician’s reliability to be perfect, then the 

examination reliability idiom can be extended in a similar way to symptom reliability as shown in 

Figure 12. Reliability of a medical test result represents the clinician’s potentially unreliable and 

subjective judgment when interpreting, whether the test result was positive or negative. 

 
Figure 11. An example of the manifestation reliability idiom 

 



 
Figure 12.(a) Symptom reliability idiom. (b) Symptom reliability idiom using an object-oriented structure 

The more reliable any manifestation variable provided by human actors is, the closer we can consider 

it to the real condition. Figure 13a shows an example of the manifestation reliability idiom where no 

evidence on reliability of the reported examination variables is entered. When we know that the 

reported examination variables are reliable, certainty for the presence of the condition increases 

(Figure 13b). However, when the reported manifestation variables are not reliable their impact on the 

condition diminishes (Figure 13c). When more than one sign, symptom, or diagnostic test is available, 

common reliability variables might be used to influence all the signs, symptoms, and diagnostic tests 

separately (Figure 14). This is because a patient’s reliability on the presence of one symptom may 

affect confidence in the reliability of another, and equally, a clinician’s confirmation bias about one 

sign or judgement regarding a test result may affect their reliability about another. 



 

 
 



 
Figure 13. (a) An example of the manifestation reliability idiom when no evidence about the reliability is available. (b) An 
example of the manifestation reliability idiom when reliable evidence is available. (c) An example of the manifestation 
reliability idiom when non-reliable evidence is available. 

 

 
Figure 14. Example of the manifestation reliability idiom with common reliability variables 

4.3 Risk factor idiom 

The risk factor idiom models the uncertain relationships between an observable risk factor and the 

variables it affects (Figure 15). Risk factors occur before, or simultaneously with, their consequences. 

A risk factor can be an observable attribute or pre-existing comorbid condition that increases 

someone’s likelihood of developing a condition, such as having a family history of cardiac problems 

increases the likelihood of developing a coronary artery disease. A risk factor can also be the reason 



why a manifestation variable has arisen or become exaggerated and can also be an inhibiting or 

supporting factor for choosing a treatment. 

 
Figure 15. An example of the risk factor idiom 

4.4 Pathogenesis idiom 

The pathogenesis idiom models hidden underlying relationships between a risk factor and the 

condition. Sometimes a risk factor influences directly upon an individual’s chances of developing the 

condition (modelled using the risk factor idiom). However, more often risk factors affect the condition 

indirectly through some unobserved pathogenic mechanism. For instance, obesity and diabetes are 

risk factors for developing coronary artery disease, however they do not cause the condition directly. 

Rather, they do so indirectly through the pathogenic mechanism of causing plaque to build up in 

arteries (Figure 16). As blocked arteries is an unobserved pathogenic mechanism, it cannot be 

considered a risk factor for coronary artery disease. Hence, the pathogenesis idiom is more 

appropriate than the risk factor idiom.  

 

Figure 16. An example of the pathogenesis idiom 



4.5 Comorbidity common cause idiom 

The comorbidity common cause idiom models uncertain relationships between two conditions that 

share the same causes (Figure 17a). In this idiom one condition should always be a comorbid condition, 

while the other can be any condition group; a comorbid condition, the condition in question or a 

pathogenic mechanism. Based on the cause-consequence idiom, observing a cause, such as a risk 

factor, affects all its consequences (Figure 17b). The diverging connection between the two conditions 

makes them independent when their common cause is observed (Figure 17c). In case the common 

cause is not observed, then the two conditions become dependent (Figure 17d). The proposed 

comorbidity common cause idiom is similar to the heterogeneity model proposed by Valderas et al. 

[46].  

 
Figure 17. (a) An example of the comorbidity common cause idiom. (b) An example of the comorbidity common cause idiom, 
where the cause is observed. (c) An example of the comorbidity common cause idiom, where the cause and the comorbid 
condition are observed. (d) An example of the comorbidity common cause idiom, where only the comorbid condition is 
observed  

4.6 Comorbidity common symptomology idiom 

The comorbidity common symptomology idiom models uncertain relationships between two 

conditions that share the same consequences (Figure 18a). Like the comorbidity common cause idiom, 

one condition should always be a comorbid condition while the other can be any condition group: a 

comorbid condition; the condition in question; or, a pathogenic mechanism. When observing the 



shared consequences, such as a manifestation variable, both conditions are updated (Figure 18b). The 

converging connection between the two conditions makes them dependent when their common 

consequences are observed. As we can see in Figure 18c, knowing that the patient also has a lung 

cancer reduces the likelihood of a cardiac problem. In other words, having lung cancer is enough to 

explain the presence of chest pain. This is known as explaining away [58] or discounting [33]. In cases 

where the consequences are not evidence variables, the two conditions become independent (Figure 

18d).  

 
Figure 18. (a) An example of the comorbidity common symptomology idiom. (b) An example of the comorbidity common 
symptomology idiom, where the consequence is observed. (c) An example of the comorbidity common symptomology idiom, 
where the consequence and the comorbid condition are observed. (d) An example of the comorbidity common symptomology 
idiom, where only the comorbid condition is observed 

4.7 Complication idiom 

The complication idiom models the uncertain process between a condition or treatment and its 

unfavourable consequence. Timewise, the resulting consequence is a late effect. This idiom can be 

considered an instance of the cause-consequence idiom. An example of the complication idiom is 

shown in Figure 19. Heart attack can be an unfavourable future consequence of a coronary artery 

disease.  



 
Figure 19. An example of the complication idiom 

4.8 Treatment idiom 

The treatment idiom models the uncertain process of condition management. A treatment is an 

important part of a BN as it describes a clinical decision. Figure 20a shows that suffering from coronary 

artery disease influences clinicians’ decisions with respect to prescribing medication that reduces a 

patient’s chances of having a heart attack.  Given the medical context, a treatment can be affected by 

other comorbid conditions, risk factors, or previous treatment strategies. The treatment idiom is 

highly related to the type of reasoning process that takes place. For instance, if reasoning from 

evidence is performed and treatment is the hypothesis, then a structure such as the one shown in 

Figure 20a is adequate. However, if we want to capture the effect of a hypothetical treatment, then 

interventional reasoning should be performed, and a model with causal relationships is needed. Thus, 

following the graph surgery proposed by Pearl, the variable on which we intervene should be made 

independent of its causes. As a result, all the arcs pointing towards the intervened variable are 

removed, as shown in Figure 20b, and the effect of the hypothetical treatment 𝑇 = 𝑡 on heart attack 

is estimated as 𝑃(𝐶𝑚 = 𝑐𝑚|𝑑𝑜(𝑡)).  

 

Typically, randomised control experiments [59] are used to learn cause-effect relationships from 

experimental data The randomisation process samples data by avoiding possible selection bias and 

confounding. In observational studies a subject that receives a treatment may do so because it has a 

more severe condition than those who remain untreated. Thus, any statistical association derived 

from observational data runs the risk of confounding the beneficial effect of the treatment and the 

underlying greater risk in those subjects who received the treatment. To arrive at an unconfounding 

treatment effect we must supress any confounder that influences both the treatment and the variable 

the treatment affects.  Based on the example shown in Figure 20a, the variables T and Cm are 

unconfounded if and only if the following holds:  𝑃(𝐶𝑚 = 𝑐𝑚|𝑑𝑜(𝑡)) = 𝑃(𝑐𝑚|𝑡) for all values 𝑇 =

 𝑡 and 𝐶𝑚 =  𝑐𝑚. This equality states that T and Cm are not confounded when the association 

observed in the data between the two variables is the same as the association that would have been 

measured in a randomised control experiment, where T is randomly assigned [60]. Looking at Figure 

18a, we can easily conclude that the equality is not correct since there is an open backdoor path 

between T and Cm (T ← C → Cm). One way to adjust for a confounder and have identifiable causal 

effects is to block the backdoor paths. In such a case we have the following equality: 



𝑃(𝐶𝑚 = 𝑐𝑚|𝑑𝑜(𝑡)) =  ∑ 𝑃(𝑐𝑚|𝑡, 𝑐)𝑃(𝑐)𝑐 , which gives an unbiased estimate for the causal effect of 

T on Cm. In other words, when the confounders are observed, their confounding effect is neutralised. 

However, when they are unobserved, a solution is to use the do operator that acts similarly with a 

randomised experiment, making the treatment independent from its causes as shown in Figure 20b. 

 

 
Figure 20. (a) An example of the treatment idiom with decision arcs. (b) An example of the treatment idiom with no decision 
arcs 

4.9 Treatment reliability idiom 

The treatment reliability idiom models reliability of the treatment’s application. When a treatment 

such as surgery is performed by clinicians, the treatment’s application presents as clinical practice. 

When a treatment such as medication is taken by the patient, the treatment’s application represents 

how well the patient follows clinical instructions. The latter can include keeping the medication 

refrigerated prior to administration, taking the medication on an empty stomach, or even following 

frequency and dosage as prescribed by the clinician. An example of the treatment reliability idiom is 

shown in Figure 21. Figure 22 shows that whether the treatment is reliable or not has no impact on 

heart attack when the treatment is not applied. 

 
Figure 21. An example of the treatment reliability idiom 



  
Figure 22. An example of the treatment reliability idiom with conditional probabilities 

In Figure 23 the reasoning process is presented. At first, we observe that the patient suffers from 

coronary artery disease and medication is prescribed (Figure 23a). The positive treatment effect 

becomes more prominent when the treatment is reliable (Figure 23b). Alternately, when the 

treatment is not reliable, its positive effect markedly diminishes (Figure 23c).  

  



 
Figure 23. (a) An example of the treatment reliability idiom, where the condition is present, and the treatment is applied. (b) 
An example of the treatment reliability idiom, where the condition is present, the treatment is applied, and it is reliable. (c) 
An example of the treatment reliability idiom, where the condition is present, the treatment is applied, and it is unreliable 

4.10 Counterfactual treatment idiom 

Thus far we have presented idioms where reasoning about evidence or interventions is performed. 

However, in medical problems realistic counterfactual questions regarding the uncertain effect of 



hypothetical treatments may also be considered. The counterfactual treatment idiom helps us to 

compare what has happened with what could have happened if an alternative treatment had been 

applied. Using a twin network, we can compare the observed effect of an observed treatment in the 

actual world, with the hypothetical treatment effect in the hypothetical world. An important 

difference between the twin network proposed by Pearl and the counterfactual treatment idiom is 

that the variable on which we intervene is a treatment variable. As explained in Section 4.9, when 

evaluating an unconfounded treatment effect we should adjust for all confounders by making the 

treatment independent from its causes. Thus, even if Pearl suggests graph surgery only in the 

hypothetical world, counterfactual treatment idiom is a special case as the decision arrows that point 

towards the treatment should be removed not only in the hypothetical, but also in the real world. An 

illustrative example of the counterfactual treatment idiom is presented in Figure 24. In this example, 

we want to know whether heart attack would have been prevented if a proper medication had been 

given.  

 

  
Figure 24. An example of the counterfactual treatment idiom 

4.11 Combining the medical idioms: the core BN model for coronary artery disease 

An important advantage of medical idioms is that they propose logical reasoning patterns that can be 

combined, reused and applied generically to help develop full medical BNs. Following the examples 

described above, a simplified diagnostic BN for coronary artery disease developed using medical 

idioms is presented in Figure 25. Based on this presented diagnostic BN, we conclude the following: 

1. Not all the medical idioms may be required in a particular BN structure. 

2. Any medical idiom may be used more than once. 

3. It is common for medical idioms to overlap. The reasons for these overlaps are: (a) an idiom 

might be the subset of another idiom, such as the risk factor idiom can be the subset of the 

pathogenesis idiom as shown in Figure 25; and (b) a variable may have more than one role in 



clinical reasoning. For instance, a long bone fracture is a sign of a limb injury but at the same 

time it is also the risk factor for increased tissue perfusion.       

 
Figure 25. Simplified diagnostic BN for cardiac problem with visible medical idioms 

5. Medical idiom validation  
The proposed medical idioms have been inspired by a range of medical BNs developed by members 

of our research team over the last seven years [61], [62], [63], [64]. Currently, these medical idioms 

are being applied in development of medical BNs. In this section, the list of medical idioms is going to 

be assessed against established medical BNs. 

5.1 Case study: assess the causal coherence of the BN structure 

The example shown in Figure 26 has been published by Constantinou et al., 2015 [63]. Figure 26a 

illustrates a standard statistical regression model without an underlying causal structure.  Figured 26b 

presents a claimed causal BN for head injury learned purely from data [65]. Using the proposed 

medical idioms, the model expert can easily understand that even if the BN structure follows the 



associations present in the data, it is not causally coherent. For instance, brain scan result is a medical 

test. Following the manifestation idiom, a medical test is a consequence of the outcome and not the 

cause of it. In addition, delay in arrival is a risk factor of the outcome and not a consequence of it. As 

a result, medical idioms can help clinicians and model experts to assess and correct the BN structure.   

 

Figure 26. (a) Standard statistical regression model learned from data. (b) "Causal" model learned purely from data proposed 
by Sakellaropoulos & Nikiforidis, 1999 [65]. (c) Sensible causal model with missing/ unobserved variables proposed by 
Constantinou et al., 2015 [63] embedded with medical idioms 

In Figure 26c, Costantinou et al. proposed a sensible causal structure. The proposed causal structure 

is in accordance with the developed medical idioms, as it is highlighted in Figure 26c. This is an 

additional reassurance that the causal BN structure is indeed sensible. Constantinou et al. do not 

explicitly describe the use of medical idioms for developing the BN structure. However, the process of 

using logical causal reasoning patterns has been followed unintentionally. Having a sensible causal 

structure may not appear to deliver an appreciable benefit when simply performing prediction or 

diagnosis. However, a BN with a coherent causal structure is not a black-box model and its reasoning 

must be explained if it is to be trusted [66], [67]. In addition, having a BN structure that represents the 

true causal mechanism of a disease is absolutely necessary when modelling interventions or 

counterfactual scenarios.   

5.2 Case study: validate against a known accurate knowledge-driven medical BN 

The medical BN shown in Figure 27 was developed by Yet et al. [62] to predict acute traumatic 

coagulopathy, with the information available, within the first 10 minutes of patient care. The BN 

structure was developed and refined systematically with domain experts [68]. The model has been 

extensively validated and shown to have a good predictive performance [62].  Figure 26 shows those 

medical idioms that are sufficient to connect the variables elicited from experts and are consistent 

with the initial causally coherent BN structure. More specifically, two main causal factors for trauma 

induced coagulopathy are tissue injury and tissue perfusion. Both are pathogenic mechanisms that are 



part of trauma induced coagulopathy’s aetiology. The risk factors for tissue injury are the mechanism 

and energy of injury, as well as injury severity of each body part. The injury severity is affected again 

by the mechanism and energy of injury and it is manifested in the appearance of some recorded signs, 

symptoms and tests. For instance, an unstable pelvis is a sign of pelvic injury. All blood related 

manifestations for the injured body parts can cause changes in tissue perfusion at the same time. 

Pathophysiological factors such as lactate or base excess are indicators of tissue perfusion. Finally, 

dilution of blood constituents through administration of excessive prehospital resuscitation clear 

fluids is a causal factor for coagulopathy. In-depth medical details on the variables and causal 

relationships captured by this model are available in [69]. 

 

 
Figure 27. Coagulopathy model, developed by Yet et al. [62], with visible medical idioms 



6. Conclusion 
One of the major issues to consider when developing a BN using knowledge elicitation methods is to 

ensure a coherent structure. Most published medical BNs are presented as complete pieces of work 

lacking explanation of how the network’s structure was developed and justification of why it 

represents the correct structure for the given medical application. In this paper this issue has been 

addressed by proposing generally applicable and reusable medical reasoning patterns, called medical 

idioms, that can standardise and assist in developing sensibly structured medical BNs. The proposed 

method complements and extends the idiom-based approach introduced by Neil, Fenton, and Nielsen 

in 2000. This paper presented examples of their generic idioms instantiated for specific medical 

purposes. Further, this paper has extended the use of idioms to represent the additional approaches 

of interventional and counterfactual reasoning.  

 

The proposed medical idioms were developed as part of the EPSRC-funded PAMBAYESIAN project 

(https://pambayesian.org/) and are applied on two medical BNs presently under development for the 

conditions: (1) gestational diabetes mellitus; and, (2) rheumatoid arthritis. In this paper a third 

simplified case study on coronary artery disease was used to illustrate each medical idiom and the 

approach to combining idioms into a medical BN.  The proposed idioms were assessed against medical 

BNs with non-sensible and sensible causal structure.  

 

Idioms have a natural logic that mimics human reasoning processes. For instance, we would more 

naturally say that infection may be the cause of fever and not the alternative. Natural causal reasoning 

patterns can thus be represented using idioms. As described in Section 4, our proposed medical idioms 

act as a collection of meaningful reasoning patterns that represent essential reasoning steps in patient 

condition, diagnosis, prediction and management. While the medical idioms presented in this paper 

may not be exhaustive, they are currently capable of representing the main activities of clinical care 

and are sufficiently generic to be applicable in most common medical situations. Moreover, the use 

of medical idioms can be beneficial in the following ways:  

1. Standardise and assist medical BN development: As demonstrated in Section 4.11 combining 

several medical idioms incrementally makes easier to develop cohesive medical BNs. The 

model expert only needs to connect elicited knowledge with the proposed idioms and reuse 

the most appropriate one.  

2. Assess BN structure: As explained in Section 5, a BN structure that does not obey the idiomatic 

reasoning patterns is a strong indicator of a poor structure and understanding. Thus, medical 

https://pambayesian.org/


idioms can help clinicians and model experts to assess and correct the BN structure, as well as 

improve their understanding of the underlying processes. 

3. Enhance explainability: Based on lessons learned during the PAMBAYSIAN project, the visual 

representation of the medical idioms makes the BN structure easier to explain by model 

experts but also more easily understood by clinicians. 

4. Improve communication between model and domain experts: Again, based on the 

knowledge gained during the PAMBAYESIAN project, medical idioms had a two-fold positive 

impact on the communication between model experts and clinicians. First, apart from helping 

connect the elicited variables, they were useful when eliciting experts’ knowledge. Looking 

for the elements captured in medical idioms can guide the knowledge elicitation process. 

Second, and arising as a direct consequence of the previous benefit, the representation of the 

medical idioms in the BN structure significantly improved the review process. For model 

experts it was easier to explain the structure to clinicians, and for clinicians it was easier to 

understand and review the BN structure.         

 

We believe that the medical idioms proposed in this paper are meaningful reasoning patterns that 

show the way towards a more systematic and coherent process for constructing complex medical BNs. 

Future work should focus on validating the proposed medical idioms against other related approaches, 

explained in Section 3, and exploring further the benefits described above when using medical idioms. 

These could bring us closer to a more generic and effective BN development process. 
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