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Abstract 

In the last few decades, the prevalence of multiple sclerosis (MS), a chronic inflammatory disease of 

the nervous system, has increased, particularly in Northern European countries, the United States, 

and United Kingdom. The promise of artificial intelligence (AI) and machine learning (ML) as tools to 

address problems in MS research has attracted increasing interest in these methods. Bayesian 

networks offer a clear advantage since they can integrate data and causal knowledge allowing for 

visualizing interactions between dependent variables and potential confounding factors. A review of 

AI/ML research methods applied to MS found 216 papers using terms “Multiple Sclerosis”, “machine 

learning”, “artificial intelligence”, “Bayes”, and “Bayesian”, of which 90 were relevant and recently 

published. More than half of these involve the detection and segmentation of MS lesions for 

quantitative analysis; however clinical and lifestyle risk factor assessment and prediction have 

largely been ignored. Of those that address risk factors, most provide only association studies for 

some factors and often fail to include the potential impact of confounding factors and bias 

(especially where these have causal explanations) that could affect data interpretation, such as 

reporting quality and medical care access in various countries. To address these gaps in the 

literature, we propose a causal Bayesian network approach to assessing risk factors for MS, which 

can address deficiencies in current epidemiological methods of producing risk measurements and 

makes better use of observational data. 
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Abstract 

In the last few decades, the prevalence of multiple sclerosis (MS), a chronic inflammatory disease of 

the nervous system, has increased, particularly in Northern European countries, the United States, 

and United Kingdom. The promise of artificial intelligence (AI) and machine learning (ML) as tools to 

address problems in MS research has attracted increasing interest in these methods. Bayesian 

networks offer a clear advantage since they can integrate data and causal knowledge allowing for 

visualizing interactions between dependent variables and potential confounding factors. A review of 

AI/ML research methods applied to MS found 216 papers using terms “Multiple Sclerosis”, “machine 

learning”, “artificial intelligence”, “Bayes”, and “Bayesian”, of which 90 were relevant and recently 

published. More than half of these involve the detection and segmentation of MS lesions for 

quantitative analysis; however clinical and lifestyle risk factor assessment and prediction have 

largely been ignored. Of those that address risk factors, most provide only association studies for 

some factors and often fail to include the potential impact of confounding factors and bias 

(especially where these have causal explanations) that could affect data interpretation, such as 

reporting quality and medical care access in various countries. To address these gaps in the 

literature, we propose a causal Bayesian network approach to assessing risk factors for MS, which 

can address deficiencies in current epidemiological methods of producing risk measurements and 

makes better use of observational data. 
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1. Introduction  

Multiple sclerosis (MS) is a chronic inflammatory disease of the nervous system that causes lesions 

to form in the brain, brain stem, optic nerve, and/or spinal cord [1]. Since 1990, the prevalence of 

MS has increased by 10% with increasing incidence reported in the United States, Canada, and 

Norwegian countries [2]. It is thought that improved diagnostic accuracy and physician 

understanding may be partially responsible for this effect, although it is unlikely that this fully 

explains the observed increase. This general increase in MS cases, particularly in women, along with 

uncertainty regarding the underlying causal mechanisms of MS, has increased research interest and 

efforts into the study of potential causes and triggers.  The increasing availability of large datasets 

has enabled the study of potential causal pathways in MS, a relatively rare disease. For many other 

chronic diseases there has been significant research applying artificial intelligence (AI) or machine 
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learning (ML) techniques to help identify risk factors, early identification categories and predict 

disease progression.  

This paper reviews the literature relating to AI/ML methods in current MS research with a focus on 

risk classification and risk factors. We found very few publications with this focus and those that did 

address this area largely failed to examine causal explanations beyond simple correlation 

calculations. It is increasingly widely recognized within the AI community that graphical causal 

models [3] provide a powerful way of understanding the limitations of observational data and 

enhancing this data with causal knowledge.  A particularly powerful graphical causal model – the 

Bayesian network –which combines expert causal knowledge with Bayesian probability theory has 

been used to improve risk assessment in a range of medical conditions [4] [5] [6] [7] [8]. We propose 

a causal Bayesian network approach to supplement classical data-driven epidemiological methods. 

In Section 2 we present a background on the empirical studies of possible risk factors for MS. In 

Section 3 we present our review of current AI methods in MS research, which reveals a need for 

more risk-related research. In Section 4 we explain how a causal approach using Bayesian networks 

helps avoid common problems (including the impact of confounding factors and bias through 

colliders) in interpreting the effect of risk factors from observational studies. We also present a 

prototype causal Bayesian network that can provide a systemic structure for future research in MS 

risk assessment and prediction. Our conclusions and recommendations are presented in Section 5.    

 

2. Background on MS Risk 

Much work has been done to determine factors that appear to contribute to the development of 

MS. The causal pathway leading to MS is hypothesized to include a combination of environmental 

and genetic factors, but few have been confirmed, and potential interactions have proved extremely 

challenging to study. Since 1970, there has been a pronounced relative and absolute increase in 

prevalence of MS in women, which could conceivably be caused by genetic susceptibility to risk, 

lifestyle changes, or increased diagnosis. When observing ratio of female to males affected in 

Denmark over a period from 1950 to 2000, there was an increase from 1.3:1 to approximately 2:1 

[9]; this change over a short period of time suggests it is more likely to be environmental factors that 

are driving this increase in MS female prevalence.  

It is now established that there is a genetic element underlying MS susceptibility. Approximately 12% 

of MS patients have a relative affected by the disease [10]. A specific human leukocyte antigen (HLA) 

type, DBR1* 1501, is linked to increased susceptibility to MS; heterozygosity increases an individual’s 

odds of developing MS by a factor of 3 [11]. Some ethnic groups are also less likely to have MS, due 

to either early life influences in different countries or genetic effects. One study found that African 

American populations in the United States had a 40% lower risk than their White counterparts [12]. 

However, when the same authors repeated the survey years later, they found that although risk had 

increased for this group, relative risk remained 33% lower in African American males compared to 

White males [13]. This study included a possible confounding variable, geographic residence, but the 

genetic makeup of each population and the reduced access to healthcare and/or lower suspicion of 

the diagnosis on the part of healthcare providers in minorities may also play a role. Other groups like 

the Mongolian, Japanese, Chinese, and Native American populations have significantly lower risk 

[14]. To date, there are no sufficiently powered genome-wide susceptibility studies in Black and 

Minority Ethnic (BAME) populations. Accounting for the interaction(s) between ethnicity, genetics 

and socioeconomic influences on both risk factors and access to healthcare for diagnosis means that 
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distinguishing risk associated with ethnicity from other potential causes of differential risk remains 

extremely challenging.  

In addition to genetic factors, it is believed that there are environmental triggers or influences that 

may affect the risk of developing MS. The hope is that, if interventions are developed to change 

these, MS may be prevented. Observational studies suggest that MS incidence is highest in those 

countries furthest from the equator, but there remain pockets of populations in northernmost areas 

that are almost unaffected by MS; one such example is the Eskimo community in Canada [15]. This 

suggests there might be a genetic component or cultural influence, such as the high Vitamin D diet 

of oily fish, still at play. A similar effect is observed in the Arctic Circle of Norway where the incidence 

of MS is much lower in the coastal fishing locations versus more inland areas [16].  However, again 

cultural factors, access to healthcare and diagnostic testing, and reporting bias may explain why 

there are fewer recorded cases. Many Scandinavian countries also benefit from a centralized 

medical system and have had relatively consistent recording of incident cases due to registry 

systems, which may account for at least some of the higher reported rates. The general increase in 

cases in at least some countries could also be due to improved survival rates or increased reporting. 

In Iran, which has seen a sharp increase in MS cases, prevalence is variable across geographic 

locations which suggests an ethnic or lifestyle factor may also be contributing in a variable way [17].  

Infectious agents have been considered as a potential cause of MS. Several studies have found that 

risk of developing MS increases to 2-3-fold in individuals with a history of EBV infection. [18] [19]. 

Modern lifestyle habits might increase susceptibility, such as smoking, high BMI in childhood [20], 

vitamin D deficiency [21], or high stress levels [22]. A Swedish study found that smoking increases 

the odds of developing MS by around 1.4 to 1.7, depending on the presence of genetic risk factors 

[23]. Based on a similar study of risk factors conducted in Iran, 64% of patients with MS reported 

having endured a stressful or traumatic event in their lifetime [24], but extensive retrospective 

studies such as these have some issues regarding recall bias whereby patients may over-report 

negative life events occurring close to disease onset. As we will explain in Section 4, there may also 

be explanations purely due to the way the data are collected and analyzed. In particular, many of the 

empirical studies of MS risk factors may fail to properly account for confounding factors in the 

analysis and biases in the data collected.  

Our core hypothesis it that most studies are compromised due to the way the data are collected and 

analyzed, and in particular that many conclusions are flawed because of a failure to take full account 

of causal explanations for observed data. As explained by Pearl [3], true AI cannot be achieved by 

‘learning from data’ alone even though machine learning techniques are usually classified as AI.  

True AI requires causal modelling, and Bayesian networks (BNs) provide both the graphical 

formalism for modelling causality together with an inference algorithm for prediction and 

diagnostics beyond that which can be achieved from standard statistical analyses of experimental 

data. Moreover, BNs also enable us to simulate interventions and counterfactual reasoning on 

observational data alone. This will be explained in Section 4.  In what follows, we explore this, but 

first we present our review of the use of AI and ML methods applied to MS data. 

 

3 Literature Review of AI/ML methods in MS Research 

The relevant papers in the AI/ML literature review were found by using the following search terms in 

IEEE, IET, PubMed, and other available journals: “Multiple Sclerosis” + “machine learning”, “artificial 

intelligence”. We did not include names of specific ML techniques and algorithms, but did add: 
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“Bayes”, “Bayesian”, “expert learning” because of our particular interest in this area. The search 

resulted in 216 papers. After an initial review, 126 papers were rejected for any of the following 

reasons:  they were published before 2010, did not relate specifically to MS, were review papers, 

contained a meta-analysis, or only discussed simple methods of producing risk, like fixed weights 

rather than unsupervised or supervised forms of machine learning. 

The remaining 90 papers, listed in Appendix A, can be classified as shown in Figure 1 The green box 

in this figure is highlighted to show that only one paper presented an AI technique that related to 

determining MS clinical risk factors. We next consider the three top level classifications in detail. 

These are separated based on the type of information that each AI method uses to make either a 

prediction or assessment of MS prognosis, treatment effect, or disability level.  

 

Figure 1 Classification of reviewed papers 

 

3.1 Magnetic Resonance Imaging (MRI) and functional magnetic resonance imaging (fMRI) 

Forty-one papers involve lesion detection and segmentation and seek to assess prognosis using MR 

imaging. The input to the machine learning (ML) models is a combination of MRI images and clinical 

and/or demographic data. Common ML techniques for classifying MRI images that might contain MS 

lesions include support vector machine (SVM), regression [25] [26] [27] [28] [29] [30] [31] [32], 

Random Forest [33] [34], KNN [35], Naïve Bayes (NB), multilayer perceptron (MLP) [36], and 

convolutional neural network (CNN) [37] [38] [39]. Deshpande et al used a supervised classification 

method called adaptive dictionary learning, where models decompose an input signal using MRI 

data given [40]. Some works focused on comparing different methods for their accuracy in detecting 

MS lesions [41] [42] [43]. Often before classifying MRI images, segmenting parts of an MRI image 

into specific areas of interest is required. Several novel automation tools have been developed for 

this purpose [44] as well as the application of neural networks [45] [46] and other methods of 

learning [47] [48] [49]. A transfer learning technique from van Opbroek et al segmented images 

while also compensating for differences in imaging protocols [50]. Another compensation method 

was presented by Falvo et al for diagnosing MS in under sampled MRI images [51]. A regression 

approach used by Goldsmith, Huang, and Crainiceanu attempted to find a correlation between MRI 

images of lesions in a certain part of the brain and a decrease in cognitive function in MS patients 
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[52]. Functional MRI (fMRI) data has also been tested as input to machine learning algorithms for the 

diagnosis of MS [53] [54]  

3.2 Clinical  

Clinical records may be used for machine learning studies around diagnosis [55] [56] [57]. Chase et al 

[56] developed an approach for detecting early cases of MS through electronic health record 

analysis. They found higher frequencies of certain reported symptoms, such as numbness in limbs, 

higher in the group that contained MS patients.  

Thirty-five of the papers focused on clinical data to predict the progression of MS in terms of MS 

type, disability scale ranking, or risk of relapse. Fiorini et al [58], Ruggiero et al [59], and Brichetto et 

al [60] test an assortment of linear classifiers, including least squares and multi-layer perceptron 

(MLP), on their ability to predict MS course type (relapsing remitting, primary or secondary 

progressive) based on data from a clinical questionnaire. Fiorini’s classifier performed best when 

distinguishing between remitting relapsing (RR) type from all other MS types. A similar study using 

MLP was performed by Kocevar et al to classify MS type from an input of MRI metrics obtained by 

graph theory-based analysis [61].  

The most common metric used to measure the physical impact of MS is the Expanded Disability 

Status Scale (EDSS). The EDSS is an ordinal scale in 0.5 increments from 0 (no symptoms) to 10 

(death due to MS). Sustained change in EDSS is a common primary outcome measure in clinical trials 

of MS disease modifying treatments. This metric is used in four similar studies that input clinical data 

into SVM [62] [63] and random forest [64] [65] models to predict the level of disability several years 

after initial MS onset. Disability can also be measured in terms of cognitive ability, which is how Kiiski 

et al quantify the effects of MS two years in advance using EEG data [66]. Eventually MS may affect a 

patient’s ability to walk or speak, which motivated Sun, Hsieh, and Sosnoff to develop a sway metric 

that can predict individuals who are at high risk of falling [67]. Prediction of progression when 

observing early signs of MS, called clinically isolated syndrome (CIS), in MRI scans is another area of 

interest [68] [69]. MS patients often have periods of time when symptoms might ease, only to 

relapse later. This is why Engler et al develop a machine learning method to predict which cases are 

most likely to have relapses in the future [70]. Prognosis can potentially be determined using a 

variety of data sources.  

The use of cytokine [71], motor function [72] [73], cognitive function [74] [75] [76], disability status 

[77], optical [78] [79] [80], and EEG [81] measurements in conjunction with artificial intelligence 

classifiers can point towards symptoms of MS. Although clinical data is used extensively for 

prognosis and prediction of MS course, only one dealt with analyzing clinical and environmental risk 

factors. An extensive case-control study outlined potential environmental exposures that might be 

partially responsible for patients to develop MS [82]. The only strong odds indicator that was found 

in this study was pesticide exposure, but only in males that had a specific genetic risk. 

Incorporating expert knowledge when creating a model for diagnosis or disease progression is 

essential but was rarely found in papers contained in this review. This is especially important when 

considering clinical variables that are important for decision-making, but for which very little 

historical data are found [83].  One study that did incorporate clinician knowledge elicited language 

used by radiologists when describing lesions on an MRI scan [84]. The result was a classification of 

lesion load for each patient using a fuzzy rule-based system that was coded with this language. A 

similar study also used fuzzy concepts combined with knowledge about MS symptoms to advise 

physicians for whether to perform an MRI on a given symptomatic patient [85]. However, this was 
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not created with the help of a neurologist and relied on information taken from internet sources. 

Another clinician knowledge-driven study [86] involved the development of an automated system to 

predict the EDSS value that radiologists might give to MS patients. A combination of knowledge from 

medical students and machine learning algorithms yielded a higher predictive ability compared to a 

machine learning alone when asked to predict the progression of patients from relapsing-remitting 

to secondary progressive [87].  

3.3 Genetic 

Fourteen of the papers relate to the discovery of genetic attributes and immunological signatures 

common to MS patients or ones that could predict patient treatment response. A random forest 

approach was developed by Jackson et al to find common characteristics of MS patients most likely 

to have a progressive form of MS with the goal of aiding clinicians in diagnosis and treatment [88]. 

Similarly, an MLP method developed by Flauzino et al found immunological signatures that predict 

higher EDSS in MS patients [89]. Karmonik, Boon, and Khavari focused on centers of the brain that 

might be targets for treatment in muscle malfunction in MS patients [90]. Many studies use pathway 

analyses to find potential genetic or immunological markers that may contribute to MS. Five such 

studies combine this approach with unsupervised learning [91] [92], logistic regression [93], random 

forest [94], and clustering-based [95] methods to find common genetic attributes within MS 

populations. Using self-organizing maps, Lötsch et al found certain lipid markers that were present in 

MS patients versus healthy controls, thus presenting a possible target for drug development [96]. 

Assessing the effectiveness of medications on MS progression is another application of machine 

learning. For example, different studies predict drug response of MS patients using genetic 

signatures [97] [98] [99]  [100] and CD4+ T cell biomarkers [101], and relapse data [102]. 

3.4 Bayesian approaches 

Notably, we found no papers using a Bayesian approach to MS that incorporated causal knowledge 

and data.  However, some work used purely data-driven Bayesian techniques. For example, a Causal 

Bayesian Network (CBN) was learned from data in Fleischer et al’s work using fMRI connectivity data 

to predict disease progression markers, however only r and p-values from data were presented and 

any depiction of any Bayesian Network structure was lacking [103]. Similarly, Palacios et al applied 

structure learning to gene networks before establishing a Bayesian network for identifying drug 

targets [104].  

In [105], a Bayesian classifier is used to detect potential lesions in MS patients’ MRI scans. In 

developing a method for MRI image segmentation, Sudre et al used Bayesian Information Criterion 

(BIC) to calculate the trade-off between complexity and accuracy of potential models [106]. Another 

that involved MRI lesion segmentation used a Bayesian Generative Model, which is described as a 

convolutional neural network that is given Bayesian priors for transfer learning across domains of 

medical imaging data but does not have causal structure [107]. Forbes et al developed a Bayesian 

expectation-maximization (EM) framework for segmentation as well, where expert knowledge as 

prior distributions were entered into their Markov model [108]. Rodriguez et al expand their 

research objective to include predictions on both EDSS level and MS subtype. With a Bayesian 

network classifier, they were able to predict with up to 85% accuracy the time for patients to reach 

an EDSS level of 6 [109]. This network classifier included some causal structure but does not take 

into account additional confounding variables.  

Another Bayesian approach was presented in the domain of MS treatment clinical trials [110]. They 

assess treatment effects on MS patients taking a certain drug based on disability progression from 
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input data from MRI lesions. Their work primarily focuses on a simple regression model. Three other 

papers involve the cost-benefit analysis of treatment effects [111] [112] [113] using similar 

regression methods.  

Pozzi et al use a close relative to the Bayesian Network, called a decision tree, to calculate the lowest 

effective dosage for MS treatment [114]. A Bayesian latent-variable approach was used by 

Bergamaschi et al to predict the probability of an MS patient remaining free of disease progression 

based on early relapse data and demographic information [115] and extended this work to include a 

prediction of patients most likely to have long-term disability [116]. The authors mention that their 

motivation to use a Bayesian approach was due to the dynamic nature of the progression data. 

These papers all demonstrated the utility of Bayesian approaches or networks to aid in diagnosis and 

prediction. However, their work can be expanded further, which will be discussed next.  

4. Proposed Bayesian Approach 

One of the most contested risk factors studied in MS research best demonstrates the need for a 

Bayesian approach to medical risk that incorporate causal knowledge with data. This concerns the 

studies [117] [118] [119] [120] that suggested being born in spring months (April, May in the 

Northern hemisphere and Oct, November in the Southern hemisphere) increased the risk of MS by 

13% [121]. However, Fiddes et al [122] demonstrated that this much hyped ‘spring birth’ risk factor 

may be explained by the simple fact these months are when there are more births. So, the ‘birth 

rate’ is a confounding variable. Another example of this type of problem is that the decreased 

vitamin D levels reported in MS patients versus controls could be confounded by a lifestyle factor 

that differs between patients and controls, even pre-diagnosis, such as decreased outdoor activity or 

exercise in people who subsequently develop MS as part of an “MS prodrome” [123]. It is 

conceivable that the development of national registries and reporting in different countries may also 

impact the incidence rates, with increased (or changing) ascertainment confounding the study of 

incidence. An unintended consequence of this could be highlighting an underlying environmental 

factor (or factors) specific to that country. Some countries (and communities within countries) have 

inequitable access to medical care, larger number of neurologists, and increased public awareness of 

MS which also affect the reported incidence rates [124]. Further analysis of immigration studies 

could also determine key intervals of exposure that lead to increased risk of MS.  Jo
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A simple Bayesian network (BN) showing the ‘birth rate’ effect, which associates spring births with 

increased MS risk, is presented in Figure 2. Subsequent studies concur with what would seem like a 

spurious correlation. However, several causal explanations could account for this effect, including 

gestational vitamin D deficiency or ultraviolet B levels [125]. More generally we need to consider 

unobserved as well as observed factors and the causal relationships between them. These 

interactions can then be included as connected nodes in the BN. Circular nodes represent the 

variables that contribute to the structure, while the arrows show the directions of these effects.  

 

Figure 2. Month of Birth effect BN 

 

Most MS risk literature involves case control studies that compare incidence of exposures or risks in 

the MS and control groups. This information is then used to calculate hazard ratio, odds ratio, or 

relative risk. Hazard ratios are used primarily in drug study outcomes to represent the odds of a 

treated group recovering in a treated after a given period compared to a control group [126]. Odds 

ratio, which is more prevalent in MS literature, is a measure that describes one’s odds of contracting 

a disease given a certain exposure: 

���� ����	 
��� =

�/��


�/��

 

where 
� represents patients who have the disease and have had the exposure, �� is number of 

patients who are healthy but have been exposed, 
� the patients who were not exposed and have a 

disease, and �� the patients who are healthy and were not exposed. Relative risk is similar to this 

measure except that it compares the probability of an event happening in these two groups—

unexposed and exposed: 

�������� ���� 
��� =

�/

� + ���


�/

� + ���
 

Given an odds ratio, a conditional probability table �|� (see Table 1) can be populated, where � can 

symbolize the exposure and � the disease, and � and � the associated probabilities. 

Table 1. Odds Ratio Probability Tables 

 

 

 � = ���� � = ����� 
� = ���� � � 
� = ����� 1 − � 1 − � 
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When extending a conditional probability table �|� to multiple causes, such as �|�", �$, where �" 

and �$ are each a cause, it quickly becomes more complicated to calculate an odds ratio that has the 

same meaning as defined above if one of these variables are dependent on the other. A case-control 

or population-based study may not control for the confounding effect or may not measure the 

confounding variable at all.  

The most dramatic effect of this can be seen when the ‘correct’ results are completely reversed due 

to overlooking the confounder; this is called Simpson’s Paradox [127]. The causal explanation of this 

paradox – represented as a Bayesian network [128] [3] is shown in Figure 3. For example, there has 

previously been a reported connection between ethnicity and the risk of developing MS, as Northern 

European populations report a higher prevalence of the disease. However, many studies overlook 

the confounding variable or variables that affect study outcomes, which is this case may be access to 

medical care. Countries further from the equator generally tend to have higher access to healthcare 

for their populations. Hence, the ‘true’ impact of the risk factor on the outcome can only be 

assessed by ‘breaking the link’ from the confounder to the risk factor.  BNs enable us to do this and 

hence simulate a controlled trial using only the existing observational data  

Another common error in empirical risk studies arises from Berkson’s Paradox, in which a vacuous or 

incorrect ‘causal’ relationship is inferred as a result of a biased dataset as shown in the BN structure 

of Figure 3. Graphical explanation of Simpson’s Paradox and Berkson’s Paradox [129].  Because of 

under- or over-sampling of subjects with a certain characteristic, the chance of developing a given 

disease is distorted. An example that relates to MS is the relationship of childhood obesity on later 

developing MS. An oversampling of patients who are not obese distorts evidence that obesity affects 

MS. The sample bias in the BN is explicitly modelled through the introduction of the Collider node. 

The biased results (which are the ones normally reported) are the results one would obtain by 

setting the ‘Collider’ variable to be ‘true’. Once this constraint is removed the BN model is able to 

provide the true unbiased results. 

 

Figure 3. Graphical explanation of Simpson’s Paradox and Berkson’s Paradox 

In practice, both confounding variables and colliders may jointly impact the results. It is not just the 

existence of potential confounding variables and colliders that can compromise the simple ‘odds 

ratio’ measure of risk factors. Figure 4 shows an example cause-effect situation, where a chain 

reaction of risk factors �", �$, �%, �& contribute to the development of '(. In general, the odds ratio 

cannot properly measure the impact of an individual risk factor when there are multiple causes and 

effects, or chain-type effects that have dependencies or other interacting variables. It assumes a 
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single explanation for the disease, namely, the exposure to a specific risk factor. This measure, 

however, is inappropriate in medical studies where it is impossible to control for all confounding 

factors. Odds ratios are particularly flawed in the case of MS, since it is agreed that MS does not 

have a single cause, and it is impossible to control for the huge combination of environmental and 

genetic factors that contribute to overall disease risk. To correctly model the effect of all the risk 

factors and their interactions on the development of '(, one must compute the joint probability 

distribution:  

)
'(|�", �$, �%, �&� = )
'(|�$, �&�)
�$|�", �%�)
�&|�%�)
�"�)
�%� 

 

However, the odds ratio can only provide the individual and independent effects, namely:  

)
'(|�"�, )
'(|�$�, )
'(|�%�, )
'(|�&� 

 

Figure 4.  Bayesian structure that represents causal direction between variables compared to B) an odds ratio association 

structure 

Multiple logistic regression, which is an extension of odds ratio, allows for more than one 

independent variable, but this also assumes independence between the variables, which may not 

always be the case. It also assumes a linear relationship between the independent and measured 

variable. Figure 5A shows this structure that contains only independent variables. Similarly, Naïve 

Bayes (Figure 5B) achieves reasonable accuracy by classifying an outcome given certain features. 

Due to the need for directionality and interdependence between involved variables, a new approach 

must be constructed to assess the relevant factors in MS development.   

 

Figure 5. A) Regression model and B) Naive Bayes model 
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In the case of multiple sclerosis, causality is important. Based on MS literature, the initial risk of 

developing MS is genetic, followed by exacerbation by environmental effects on the physiology. Any 

appropriate model would show this effect. A researcher could choose to control for certain factors 

first, such as genetic markers and then test for certain environmental incidence. However, this 

causes information to be lost and reduces the number of subjects that can be included, especially 

when adding more categories of environmental exposures. The relative rarity of MS would reduce 

the number of test subjects further, which would have a more pronounced effect. Instead, these 

causal explanations should be modeled through expert domain knowledge and then probability 

distributions calculated.  Using the Bayesian network, we are able to model these interventions and 

provide explanations for observed data.  

Once simple causal interactions are modeled, a larger model that includes multiple dependencies in 

the case of MS can be created. Figure 6 shows a potential simplified causal structure for the 

explanation of increased MS prevalence in some areas, which can be explained by various forces. 

The arrows that connect factors such as EBV infection, vitamin D levels, and genetic predisposition to 

MS Prevalence node represent the causal link that most researchers believe exists. The strength of 

the arrow links is determined by conditional probabilities learned from data and/or expert 

knowledge, as explained in Section 3.3. The intermediary links between MS Prevalence and Latitude 

nodes shows how there can often be other explanations for observed phenomenon such as the 

increased number of cases in countries further away from the equator. A critical benefit of the 

model compared to alternative statistical approaches is that it explicitly distinguishes between “MS 

Prevalence” (which is not always directly observed or observable) and “Reported MS Prevalence,” 

since some factors might cause a reported value to differ from the true (but unobserved) value. As 

observations are added to the Bayesian network, updated probabilities on the most likely factor for 

increased prevalence in an area are calculated by a Bayesian inference algorithm. Widely available 

tools enable easy construction of BN models and automatically run the inference algorithm as 

observations are entered. Here we use the AgenaRisk tool [130].  
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Figure 6. Bayesian network with causal explanations for MS prevalence 

For example, let us imagine the scenario of an area, such as in Sardinia, which has high sun exposure, 

low latitude, but high prevalence of MS, as shown in  Figure 7. This should reflect a low-risk area in 

the latitude gradient view of MS risk [131]. Due to the relatively high sun exposure in this 

population, it is less likely that an environmental risk is present. However, other environmental 

influences could still contribute, which can be reflected in the model. With these observations 

entered, the updated explanation for the high rates of MS is most likely due to a genetic 

predisposition in the population, which is consistent with current hypotheses about this effect.  

 

Figure 7. BN updated to show reasoning for high prevalence in a sunny, lower latitude location 
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To show a potential confounding effect on MS prevalence, we can observe how changing the 

variable “Reporting quality” can alter the true MS prevalence in an area. When observing that the 

reporting quality is high, the model predicts that the true MS prevalence can be generally trusted, 

with a small chance of error. When low quality reporting is included in the model instead, a greater 

discrepancy in reported MS versus true MS prevalence is observed. From this model (Figure 8), it is 

also clear that the dependency between latitude and reporting quality affects the results. By looking 

at the “Latitude” node, it is slightly more likely that the higher prevalence came from a Northern 

country.  

 

 

Figure 8. BN reflecting high reporting quality and resulting MS prevalence 

The variability of factors over time can also be modeled in a Bayesian network. Gray nodes represent 

factors that have changed over time, such as increased quality of medical care or reporting, which 

would affect the number of MS cases reported in an area. This model could also be extended to 

include possible interventions that could alter the course of MS development, such as certain 

changes in lifestyle, like smoking cessation, or disease-altering medications. The proposed structure 

can also be modified to show the inclusion of factors that have yet to be determined, such as other 

lifestyle choices that affect MS triggering. The model presented in this section is available for 

download at http://www.eecs.qmul.ac.uk/~norman/Models/MS_prevalence and can be run in the 

free trial version of AgenaRisk (agenarisk.com). 

 

Conclusions 

The use of complex neural networks to help discoveri minute differences in MRI scans and predict 

the subtype or progression of MS is a promising start to AI usage in MS. But much more research is 

needed in risk assessment and decision making. There is great uncertainty about what the actual risk 

factors and causes of MS are , which is why there should be greater general interest in using AI/ML 

techniques to identify and understand these.. We have argued that Bayesian networks are a suitable 

(but as yet underused) AI technique to address this challenge. BNs can combine data and knowledge 

to provide causal explanations for epidemiological data. Using observational data alone, BNs enable 

Jo
urn

al 
Pre-

pro
of



14 
 

us to avoid the statistical errors arising from confounding variables and biased samples; they also 

enable us to simulate medical (or other) interventions and address counterfactual questions. Future 

work is needed in developing these models, especially for risk factors that have varying degrees of 

exposure, such as smoking or vitamin D levels.  
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Highlights 

 

• Review of relevant and recently published artificial intelligence/machine learning methods 

applied to Multiple Sclerosis (MS) research 

• Proposes Bayesian network approach of assessing risk factors for MS, which can address 

deficiencies in current epidemiological methods 
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