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Abstract 

How do people solve Bayesian word problems, and how is this affected by 

different presentational formats? We empirically compare the efficacy of the 

natural frequency / nested sets and causal approaches, using think-aloud analyses 

to examine the underlying cognitive processes. Experiment one demonstrates an 

increase in accuracy with a nested sets / natural frequency framing but not with a 

causal framing. From the think aloud data, a single five-stage solution process (the 

‘nested sets’ process) is observed modally among individuals providing the 

normative Bayesian answer across all conditions. In experiment two the nested 

sets approach is evaluated using a problem with greater ecological validity and the 

increased accuracy effect is preserved. Experiment two also finds that spontaneous 

conversion of the problem by participants to real numbers (natural frequencies) is 

highly associated with accuracy, but is not essential. Experiments one and two also 

provide a mixed-methods analysis of the most common erroneous processes 

individuals undertake and find the confusion hypothesis a more fitting explanation 

of results than base rate neglect. Experiment three confirms the null causal finding 

of experiment one in a modified design and also demonstrates that the mere 

presence of the think aloud protocol increases accuracy. Experiment four 

experimentally tests whether prompting problem conversion to real numbers, and 

prompting individuals to follow the nested sets process improve accuracy. No 
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effect is found for conversion, but an effect is found for the nested sets process 

prompt. 

 

Keywords: Natural Frequencies; Nested Sets; Causal Reasoning; Bayesian 

Reasoning; Base Rate Neglect; Confusion hypothesis 
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General Introduction 

The presentation of Bayesian problems 

The ability to make simple Bayesian inferences from given statistics is 

rapidly becoming a necessary skill in modern society (Meder and Gigerenzer, 

2014). Key domains where Bayesian inference abilities are increasingly important 

include medicine and law (Barrett and McKenna, 2011; Fenton et al., 2014; 

Forrest, 2003; Gigerenzer and Edwards, 2003; Meder et al., 2009). For example, in 

medicine, both doctors and patients need probabilistic inference to make accurate 

assessments of the risk of the patient having a specific condition given statistical 

information about the prevalence of the condition in combination with diagnostic 

test results (Barrett and McKenna, 2011; Meder et al., 2009; Wegwarth et al., 

2012). In law, there is increasing use of statistical forensic evidence; however, 

since forensic experts have been discouraged from explicitly using Bayes to 

present the conclusions of their analyses in the courtroom (Donnelly, 2005), it is 

left to both lawyers and juries to perform for themselves the necessary Bayesian 

calculations in order to understand the true impact of the evidence (Fenton et al., 

2014). Ineffective presentations of such statistics greatly increase error rates in 

comprehension. The consequences include poor patient decisions (Gigerenzer and 

Edwards, 2003; Navarrete et al., 2014) and miscarriages of justice (e.g. Forrest, 

2003; Mehlum, 2009). 
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Approaches used so far 

There have been many attempts to improve Bayesian reasoning through 

altering problem framing. The three approaches with the greatest advocacy are the 

natural frequency approach (Brase, 2008, 2013; Gigerenzer and Hoffrage, 1995; 

Johnson and Tubau, 2013), the nested sets / partitive / subset approach (Evans et 

al., 2000; Fiedler et al., 2000; Girotto and Gonzalez, 2001; Johnson-Laird et al., 

1999; Lewis and Keren, 1999; Macchi, 2000; Mellers and McGraw, 1999; Sloman 

et al., 2003; Tversky and Kahneman, 1983) and the causal approach (Hayes et al., 

2013; Krynski and Tenenbaum, 2007; McNair and Feeney, 2014a,b). We illustrate 

the three approaches using the classic ‘medical diagnosis problem’ (e.g. Eddy, 

1982). Here, the problem solver is asked to compute the probability of a woman 

having a disease given prior knowledge of its prevalence in combination with the 

results of a diagnostic test with less than 100% reliability. A version of the 

problem which employs none of the above three approaches and is taken from 

Gigerenzer and Hoffrage (1995) is presented below. 

The probability of breast cancer is 1% for women at age forty who 

participate in routine screening. If a woman has breast cancer, the probability is 

80% that she will get a positive mammography. If a woman does not have breast 

cancer, the probability is 9.6% that she will also get a positive mammography. A 

woman in this age group had a positive mammography in a routine screening. 

What is the probability that she actually has breast cancer? __% 

 

In an early study, Casscells et al. (1978) gave a similar problem to 60 

students and staff at Harvard Medical School. Only 18% of solvers gave the 
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correct answer. Such low levels of accuracy on Bayesian word-problems became 

the accepted norm in the literature over the next decade (e.g. Bar-Hillel, 1980; 

Eddy, 1982). Each of the three approaches used these early studies, and the 

paradigms employed within them, as the benchmark for improvements. 

Natural frequencies and nested sets. The natural frequencies and the 

nested sets / partitive / subset approaches possess a largely entwined history. The 

natural frequency approach, devised by Gigerenzer and Hoffrage (1995) attempts 

to improve reasoning on Bayesian problems by presenting the solver with the real 

number values they would observe if they sampled the given population in the 

problem one by one, making a record of the presence or absence of each feature of 

interest (e.g. cancer / no cancer, positive / negative test result). This process was 

termed ‘natural sampling’ and if carried out for the example given above, produces 

a set of categorical figures which can be represented visually as the tree diagram in 

Figure 1 below. Even in the absence of this assistive diagram, presenting the 

variables in this natural frequency format has been reliably shown to improve 

accuracy on Bayesian word problems when compared to probabilistic, percentage 

or normalized frequency formats (Brase, 2002; Chapman and Liu, 2009; Garcia-

Retamero and Hoffrage, 2013; Hill and Brase, 2012). 
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Figure 1. A depiction of a natural frequency representation of the mammogram 

problem, adapted from Gigerenzer and Hoffrage (1995). The 1000 women are sub-

divided into those with and without cancer, and then further subdivided into those 

with and without a positive test result. 

 

There has been much debate surrounding the psychological mechanisms 

underlying this increase in accuracy. Some authors have presented an evolutionary 

argument, claiming that the natural frequency format is that which humans would 

have been exposed to over their evolutionary history, and therefore would likely 

have adapted mental mechanisms specifically to process (Brase and Hill, 2015; 

Cosmides and Tooby, 1996; Hoffrage et al., 2002). An additional possible reason, 

noted by Gigerenzer and Hoffrage (1995) in their original paper, was that this 

format is computationally simpler than classic probabilistic or percentage formats, 

requiring fewer computational steps. While other work has suggested this is 

unlikely to be the sole, or even main, cause of improvement (Brase, 2002), it 

remains a potential contributory factor. Finally, other authors have suggested, 
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initially through a misunderstanding of the format (see Hoffrage et al., 2002, for a 

review), that it is the fact that the natural frequency format reveals the ‘nested sets’ 

(Sloman et al., 2003) ‘subset’ (Evans et al., 2000; Johnson-Laird et al., 1999), 

‘partitive’ (Macchi, 1995; Macchi and Mosconi, 1998; Macchi, 2000) or ‘outside’ 

(Fiedler et al., 2000) nature of the Bayesian problem that is the cause of its 

assistive effect. Each of these terms reflects the same underlying concept, and in 

line with recent reviews (e.g. Johnson and Tubau, 2015; McNair, 2015) the term 

‘nested sets’ shall be used henceforth. It has been proposed by these authors that 

any format which reveals the nested sets structure of a Bayesian problem will 

show equal improvements in accuracy to natural frequencies, minus any possible 

benefit gained from the computational simplification. This nested sets structure 

can be represented as the overall conceptual structure of Figure 1 (i.e. the 

representation of the problem as sub-divided groups of units) but is thought not to 

require any specific unit in each node (e.g. frequencies / real numbers). 

Each of these ‘nested sets’ approaches has also had success in improving 

accuracy when compared to ‘inside-perspective percentage’ or probability formats 

typical of the early studies in the field (e.g. Bar-Hillel, 1980; Casscells et al., 

1978). Macchi (2000) presented participants with a version of a Bayesian word-

problem which used ‘outside-perspective percentages’ to encourage the sub-

dividing representation, without relying upon natural frequencies. With the ‘inside 

percentage’ format presented above, typical of early work and frequently 
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employed in real settings (Meehl and Rosen, 1955; Bar-Hillel, 1980; Casscells et 

al., 1978; Eddy, 1982) the statistic for the probability of obtaining a false positive 

on the mammogram test, for example, would be presented from the point of view 

of a single woman e.g. ‘If a woman does not have breast cancer, there is still a 

10% chance (or ‘probability’) that she will get a positive mammography.’ 

However, with Macchi’s ‘outside-percentage’ approach this statistic would be 

presented from the point of view of a group of women e.g. ‘Out of all of those 

women who do not have breast cancer, 10% will also get a positive 

mammography’. The latter, focused on divisions of groups, was thought by 

Macchi to encourage the mental construction of the sub-divided nested sets model 

(see Figure 1) unlike the former, focused as it is on an individual and the abstract 

concept of ‘chance’, or ‘probability’. Importantly, unlike with a natural 

frequencies approach, both versions were presented with the same numerical 

format (percentages) and so did not suffer from any computational confound, or 

other potentially confounding issues surrounding preference / familiarity with 

different number formats. With this approach Macchi found a large significant 

difference in accuracy, with 6% in the non-nested sets (inside / probability) 

framing and 33% in the nested sets (outside / group) framing. 

Furthermore, this nested sets condition was compared to a natural frequency 

version and was found not to be significantly different. This firstly suggests, in line 

with Brase (2002) that the computational simplicity of natural frequencies may not 
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actually be a large factor in its success. It also provides tentative evidence that the 

assistive effect of natural frequencies may in fact be due to the revelation of the 

nested sets representation. 

However, this interpretation of Macchi’s (2000) results has been criticized 

(Hoffrage et al., 2002). These authors claimed that Macchi’s nested sets format 

merely encouraged individuals to construct a natural frequency version of the 

problem for themselves, which then ultimately caused the increased accuracy. This 

alternative interpretation cannot be ruled out on the present evidence in the 

literature as it contains a paucity of studies focused on participants’ solution 

procedures. However, Macchi’s approach retains experimental value as it removes 

any concern of a computational, or other, confound as the statistics presented are 

precisely equal to the ‘inside percentage’ format in all ways other than the 

’outside-perspective’ re-framing. For this reason, and given the fact that both 

nested sets and natural frequencies advocates have claimed Macchi’s findings as 

providing evidence for their position (the difference is a matter of interpretation, 

not method), this paper will test the nested sets / natural frequency approaches 

using this single presentation format. Further, by examining participants’ problem 

solving processes, we will address the question of whether this format works by 

encouraging participants to construct a natural frequency format or whether 

success is achieved without such a conversion. 
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Causal approach. The ‘causal model’ approach to assisting Bayesian 

reasoning is highly distinct from either the natural frequencies or nested sets 

approaches. It was devised by Krynski and Tenenbaum (2007), building upon 

developments in computer science that emphasised the role of causal models in 

probabilistic representations (Pearl, 2000; Sloman and Lagnado, 2005). Krynski 

and Tenenbaum argued that purely statistical models, such as those employed by 

both the nested sets and natural frequency approaches, were ineffective in most 

everyday reasoning situations due to the complexity and low levels of information-

certainty those situations present. They therefore claimed that these models were 

unlikely to be good descriptive models of human reasoning, which is likely to be 

adapted to these complex, low-certainty environments that humans inhabit. 

Krynski and Tenenbaum theorised that people in fact normally approach Bayesian 

reasoning problems by firstly constructing a causal model of the scenario. This 

causal model is then populated with the appropriate statistics and the answer is 

computed via Bayesian inference. 

Krynski and Tenenbaum (2007) noted that much previous work, especially 

on the medical diagnosis problem, had failed to consider the causal structure of the 

problem they were presenting to participants. In particular they had failed to 

provide the solver with a cause for the false positive rate: participants were 

typically told that positive test results could occur in the absence of cancer, but no 

reason or cause for this was given. This, Krynski and Tenenbaum argued, 
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prevented solvers from constructing a causal model and thus from solving the 

problem in their preferred way, resulting in the low accuracies seen in early 

experiments in the field (e.g. Bar-Hillel, 1980; Casscells et al., 1978; Eddy, 1982). 

The authors found in two separate experiments that, by simply adding a single 

sentence providing this cause (‘harmless cysts look like cancerous tumours and 

can cause positive results on the mammography’), accuracy increased from around 

20% to around 40%, a similar magnitude increase to that typically seen by the 

natural frequencies and nested sets approaches. Their explanation for this was that 

the addition of the second cause completed the causal mental model of the problem 

for participants (see Figure 2 below), allowing Bayesian inference. 

Two further Bayesian-problem experiments drawing on the Taxi-Cab 

problem (Eddy, 1982) and one with a novel 2x2 design, both also showed a 

beneficial effect for providing a clear causal structure. Some replication success 

has followed this paper in subsequent years, with one study finding an effect for 

forced-choice but not open-ended answers (Hayes et al., 2013) one providing a 

null finding (McNair and Feeney, 2014a) and one providing support in two 

separate experiments, but only in a high-numerate sub-group (McNair and Feeney, 

2014b). 
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Figure 2. A simple representation of Krynski and Tenenbaum’s (2007) causal 

model of the mammogram problem. The model contains the information that both 

breast cancer and harmless cysts are possible causes of positive mammogram test 

results. 

 

Rationale 

While the nested sets / natural frequencies and causal approaches to assisting 

Bayesian reasoning have the greatest advocacy in the field, no experiment has yet 

attempted to directly compare or combine them. Furthermore, despite over four 

decades of research examining the presentation of Bayesian problems, little 

consensus has emerged on the most effective method, or indeed on the means by 

which these methods achieve success. Even less agreement exists on the ‘normal’ 

way in which successful individuals solve Bayesian problems, or on why, and at 

what point, some individuals fail. In a recent appeal, McNair (2015) called for 
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more research focused on understanding the processes that individuals undertake 

when faced with simple Bayesian problems. It was proposed this should provide 

vital information for how current presentation formats can be improved. 

This need for a focus on solution process has been echoed by Johnson and 

Tubau (2015) who also highlighted the need for greater understanding of the 

stages at which unsuccessful solvers fail, as well as the point at which they make 

each calculation in the solution process. McNair (2015) also encouraged 

researchers to stop relying on numerical responses as their sole source of data due 

to its inability to distinguish between two very different thought processes which 

coincidentally produce the same quantitative answer. Instead, both McNair and 

Johnson and Tubau championed a methodology advocated by Ericsson and Simon 

(1980) and later utilized by Gigerenzer and Hoffrage (1995), which they called 

‘think aloud’, and in which participants verbalize or record their thought processes 

while solving the problem. 

Finally, the vast majority of studies testing these approaches have been 

conducted on undergraduate university students and in relatively small samples. 

The former issue is particularly important because it is reasonable to suppose that 

young undergraduates are not necessarily representative of the wider population in 

their capacity to solve Bayesian problems. Salthouse (1996) showed that human 

ability to process information declines with age, peaking in the early 20’s. 

Moreover, even within this age group, Brase et al. (2006) showed that students 
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from higher-ranking universities perform at a higher level on Bayesian problems. 

If this association between education and Bayesian reasoning ability extends 

outside of universities it is very unlikely that a wider age group with a greater 

variation in education level will perform at the same level as those who have 

principally been studied so far. In support of this conjecture, Micallef et al. (2012) 

who studied the general population, found only 6% accuracy on a natural 

frequency phrasing of the medical diagnosis problem, which is far below 

previously-found levels (e.g. Gigerenzer and Hoffrage, 1995; Johnson and Tubau, 

2013). 

Experiment one 

The first aim of the present experiment was to directly compare the natural 

frequency / nested sets approach with the causal approach to improving Bayesian 

problem solving accuracy in large general population samples. Macchi’s (2000) 

outside-framed percentage approach to revealing the nested sets structure was used 

to represent the former, while Krynski and Tenenbaum’s (2007) approach was 

used to represent the latter. Within this aim it was hypothesised that a significant 

main effect of the nested sets framing would be found in the whole sample. It was 

further hypothesised, based on the ‘high numerate only’ finding of McNair and 

Feeney (2014b) that only individuals in the high numerate sub-group would 

improve with a causal framing. Thus, given the fact that the present sample was 

likely to have lower numeracy levels than previous work, we predicted no 
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significant main effect of the causal framing in the sample as a whole. However, it 

was hypothesised that a high-numerate sub-group (using a median-split on the 

Berlin numeracy scale (Cokely et al., 2012)) would show a significant main effect 

of causal framing. 

The second aim of the experiment was to combine the nested sets and causal 

approaches in a single condition to determine if the two effects are additive, or 

even super-additive. It was again hypothesised that no significant interaction 

between the two conditions would be seen in the sample as a whole, but a 

significant and positive interactive effect would be seen in the high-numerate sub-

group split at the median. 

The third aim of this experiment was to heed McNair’s (2015) and Johnson 

and Tubau’s (2015) appeals to examine problem-solving processes and individual 

differences by using a ‘think aloud’ methodology alongside a numeracy measure 

in order to gain greater insight into the processes that participants undertake when 

solving Bayesian problems. This analysis will be exploratory but will aim to 

uncover both the ’normal’ or ’preferred’ processes people undertake when 

approaching these problems (either successfully or unsuccessfully) as well as how 

the natural frequency / nested sets and causal framings affect these processes. 

Method 

Participants. The final sample size for experiment one was 113. From an 

original sample of 124, nine participants were removed due to a clear lack of 
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engagement with the experiment as evident in their numerical and think aloud 

data. Demographic data for all four experiments can be found in Table 1. 

Participants for all three experiments were recruited through the Amazon MTurk 

service and were required to be in the United States and to have a greater than 95% 

HIT approval rating. Participants were paid an average of $6.40 per hour for taking 

part.  
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Ethical approval for all the studies described was provided by the Queen 

Mary Research Ethics Committee (REF: QMREC1328) and was deemed to be 

extremely low risk. 
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Table 1 Participant demographics for all four experiments. 

 EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4 

 Numeric Percent Numeric Percent Numeric Percent Numeric Percent 

Total Sample 113 100% 521 100% 429 100% 364 100% 

Gender 

   Male 51 45.1% 232 44.5% 220 51.3% 212 58.2% 

   Female 61 54.0% 288 55.3% 208 48.5% 152 41.8% 

   Other 1 0.9% 1 0.2% 1 0.2% 0 0% 

Age 

   Minimum 20 - 18 - 19 - 18 - 

   Maximum 66 - 71 - 75 - 67 - 

   Mean 33.1 - 34.2 - 36.7 - 35.1 - 

   Standard Dev. 10.0 - 11.6 - 12.3 - 10.8 - 

Education 

   High School 31 27.4% 157 30.1% 141 32.9% 138 37.9% 

   Bachelor’s Degree 55 48.7% 267 51.6% 199 46.4% 172 47.3% 

   Master’s Degree 22 19.5% 67 10.9% 63 14.7% 36 9.9% 

   Doctoral Degree 2 1.8% 12 2.3% 13 3.0% 4 1.1% 

   Other 3 2.7% 26 5% 13 3.0% 14 3.8% 

Occupation 

   Professional / 

Managerial 

42 37.2% 218 41.8% 162 37.7% 130 35.7% 

   Labour / Service 35 31.0% 107 20.5% 129 30.1% 115 31.6% 

   Student 5 4.4% 65 12.5% 23 5.3% 4 10.2% 

   Unemployed 16 14.2% 70 13.4% 69 16.1% 5 12.4% 

   Other 15 13.3% 61 11.7% 46 10.7% 4 10.2% 

First Language 

   English 110 97.3% 517 97.7% 422 98.3% - - 

   Other 3 2.7% 4 2.3% 7 1.7% - - 
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Design. Experiment one employed a 2 (nested vs non-nested) x 2 (causal vs 

non-causal) within-subjects design resulting in four ‘conditions’ which all 113 

participants undertook: ‘basic’, ‘nested’, ‘causal’ and ‘nested-causal’. Four 

different ‘scenarios’ were also created: ’Mammogram’, ‘College’, ‘Library’ and 

‘Gotham’, totalling sixteen possible condition-scenario combinations. Each 

participant only saw four of these: each participant responded to every condition, 

and saw every scenario, but exactly which four combinations of these they saw 

was randomly determined. 

Given the focus on individual process a within-participants design was 

chosen in this experiment principally in order to ensure interpretative clarity of the 

combined nested-causal condition. If a between-participants design was used, and 

the nested-causal condition outperformed the nested and causal conditions 

separately, it still could not be concluded that the combination of the two was 

beneficial on the individual level: if individual differences existed as to which of 

the two approaches people found helpful, an alternative explanation could be that 

some of the participants in the combined condition found the nested aspect helpful, 

while a different set found the causal aspect helpful, creating a higher average. 

With a within-participants design, however, if the nested-causal condition was 

higher than either nested or causal conditions, it would be possible to infer, and to 

confirm on an individual level, that the combination of nested and causal prompts 

is more assistive than either alone. 
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The study also employed a mixed quantitative-qualitative ‘think aloud’ 

method, drawing on Ericsson and Simon (1998) and Gigerenzer and Hoffrage’s 

(1995) approach. In that study’s design, participants wrote on paper as they 

worked out the problem, and these writings were analysed. In the present study, 

this method was adapted for computer-based experiments by asking participants to 

write their thought process while working out the problem in an open-ended text 

box. Crucially, they undertook this before having access to the next page where 

they could then enter their numerical answer. 

Materials. The study was an online-survey conducted through Amazon 

MTurk, and which participants therefore accessed through their own computers. 

Colour-blind safe colours were used where colour was necessary, which were 

sampled from www.colourbrewer.org. 

We used a version of the mammogram problem which was an amalgam of 

Gigerenzer & Hoffrage (1995), Krynski & Tenenbaum (2007) and Macchi (2000). 

A modified version of the college entrance exam problem (e.g. Brase, 2008) was 

also used. Two further problems were created for the study, one based on a 

‘Macedonian Library’ and another based on crime rates in ‘Gotham city’. Problem 

for all sixteen conditions can be seen in the supplementary materials and the basic 

mammogram problem can also be seen below: 

Every year the government advises women to take part in routine 

mammography screening using an X-ray machine to determine if they have breast 

cancer. 200 out of every 1,000 women at age forty who participate in this routine 
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screening have breast cancer, while 800 do not. If a woman has breast cancer, she 

will always get a positive mammography. If a woman does not have breast cancer, 

there is still a 10% chance that she will get a positive mammography. 

 

A woman in this age group had a positive mammography in routine 

screening. What is the percentage chance that she actually has breast cancer? 

 

Each scenario had the same mathematical / logical structure but was 

otherwise designed to be as different as possible. This was done in order to reduce 

the likelihood of framing effects confounding the experiment and in combination 

with the use of multiple scenarios should therefore have made the study design 

more robust and the results more generalizable to other Bayesian problems. The 

scenarios varied in word-length and while ’Mammogram’ and ’College’ were both 

problems about humans, ’Library’ and ’Gotham’ were about objects (books and 

crime reports, respectively). Finally the actual numbers and population values used 

differed considerably across the scenarios. 

The design of the conditions was based on Macchi (2000) and Krynski & 

Tenenbaum (2007). In all conditions, the population and two base rates were given 

as frequencies e.g. ‘200 out of every 1,000 women at forty who participate in this 

routine screening have breast cancer, while 800 do not.’ As can be seen in this 

statement, the frequency of ‘no-cancer’ (and equivalents in other scenarios) was 

also given, which is a departure from Macchi’s design. This was done to reduce 

difficulty in order to ensure that no floor effect was seen in the basic condition. 

This was considered a possibility as Macchi found 6% accuracy in the basic 
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condition in undergraduate students, and the present experiment was conducted 

within the general population, which may have lower numeracy (Salthouse, 1996; 

Brase et al., 2006). This difference also departs from Krynski and Tenenbaum who 

gave the base rate of the first cause (e.g. cancer) as a percentage. 

The nested sets manipulation (nested and nested-causal conditions) was 

produced as follows: in the basic and causal conditions, the ’100% true positive’ 

statement for the first cause was given from the perspective of an individual e.g. 

‘If a woman has breast cancer, she will always get a positive mammography’, 

while in the nested and nested-causal conditions, this was given from the 

perspective of a group e.g. ‘All of the women who have breast cancer will get a 

positive result on the mammography.’ This was also the case for the false 

positive rate: in the basic and causal conditions this was given as ‘If a women 

does not have cancer, there is still a 10% chance that she will get a positive 

mammography’, while in the nested and nested-causal conditions this was given 

as ‘Out of all those women who do not have breast cancer, 10% will also get a 

positive mammography.’ Finally, in the basic and causal conditions, the 

question was also framed from an individual point of view e.g. ‘A woman in this 

age group had a positive mammography in routine screening. What is the 

percentage chance that she actually has breast cancer?’ whereas in the nested 

conditions it was framed from a group perspective e.g. ‘What percentage of 
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women who get a positive mammography in routine screening actually have 

breast cancer?’ 

The causal manipulation (causal and nested-causal conditions) change was 

more subtle. In the basic and nested conditions, no explanation was given for why 

the effect was still observed (e.g. a positive result) even when the first cause 

(cancer) was not present. This was in line with Krynski and Tenenbaum’s (2007) 

original design, who proposed that in such cases, readers were not able to form a 

complete causal mental model. While Krynski and Tenenbaum used the 

mammogram problem they did not use the other three scenarios presented in this 

paper. The scenarios were therefore designed to ensure that in the basic and nested 

conditions the second ‘hidden cause’ would not be obvious to the reader (see 

supplementary materials for all four scenarios). In the causal and nested-causal 

conditions, an additional statement was given in order to provide this cause. In the 

mammogram problem the ‘data’ was a positive test result and the hidden cause 

was ‘harmless cysts’. In the college scenario the data was entrance into the college 

and the hidden cause was that students with exceptional high school grades were 

also admitted even if they failed the exam. In the Library scenario the data was the 

presence of the book in the library and the hidden cause was the similarity of the 

Greek and Macedonian languages. Finally, in the Gotham scenario, the data was 

the presence of a crime in the ‘other’ folder and the hidden cause was a ‘cover-up’ 
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of murder rates. There were no other differences between the conditions in the 

study. 

Participants also completed the 7-item Berlin Numeracy Test, which has 

been shown to have good reliability and validity, and to be less subject to ceiling 

effects than some other numeracy tests used in the field (Cokely et al., 2012). 

Procedure. Participants were recruited through Amazon MTurk. 

Participants were presented with the consent form, and then the instructions for the 

study, which included an extensive section on the ‘think aloud’ instructions, 

including an example (see supplementary materials). Participants then were 

assigned sequentially to four of the sixteen problems such that they saw each 

scenario and each condition only once. For each problem they were presented with 

the problem text and question itself and were asked to write their thought 

processes while they worked out the problem in a ‘think aloud’ open-ended text-

box. Once this was complete they were able to give their actual numerical answer 

on the next page. Once participants had completed all four of their problems they 

were presented with the Berlin Numeracy test. Finally they answered the 

demographic questions and a final question regarding whether they had undertaken 

any of the problems before. 

Data Analysis. In line with Gigerenzer & Hoffrage (1995) a dual criteria 

was used when determining if participants had given the correct answer. The 

correct numerical answer was not enough to get a point for each problem: 
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participants think aloud protocol was also analysed in order to detect whether they 

had used an ‘unacceptable process’. An unacceptable process was one which 

coincidentally led to the normative numerical answer on the particular problem but 

would not have if the numbers in the problem were different. If the participant 

provided the correct numerical answer but the process used was not clear, they 

were assumed to be ’correct’. In each problem there was at least one common error 

which gave the same numerical answer as the normative Bayesian answer, making 

this distinction important. Confusion between correct answers and numerically 

coincident but incorrect answers has blighted many previous papers in the field 

(e.g. see Evans et al. (2000) for a discussion of a similar issue with the paper by 

Cosmides and Tooby (1996)). 

Additionally, certain answers which did not give the correct numerical 

answer were also accepted. This was the case when the think aloud data indicated 

that they had undertaken an acceptable process (one which would lead to the 

normative Bayesian answer), but had made an ’uninteresting error’. Uninteresting 

errors came in two types in the present study. Firstly, arithmetical errors, which in 

fact only occurred in 5 cases out of 452. Secondly, when participants gave the 

wrong ’cause’ as the answer (e.g. the percentage of women without cancer, instead 

of the percentage with cancer) but had again undertaken an acceptable process, 

their answer was also accepted as correct. This also occurred in 5 cases. These 

were both accepted because this study was not interested in improving these types 
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of mistakes, but in whether participants could undertake accurate Bayesian 

reasoning. 

All qualitative analysis of the think aloud protocol was undertaken blind to 

the participant’s condition. Analysis was first undertaken by the first author. In the 

first analysis phase the first author began by reading all transcripts looking for 

potential common themes between participants’ approaches to the problem. Once a 

set of common approaches to the problem were outlined, the second phase of 

analysis began wherein the first author reread all answers, coding them as to which 

approach the participant had used, and which of the steps in those processes they 

demonstrated. No new approaches were discovered in the second phase. In the 

third phase, the fourth author was provided definitions of each of the codes by the 

first author and was asked to assign all participants’ answers to whichever codes 

they deemed appropriate while blind to both participant condition and to the first 

authors’ original coding. Inter-rater reliability between the first and fourth authors 

was above 90%. In the fourth stage of analysis, any discrepancies between first 

and fourth authors were resolved by the seventh author who also possessed 

qualitative analysis experience. The seventh author was given the discrepant 

participants’ think aloud answers and the coding categories. The seventh author’s 

decision was taken as the final result for each of these participants. 

Quantitative analysis was undertaken in IBM SPSS for Windows, Version 

22. For the main analyses, generalised linear modelling was used. To implement 
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this, the ’generalised linear model’ function of SPSS was employed, which uses 

regression modelling but allows for binary outcome data (correct vs incorrect 

answer to the problem) and for mixed analysis of both between-subject and within-

subject variables. 

Results 

Quantitative. Combining all four conditions, 31.9% of all cases gave the 

Bayesian normative answer. No significant differences in accuracy were found 

between any two demographic sub-groups (gender, education or occupation). 

Below in Figure 3 the percentage of participants giving the Bayesian normative 

answer can be seen for all four conditions. It is immediately apparent that both the 

basic and causal conditions performed at a similar, and lower, level than the nested 

and nested-causal conditions. Confirming this difference, a repeated-measures 

generalised linear model (GLM) with binomial distribution and logit function 

found a significant main effect of nested sets framing (Wald = 7.358, p=.007), but 

no significant main effect of causal framing (Wald = .834, p=.361) and no 

significant interaction (Wald =.237, p=.626). 
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Figure 3. The percentage of participants giving the Bayesian normative answer for 

basic, nested, causal and nested-causal conditions. Error bars represent one 

standard error. 

 

To test the two hypotheses that a main effect of the causal framing and an 

interactive effect between the nested sets and causal framings would be seen in the 

high-numerate sub-group, two different high-numerate sub-groups were created. 

Overall Berlin Numeracy Test scores showed a mean of 3.89 (SD = 1.85) and a 

median of 4. The first sub-group was created by splitting the sample at the median 

(as the median was also modal, these participants were included in the high 

numerate group to increase sample size (n = 70)). Mean numeracy score was 5.10 

(SD = 1.10) for this group. The second high numerate sub-group was made by 

following the same method used by McNair and Feeney (2014b) to allow for direct 

comparison. McNair and Feeney had to remove question 7 on the numeracy test 
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due to a printing error. Replicating this removal, scores were then split at the 

median from McNair and Feeney’s experiment (5), creating a high numerate group 

(n=35) with similar numeracy levels to theirs (M=5.97, SD = 0.78). A non-

significant effect was seen for the causal framing in the high numerate sub-group 

(Wald = 3.246, p=.072), with the causal group actually performing below the non-

causal group (causal accuracy = 23.6%, non-causal accuracy = 31.4%). No 

significant effect was seen in the low numerate sub-group either (Wald = 2.843, 

p=.098). Further, no interaction between nested and causal was seen (Wald = .974, 

p=.324). Overall, low numerates were accurate 13.95% of the time, while high 

numerates were accurate 42.87% of the time, which was a significant difference 

(Wald = 26.03, p<.001). Finally, no main effect was seen in the ‘McNair and 

Feeney’ high numerate sub-group (Wald = 1.567, p=.211) and no interaction was 

seen here either (Wald = .167, p=.682).  

The effect of the nested sets framing was also examined within the same 

high (n = 70, M = 5.10, SD = 1.10) and low numerate sub-groups (N = 43, M = 

1.95, SD = 0.97) as for the causal framing. A significant effect of the nested sets 

framing was still seen within the low numerate sub-group (Wald = 5.359, p=.021) 

and a borderline significant effect was seen within the high numerate sub-group 

(Wald = 3.159, p=.076). 
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Qualitative. Key to section. The following analysis applies to all four 

experimental conditions. The variables in the problems are assigned the code 

below for this analysis: 

1. H: The number or proportion of all units corresponding to the baserate for 

the first hypothesis presented (e.g. cancer). 

2. -H: The number or proportion of all units corresponding to the base rate 

for the second hypothesis presented (e.g. no cancer). 

3. D: The number or proportion of all units corresponding to the ‘data’ type 

requested in the question (e.g. a positive test result). 

4. -D: The number or proportion of all units corresponding to the data type 

not requested (e.g. a negative test result). This variable was generally not 

used but is included for completeness. 

5. P(H&D) / P(-H&D): The number or proportion of all units (e.g. women) 

with the given hypothesis (e.g. cancer / no cancer) and the requested data 

(e.g. a positive test result). 

6. P(D|H) / P(D|-H): The number of units who have the requested data (e.g. a 

positive test result) P(D|H) as a proportion of all those units who 

correspond to a given hypothesis (e.g. cancer / no-cancer). P(D|H) was 1 

in all four problems, while P(D|-H) varied between problems. 

Successful Participants. Qualitative analysis of the think aloud data for 

successful participants revealed a 5-step process which comprised two 
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representations of the problem and three computational steps. This was, except for 

9 cases out of 452 (discussed below), the only process identified for successful 

individuals, and furthermore was identified in all four experimental conditions. 

Step one / representation one: The hypothesis-focused representation. The 

first step in this process entailed the presentation of what is here called the un-

populated ‘hypothesis-focused representation’, which can be seen below in Figure 

4. This representation of the problem will be highly familiar from illustrations 

given in previous work (e.g. Gigerenzer and Hoffrage, 1995) and earlier in this 

paper. It begins by sub-dividing a sample of units into the ‘hypotheses’ (e.g. 

cancer / no cancer) and then further sub-dividing these by the ‘data’ (e.g. positive / 

negative). Notably, it does not include actual values in the lower-most nodes but 

instead represents the conceptual structure only through written word. 

 
Figure 4. A visual depiction of the un-populated hypothesis-focused 

representation. 
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The requirement for this classification was a word-based subdivision of the 

two hypotheses (e.g. cancer / no cancer) into the data requested (e.g. positive 

results). A mathematical formula was neither necessary nor sufficient for this 

classification. An example of this classification can be seen in P40 who said in the 

nested sets condition: ‘So 200 women will definitely have a positive. 800 do not, 

but 10% of them will still get a positive.’ A further example comes from P5 who 

said in the ‘basic’ condition: ‘10% of the 800 women without breast cancer get a 

positive mammography result.’ 

 In the basic and causal conditions, 9 cases were also detected where an 

‘Individual’, ‘Inside’ or ‘Chance’ structure was portrayed. For example, P26 said, 

on the Gotham problem: ‘150 murders with a 40% chance of being filed as other 

means 60 murders were filed as others.’  

Even within those two conditions however, a greater number (36) of cases 

presented the hypothesis-focused representation in their think aloud data than 

chance structure. 

Step two / computation one: Populating the hypothesis-focused 

representation. Following the construction of the hypothesis-focused 

representation, successful participants subsequently undertook the calculations 

necessary to populate the bottom ‘D’ nodes representing the conjunctions P(H&D) 

and P(-H&D) in the hypothesis-focused representation diagram. P(H&D) was 
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calculated by multiplying H by P(D|H). No single participant calculated the ‘-D’ 

nodes (P(H&-D) and P(-H&-D)), presumably as these were not necessary to solve 

the problem. 

Step three / representation two: The data-focused representation. 

Following the computation of the two positive conjunctions P(H&D) and P(-

H&D), the next step in the process entailed laying out what is here called the un-

populated ‘data-focused representation’. A diagram depicting this can be seen 

below in Figure 5. This representation, instead of using the hypotheses as the mid-

level nodes (e.g. cancer / no cancer), uses the data (e.g. positive / negative test 

result). Again, as the problem is inherently focused on ‘D’ (e.g. positive results) 

the ‘-D’ of this diagram was neglected (not mentioned by participants) and the 

original sample (top node) was also typically neglected as neither were required to 

solve the problem from this point. 

The requirement for the data-focused representation classification was a 

word-based indication that P(H&D) and P(-H&D) are subsets of D (see Figure 5). 

Again, a mathematical formula was not necessary or sufficient for this 

classification. Two broad sub-categories of this classification were identified: 

Bottom up: i.e. by first defining the subsets P(H&D) and P(-H&D) and then 

demonstrating that they are in fact subsets of D e.g. P36 who said in response to 

the college scenario: ‘98000 fail and 1% of them get in - so that is 980 students 
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[H&D] add that to the 2000 [-H&D] who passed the test means 2980 [D] students 

total got in.’ 

 
Figure 5. A visual depiction of the un-populated data-focused representation. 

 

Top down: i.e. by first defining D and then demonstrating the subsets e.g. 

P15 in response to the medical scenario: ‘So 280 [D] women will get a positive 

test. 200 [P(H&D)] actually have the cancer.’ Typically this subcategory only 

mentioned P(H&D) as P(-H&D) was at this point not necessary to solve the 

problem. 

Step four / computation two: Populating the data-focused representation. 

Either simultaneously with, or immediately following, the laying out of the data-

focused representation, participants mathematically summed P(H&D) and P(-

H&D) to obtain the total D (e.g. total positive results). 
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Step five / computation three: The computation of the final product 

P(H|D). Following the laying out and population of the data-focused 

representation, successful participants then divided the conjunction P(H&D) by the 

total number of positive results (D) to compute the normative Bayesian answer, 

P(H|D). 

 The nested sets process model. In line with the majority of recent work 

(e.g. Johnson & Tubau, 2015), we have called this process model the ‘Nested Sets 

Process Model’ as both representations of the problem (hypothesis and data) are 

inherently based upon the identification of certain sets of units in the problem 

being nested within others. This identification of the nested sets structure of the 

problem is indeed the key requirement for the classification of both 

representations. The remainder of the process model consists of populating each of 

these representations (C1 and C2), and then calculating the final Bayesian product 

(C3). A depiction of this entire model can be seen below in Figure 6. Apart from 9 

cases, the Nested Sets Process Model was the only approach identified in the think 

aloud data of successful participants, even in the non-nested sets conditions. The 

entire process model, including each representation and computational step, was 

found in 11.5% of cases in the basic condition, 24.8% of cases in the nested 

condition, 15.9% of cases in the causal condition and 21.2% of cases in the nested-

causal condition. 
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Figure 6. The Nested Sets Process Model. 

 

It should be noted that it is likely that the two representations are under-

detected in the present study (more participants may have mentally formed these 

representations than was detected by the methodology). This is because many 

participants simply used mathematical formulae in their think aloud protocol and 

so could not be assigned either the hypothesis-focused representation or data-

focused representation classifications, which used the stricter criterion of a word-

based explanation. 

The relationship between the proposed process model and previous work. 

The present model shows clear similarities to previous theoretical work (e.g. Evans 

et al., 2000; Gigerenzer and Hoffrage, 1995; Girotto and Gonzalez, 2001; Johnson-

Laird et al., 1999; Lewis and Keren, 1999; Macchi and Mosconi, 1998; Macchi, 

1995; Mellers and McGraw, 1999; Sloman et al., 2003). However, to the best of 

our knowledge, it is the first time that the entire process has been presented. 

Indeed, much previous work advocating the nested sets / partitive / subsets / 

natural frequency formats has attributed the value of the format to either the 

revelation of the hypothesis-focused representation alone (e.g. Macchi, 2000) or to 

the data-focused representation alone (e.g. Johnson and Tubau, 2015; Johnson-

Laird et al., 1999; Mellers and McGraw, 1999; Sloman et al., 2003) and even when 

both have been referenced in a single paper (Evans et al., 2000; Girotto and 
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Gonzalez, 2001) no formal distinction between the two has been made. It is hoped 

that this explicitness of the differences between these two representations and their 

role in successful solution will bring additional clarity to the understanding of 

reasoning on Bayesian problems. 

Nested sets framing and the process model. The nested sets framing used in 

this experiment and taken from Macchi (2000) consists of two changes to the 

problem: those to the text body and those to the question form. As is typical of 

Bayesian word problems, the body of the text contains the information relating to 

the hypothesis-focused representation (H, -H, P[H|D], P[H|-D]), whereas the 

question contains the information relating to the data-focused representation (D, 

P(H&D)). This framing may therefore may be expected to impact on both 

representations. An effect of the nested sets framing was seen on the frequency of 

hypothesis-focused representations produced (nested sets 26.7% vs non-nested sets 

22.1%: Wald = 14.115, p<.001). An effect was also seen on frequency of data-

focused representations (nested sets 27.4% vs non-nested sets 16.4%: Wald = 

7.957, p=.005. However, when examining only those individuals who constructed 

the hypothesis-focused representation, no effect of the nested sets framing was 

seen on frequency of data-focused representations (Wald = 0.193, p=.661). 

Similarly, an effect of the nested sets framing was seen on computational 

step one (nested sets 54.8% vs non-nested sets 42.0%: Wald = 8.625, p=.003), step 

two (nested sets 35.0% vs non-nested sets 25.2%: Wald = 5.154, p=.023) and step 
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three (nested sets 35.4% vs non-nested sets 24.3%: Wald = 6.593, p=.010). 

However, when examining only those participants who correctly completed step 

one, no effect of the nested sets framing was seen on step two (Wald = .501, 

p=.479) or step three (Wald = 1.270, p=.260). 

Causal framing and the process model. The causal framing (Krynski & 

Tenenbaum, 2007) in fact only made a single change to the problem: the addition 

of a single sentence in the body of the text providing a ‘cause’ for the false 

positive rate. No effect of causal framing was detected on frequency of the 

hypothesis-focused representation (Wald = .367, p=.547) or the data-focused 

representation (Wald = .020, p=.889). Further, no effect of the causal framing was 

detected on computational step one (Wald = 0.013, p=.908), step two (Wald = 

.069, p=.793) or step three (Wald = 0.778, p=.378). Finally, no single causal 

representation was identified in the think aloud protocol in any condition. 

Drop off rates and numeracy. The percentage of people presenting each of 

the five successive stages in the process for both the computational steps and the 

representations, can be found in the upper graphs of Figure 7 and Figure 8 below. 

In the bottom graph of each figure, the average numeracy levels for the 

computational steps and the representations can also be seen. These graphs are 

cumulative: each successive step in the graph gives the percentage of participants 

achieving (or numeracy level) both that step as well as all previous steps. This 

method allows drop-off to be estimated more precisely. The computational steps 
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and the representations are presented on separate figures due to the fact that, as 

mentioned previously, the think aloud process is very likely to under-detect the 

representations in comparison to the computational steps. A combined graph 

would therefore give the unjustified conclusion that the majority of ‘drop off’ 

occurs at the representations, when this may in fact just be due to the methodology 

used. 
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Figure 7. The cumulative percentages (top) and average numeracy levels (bottom) 

for participants achieving the three computational steps. Error bars indicate one 

standard error. 
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In regards to the computation drop-off diagram (Figure 7), highly similar 

drop-off curves for both nested and non-nested conditions can be seen, while the 

nested condition shows higher overall rates at each step. Further, it is clear that the 

vast majority of drop off occurs at C1 and further substantial drop off occurs 

between C1 and C2. Drop off is very slight between C2 and C3, and 100% of 

individuals presenting C3 also give the correct answer. 

The average numeracy level diagram (Figure 7) shows a similar, but inverse, 

pattern. Individuals who achieve C1 have considerably higher average numeracy 

than those who achieve no steps, and this is the case for both nested and non-

nested conditions. A further, but smaller increase in average numeracy is seen 

between C1 and C2, and no further increase is seen between C2 and C3, or in 

terms of those who also provided the correct answer. 

A highly similar pattern to the computational steps diagrams is seen for the 

representation diagrams in Figure 8 below. In terms of the drop-off graph, highly 

similar curves are again seen for nested and non-nested conditions. Again, the vast 

majority of drop-off occurs at representation one, with further substantial drop off 

between one and two, and only very slight drop off after this, with the vast 

majority of individuals who construct representation two, also providing the 

correct answer. 
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Figure 8. The cumulative percentages (top) and average numeracy levels (bottom) 

for participants achieving the two representational steps. Error bars indicate one 

standard error. 
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In terms of the numeracy graph, the biggest increase in average numeracy is 

again seen from no representations to representation one, and a further, but smaller 

increase is seen from one to two. No substantial change is seen when looking 

additionally at those who gave the correct answer. 

Errors. Think aloud data was also analysed for individuals who did not 

provide the correct answer to determine why and where failure occurred. Twenty 

point five percent of all errors could not be categorised as the solution method was 

not clear and the numerical value did not point to a clear error type. Error type was 

assigned based on a two-step criteria. Firstly, the appropriate values for each 

scenario for all errors reported in previous work (e.g. Gigerenzer and Hoffrage, 

1995; Macchi, 2000) were calculated and all responses which provided this value 

were preliminarily assigned that error categorisation. Following this, the think 

aloud data for every case was checked to determine if the method used 

disconfirmed the error type assigned. For example, if the participant gave the 

answer of 10% in the medical diagnosis problem, the ‘P(D|-H)’ error (see below) 

was firstly assumed. The participant’s think aloud data, when examined, may 

however have revealed that they used a different method to arrive at the numerical 

answer of 10%. For example they may have divided -H by the population and then 

added the P(D|-H) rate. If no other method was apparent, or the method could not 

be discerned, the error type was left unchanged (i.e. determined solely by the 

numerical response). This approach was used due to the large number of 
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undiscernible responses which would have left many errors uncategorised. The six 

most numerous errors can be seen in Table 2 below.
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Table 2. Percentage of cases for the six most common error types by condition, scenario and Berlin numeracy score. 

  

Condition Scenario  

 

Total Basic Nested Causal 

Nested-

Causal Medical College Library Gotham 

Total 

(Frequency) 308 83 69 84 72 65 56 85 102 

Error Type 

         P(D|-H) 16.9 15.7 17.4 16.7 18.1 7.7 28.6 8.2 23.5 

P(D|-H)/H 10.7 7.2 14.5 9.5 12.5 0.0 0.0 2.4 30.4 

P(-H&D) / Pop 7.8 14.5 8.7 8.3 4.2 0.0 8.9 27.1 0.0 

-H / Pop 7.5 7.2 10.1 9.5 4.2 3.1 12.5 16.5 1.0 

1-P(D|-H) 5.5 6.0 4.3 8.3 2.8 21.5 0.0 1.2 2.0 

H / Pop 5.2 3.6 2.9 3.6 11.1 21.5 0.0 0.0 2.0 

   

 

Berlin Score 

 

 

0 1 2 3 4 5 6 7 

 Total 

(Frequency) 12 42 40 54 81 43 22 14 

 Error Type 

         P(D|-H) 1.6 35.7 17.5 16.7 13.6 7.0 4.5 7.1 

 P(D|-H)/H 0.0 2.4 2.5 5.6 18.5 23.3 13.6 0.0 

 P(-H&D) / Pop 0.0 4.8 7.5 14.8 11.1 11.6 0.0 7.1 

 -H / Pop 0.0 0.0 2.5 9.3 8.6 20.9 4.5 7.1 

 1-P(D|-H) 0.0 4.8 5.0 9.3 8.6 2.3 0.0 0.0 

 H / Pop 16.7 4.8 7.5 3.7 7.4 0.0 4.5 0.0 
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All errors were also assigned a score based on how many computational 

steps were involved in the calculation. Errors where the participant simply 

provided one of the figures in the problem (e.g. the false positive rate) were 

assigned a score of zero, while those involving a single computational step (e.g. 

the first base rate figure divided by the population) were assigned a score of one, 

and so on. Overall, 35.1% of codable errors were classified as involving zero 

computational steps, 48.9% as one step, 10.9% as two steps, 5.2% as three steps, 

2.9% as four steps and 0.57% as five steps.  

No significant predictive effect of either Nested (Wald = 2.286, p=.131) or 

Causal (Wald = .034, p=.854) variables on the number of computational steps 

involved in errors made was found, however a significant effect of Berlin 

numeracy score was found (Wald (7) = 37.022, p = .000). A graph depicting this 

relationship between computational steps of errors and the numeracy level of the 

participant making that error can be seen in Figure 9 below. 



2 

 

 
Figure 9. The percentage of errors which achieved 0, 1, 2, 3 or 4 computational 

steps for each score on the Berlin numeracy test. Error bars indicate one standard 

error. 

It is clear from this graph that errors with zero computational steps (notably, 

the FP / P(D|-H) error) peak at the zero numeracy score levels. Similarly, errors 

with one computational step peak in the three numeracy score level, two 

computational steps peaks at the five numeracy level, three steps at the six 

numeracy level and four steps at the seven numeracy level. A general trend 

towards greater computational complexity of errors with increasing numeracy of 

the participant making that error is therefore clear. 

A further exploratory analysis of the think aloud data was undertaken for the 

most common error, the false positive rate (P[D|-H]), to determine if any common 

thought processes leading to the error could be discerned. Exploratory analysis of 

the H/Pop and –H/Pop errors was also undertaken to determine if base rate 
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conservatism logic could be detected. The think aloud data was coded by the first 

author and blind-second coded by the seventh author. 

Out of the 52 instances of the P(D|-H) error, 14 were classified as ‘unknown’ 

as no clear process could be divined. Thirty two were merely classed as ‘P(D|-H)’, 

as these participants simply stated the false positive rate in their answer, either as a 

mathematical figure, or in word form, for example: 

“I believe the answer to this would be 1%. It says it in the last paragraph.” 

[P32, Scenario 2] 

 

“There is a 20% chance because it is clearly stated, no math needs to be 

done.” [P31, Scenario 3] 

 

“The answer is there 40%” [P86, Scenario 4] 

 

Five instances clearly showed a version of the ’Inverse fallacy’, or a 

confusion between the false positive rate (P[D|-H]) and P(-H|D): 

 

“40%, it says 40% of murders are accidently labeled other. Making 40% of 

the others folder actually murders” [P28, Scenario 4] 

 

“This seems like a silly question. If it’s asking what percentage of students 

are ACCEPTED actually FAILED the exam, it states in the problem, ”1% of 

applicants who FAIL the entrance exam are also ACCEPTED into the university.” 

So the answer would be 1%.” [P2, Scenario 2] 

 

“there are 100000 applicants and 2000 pass the exam while 98000 fail the 

exam. when someone fails they have a 1% chance of still getting admitted. That 

means that the percentage chance that they actually failed the entrance exam but 

was still accepted should be 1%” [P21, Scenario 2] 
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In terms of the H/Pop and –H/Pop errors, the vast majority of participants 

simply stated that this was the answer to the problem, providing little insight into 

their underlying logic, e.g. P58 who stated that “200 [H] of 1000 [Pop] is 20%, so 

there is a 20% chance”. However, two participants did potentially indicate base 

rate conservatism logic (under-valuing of false positive / true positive figures) in 

stating that “the stats on false positives mean nothing in this question” (P34), and 

“trick question, still 20% [H/Pop]” (P28). 

 

Discussion 

Aims and hypotheses. Within the first study aim, the hypothesis that a 

significant main effect of the nested sets framing would be found has been 

confirmed, providing evidence of the student-population findings of Macchi 

(2000) in the general population. It was also hypothesised that no main effect of 

the causal framing would be found in the whole sample but a main effect would be 

seen in the higher numerate sub-group, in line with McNair and Feeney’s (2014b) 

findings. However, no main causal effect was found in either the whole sample or 

in any high numerate sub-group. This finding stands in contrast to Krynski and 

Tenenbaum’s (2007) original work, as well as subsequent replications by Hayes et 

al. (2013) who found a whole-sample effect, and McNair and Feeney (2014b) who 

found a causal effect in high numerates. The finding may however be in line with 
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McNair and Feeney (2014a) who found no causal effect in a whole-sample 

analysis. 

Within the second aim, it was hypothesised that no significant interaction 

would be found between nested sets and causal framings in the whole sample, but 

that such an effect would be found in the high-numerate sub-group. In fact again 

no significant interaction was found in either the whole sample or any sub-groups. 

Within the third aim, the results provide a more cohesive and systematic 

model of the processes people use to solve simple Bayesian problems (whether 

successfully or unsuccessfully) than has been presented previously within the 

nested sets literature, providing particular emphasis on the separation of the 

hypothesis and data-focused representations. Further, the qualitative data has made 

it possible to determine that this process model is followed by the vast majority of 

successful individuals in three major framing types explored in the literature 

(‘inside percentages’, ‘nested/partitive/subset’ and ‘causal’ formats), suggesting 

that this may be the preferred method of solution for individuals even in the 

absence of a specific attempt to encourage it (the basic condition) and even in the 

presence of a specific attempt to encourage a different process (the causal 

condition). This also suggests that the model is not simply a regurgitation of the 

nested sets framing, but is spontaneously produced by solvers in the absence of 

any prompt. Given that this was the modal response in this paper, this may provide 

exception to comments made by both Tversky and Kahneman (1983) and Sloman 
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et al. (2003) who claimed that the ‘default’ problem-solving perspective was the 

‘inside’ point of view unless an explicit cue was given to adopt the ‘outside’ 

perspective. In the present paper, a large number of participants adopted this 

outside perspective, and succeeded in solving the problem, even in the absence of 

any such cue (i.e. in the basic and causal conditions). 

Nested sets and natural frequencies. There has been much previous debate 

in the literature in regards to the relative distinctiveness of the nested sets / 

partitive / subset / outside-framed approach to improving Bayesian reasoning from 

the natural frequencies approach. Hoffrage et al. (2002) claimed that Macchi’s 

(2000) outside-framed approach to improving Bayesian reasoning, as used in the 

present paper, works by encouraging individuals to construct a natural frequencies 

version of the problem for themselves, which is then thought to be the true cause 

of the increase in accuracy. This possibility continues to plague modern work such 

as Sirota et al. (2015) and can only be resolved by a protocol such as a think aloud 

analysis which can record solver processes. It is also given some evidential 

backing by the present experiment as ‘populating the hypothesis focused 

representation’ as it is termed in this experiment, could also be considered a 

‘conversion’ to natural frequencies. However, as noted by Hoffrage et al. (2002), 

Macchi (2000) and the present paper used real-number values for the whole 

sample (e.g. 1000 women) as well as for the two base rates (e.g. 800 women have 

cancer, 200 women do not have cancer), which is likely to encourage participants 
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to work with real numbers throughout the problem. It is possible that without this 

methodological feature, individuals may work through the process model without 

converting from percentages to frequencies. 

Nested sets effect: text body versus question format. In the present paper 

an overall effect of the nested sets framing was found on accuracy rate. The nested 

sets framing used in this experiment and taken from Macchi (2000) contains 

changes to the body of the text and the question form. The body of the text 

contains the information related to the hypothesis-focused representation and 

computational step one, and any changes here may be expected to affect these 

primarily. The question contains the information related to the data hypothesis and 

computations two and three, and any changes here may be expected to affect these 

primarily. 

When the steps of the process model were examined independently, it was 

found that there was an effect of the nested sets framing on the frequency of both 

the hypothesis-focused representation and the data-focused representation. 

However, when examining only those who successfully constructed the 

hypothesis-focused representation, no effect of the nested sets framing was seen on 

the data-focused representation. This can be seen in Figure 8, wherein a 

substantially larger amount of participants achieve the hypothesis-focused 

representation in the nested sets framing (36.7%) than the non-nested framing 

(22.1%), but subsequently, a very similar percentage of those participants (66.2% 
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in the nested condition vs 62.0% in the basic condition) go on to construct the 

data-focused representation. 

When examining only those individuals who completed computational step 

one, there was also no effect of the nested sets framing on computational steps 2 or 

3. This can be seen clearly in 7. A substantially larger number of nested sets cases 

achieved C1 (55.3% vs 42.0%) but out of these individuals a highly similar 

proportion of individuals (63.3% in the nested condition vs 59.0% in the non-

nested conditions) achieved computational step two and step three. 

Overall, this analysis suggests that Macchi’s outside-framed approach to 

improving Bayesian reasoning succeeds in improving the frequency of the 

hypothesis-focused representation and computational step one but may not succeed 

in additionally improving the frequency of the data-focused representation and 

steps two or three. 

Numeracy and the process. This experiment also demonstrated that the 

average numeracy levels of those individuals completing each computational and 

representational step in the process increases largely from no steps to both 

computational step one, and also to the hypothesis-focused representation. A 

further, smaller increase is seen between these and step two, and the data-focused 

representation. No further increase in numeracy is seen for individuals achieving 

further steps after these. This progression is not, it should be noted, due to a 
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cumulative effect of arithmetic errors, as only 5 of these were detected in the entire 

study, and they were removed for this analysis. 

It is speculated therefore that this may indicate that the second step, and thus 

the second representation of the solution process may be more difficult to 

achieve than the first step, or representation. By this it is meant that individuals, 

even if they correctly initially perceive the problem in terms of the hypothesis 

representation, may need greater numerical ability to subsequently achieve the 

middle steps of the process. In contrast, the final computational step three, 

appears to be trivial once step two has been achieved. 

Causal Null Finding. In regards to the null finding for the causal framing, 

several methodological issues must be considered in regards to the present 

experiment and some of which may require further experimentation to rule out. 

Firstly, given that McNair and Feeney (2014b) only found a causal effect in their 

high-numerate sub-group, it was considered possible that the numeracy level of the 

present sample might be the reason for the null finding. Indeed, the present sample 

did, in fact, have a lower median numeracy level than McNair and Feeney (when 

correcting for their ‘missing’ question the present study had a median of 4 while 

McNair and Feeney had a median of 5). While no high-numerate sub-group, 

including one constructed to have the same parameters as McNair and Feeney’s 

high numerate group showed a causal effect either, this subgroup was quite small 

in size (n = 35) and so may have lacked power to detect the effect. 
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Another potential limitation could be that the three scenarios which were 

invented for the study (College, Library and Gotham) may not have been designed 

adequately to test the causal framing. The causal manipulation rests on the 

assumption that in the basic condition the ‘cause’ of the false positive rate is not 

only not stated (which is simple to ensure), but further, not ‘easily inventible’ by 

the solver either. If an obvious second cause springs to mind for the solver then 

they would be able to create a causal mental model equally well in both conditions 

and no difference would be predicted between the two conditions. The three new 

scenarios were therefore all carefully designed to ensure that in the basic version 

the cause would not be obvious. However, it is possible that the cause was more 

obvious than in the original mammogram problem used by Krynski and 

Tenenbaum (2007) which may have weakened the overall effect of the causal 

framing in this study. Some evidence for this comes from the fact that the causal 

condition outperformed the basic condition in the mammogram scenario to a 

greater extent than in the other scenarios. However, even this difference was very 

far from significant and the combined nested-causal condition in fact under-

performed in comparison to the nested condition even in the mammogram 

scenario. Further, the fact that no single participant even referenced a causal 

structure in their think aloud data, even in the causal condition, casts further doubt 

on this explanation. 
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A further possibility is that the fact that the Total Population and H and -H 

were given as sub-divided frequencies, rather than the percentages used in Krynski 

and Tenenbaum’s (2007) study may have ‘got participants started’ with 

constructing a nested sets representation, precluding them from taking a causal 

approach. This fact is also an alternative explanation for why the nested sets 

representation was modal in all four conditions. In effect, it is possible that all 

conditions all contained a mild nested sets prompt. 

A further possibility is that the repeated measures nature of the study may 

have led to practise effects, which, if present, would have the effect of making the 

accuracy of all conditions more similar to each other, and thus reducing the effect 

size of both the nested sets and causal framings. However, the causal condition 

actually produced slightly lower accuracy than the basic framing and the nested-

causal framing also produced slightly lower accuracy than the nested sets framing 

alone. Practise effects could only reduce effect sizes and could not reverse their 

direction, suggesting that this is not a good explanatory candidate for the null 

finding. 

One final possibility is that the introduction of the ‘think aloud’ process 

reduced the effect of the causal prompt. Given that participants were asked to write 

down their thought processes prior to giving a numerical answer, it is plausible 

that this also encouraged them to think more deeply and for longer about the 

problem than in previous experiments not containing this feature (such as Krynski 
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and Tenenbaum, 2007). This has been suggested previously by Ericsson and 

Simon (1998). Depending on the mode by which the causal framing facilitates 

reasoning on the problem, this additional thinking time may have compensated for 

its absence in the basic condition. 

Errors. The present experiment found little variety in error types between 

conditions but great variety between different scenarios and different numeracy 

levels. The medical diagnosis scenario was notably unique in producing a large 

number of 1-P(D|H) errors, while the most common error overall, P(D|-H) was 

mostly made within the College and Gotham scenarios. Both of these were also 

common errors in Gigerenzer and Hoffrage (1995) who used a version of the 

medical diagnosis scenario and was there named the ’false alarm component’ and 

’Fisherian’ responses, respectively. Other common errors included the provision of 

the conjunction of P(H&-D) and the individual base rates H and -H expressed as a 

percentage of the overall population. Overall, errors tended towards being more 

simplistic in terms of the number of computational steps employed, with zero and 

one-step solutions comprising 84.0% of all errors. This tendency can be seen in the 

six most common errors, which broadly involve either the provision of a figure 

provided in the problem text (e.g. P[D|-H]), or the division of such a figure by one 

other, such as the population. 

Examination of the think aloud protocols for participants providing the most 

common error, P(D|-H), found five instances of individuals showing clear 
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confusion between P(D|-H) and P(-H|D). The majority of the remaining 

participants merely stated that P(D|-H) was the answer to the problem, which 

could be attributed to either the previous confusion of conditional probabilities, a 

misunderstanding of the question asked in the problem, or neglect of the 

importance of the base rate. 

Experiment two 

In experiment one, Macchi’s ’outside-framed percentage’ approach to 

increasing accuracy on Bayesian problems was replicated and found to be 

efficacious in the general population. Second, the nested sets process model 

outlined in that paper was found to be modal in all conditions, regardless of 

specific framing. Third, the increase in accuracy provided by the nested sets 

framing was found to coincide with a greater number of individuals following 

the nested sets process model than with other framing types. 

These findings suggest that Macchi’s approach could have widespread social 

value in situations such as medicine and law, where the general public are 

frequently exposed to Bayesian problems. It also suggests that successful 

individuals typically solve such problems via a single five-step process. However, 

the problems used in that study were relatively simplistic in a number of ways and 

may have suffered from a lack of realism, or ecological validity. If the nested sets 

approach is to be used and recommended for real situations and the nested sets 
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process model advocated as a general solution procedure for Bayesian problems, 

both must be tested without these fictitious simplifications. 

The following elements will be altered in the current experiment to increase 

ecological validity. First, the original problems used had a 0% ‘false negative’ rate 

(e.g. ‘All women who have cancer receive a positive result’), which simplified the 

problem but is impossible with any real test. The present study will add a non-zero 

false negative rate (e.g. ‘Out of all the women who have cancer, 80% receive a 

positive result’). While Macchi (2000) in fact did include this complication, that 

paper did not publish the solution processes of their participants. This added 

complication will necessarily make the nested sets process itself more complex 

and could therefore feasibly deter participants from perceiving, or following it. 

This may result in a weakening of the nested sets effect, and potentially in 

participants using a different process to solve the problem. 

Second, experiment one, similarly to Macchi (2000) and Fiedler et al. 

(2000), used real numbers for the total population and / or the base rates e.g. ’200 

out of 1000 women have cancer’. This again may not be the case in all real settings 

and most previous work (Casscells et al., 1978; Eddy, 1982; Kahneman and 

Tversky, 1972; Krynski and Tenenbaum, 2007) has generally used percentage base 

rates and not explicitly included a population figure at all (e.g. ‘20% of women 

have cancer’). Hoffrage et al. (2002) also theorised that the real number format 

might encourage individuals to construct a ‘natural frequency’ version of the 
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problem for themselves, which may be the cause of the facilitation in Macchi 

(2000) and Fiedler et al (2000). Thus it is possible that in experiment one this use 

of real numbers may have ‘got participants started’ in following the nested sets 

process as that process begins with the simulation of a target population which is 

then sub-divided. Without the provision of this, it is possible that the nested sets 

framing effect may be reduced and that participants will use a different process to 

solve the problem. 

Third, the particular numbers used in experiment one and in Macchi (2000) 

also allowed participants to work solely with whole numbers throughout the entire 

solution procedure, until the final product. This would also be very uncommon in a 

real setting. The nested sets process relies upon mental simulation of units and 

their sub-divisions and previous work (e.g. Brase, 2007; Cosmides and Tooby, 

1996) has suggested that individuals may have difficulty mentally simulating 

fractions of units. Therefore, fractional values may deter individuals from 

following the nested sets process model. This ‘fractional values’ effect may be 

weaker with the percentage values used in the present experiment than if real 

numbers were used. However, previous work (Hoffrage et al, 2002) and our results 

from experiment one suggest that a significant proportion of individuals are likely 

to convert the problem in to real numbers, or ’natural frequencies’ as part of their 

problem solving process. This will therefore allow observation of whether this 
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‘fractional values’ effect affects solution process both for participants who solve 

with percentages and with real numbers. 

It is therefore hypothesised that a positive significant overall effect of the 

nested sets framing on both accuracy and completion of the nested sets process 

will be seen in comparison to the non-nested condition both in the sample as a 

whole, and separately within both the ‘hard’ and ‘decimal’ conditions. Further, to 

test the role of the nested sets process found in experiment one, a mediation 

analysis will be conducted with the hypothesis that the hypothesis-focused and 

data-focused representations will mediate the relationship between the nested sets 

framing and solution accuracy. 

Method 

Participants. The final sample for the experiment was 521. From an original 

sample of 528, seven individuals were removed because they stated that they had 

undertaken the problem presented in the experiment previously. Demographic data 

can be found in Table 1. Participants were paid an average of $6.00 per hour for 

taking part. 

Design. The study was a between-subjects 2 (non-nested vs nested sets 

framing) x 2 (whole numbers vs decimals) x 2 (simple problem vs hard) design 

resulting in eight groups. It also employed the same mixed-methods design using 

the ‘think aloud’ procedure developed by Ericsson and Simon (1998) and used in 

experiment one. 
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Materials. The same medical diagnosis problem used in experiment one was 

again employed. The simple conditions used a true positive rate of 100%, identical 

to experiment one (e.g. ‘All women who have cancer receive a positive result’). 

This allowed participants to use a calculation shortcut in which they substituted H 

(the number of women with cancer) for (H&D: the number of women with cancer 

and a positive result) because the former simply needed to be multiplied by 100% 

(the true positive rate) to obtain the latter, making no change. In the hard condition 

however, the true positive rate was set at less than 100%, introducing the 

possibility for false negatives and requiring participants to calculate both 

conjunctions and therefore increasing solution and representational complexity. 

The whole-number conditions used figures which produced whole number 

products at every stage (i.e. in this condition, the conjunctions were whole 

numbers) in the process except the final product, which was a decimal in all 

conditions. The decimal-condition importantly resulted in decimal values for the 

two ‘conjunctions’ of (H&D: women with cancer and a positive result) and (-

H&D: women without cancer and a positive result), the calculation of which 

were a necessary step to solution of the problem. All condition problems can be 

seen in the supplementary materials. The nested-decimal-hard condition can be 

seen below. 

Every year the government advises women to take part in routine 

mammography screening using an X-ray machine to determine if they have breast 

cancer. Among women at age forty who participate in this routine screening 10% 
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have breast cancer, while 90% do not. However the screening test is not always 

accurate. Specifically, out of those women who have breast cancer, only 76% will 

actually get a positive mammography. Furthermore, out of all of those women who 

do not have breast cancer, 15% will also get a positive mammography. What 

percentage of women at age forty who get a positive mammography in routine 

screening actually have breast cancer? 

Procedure. Participants were recruited through Amazon MTurk. 

Participants were presented with the consent form, and then the instructions for the 

study, which included an extensive section on the ‘think aloud’ instructions, 

including an example (see supplementary materials). Participants were then 

randomly assigned to one of the eight conditions. For each problem they were 

presented with the problem text and question itself and were asked to write their 

thought processes while they worked out the problem in a ‘think aloud’ open-

ended text-box. They were also provided with a link to an online calculator 

wherever required. Once this was complete they were able to give their actual 

numerical answer on the next page. Finally they answered the demographic 

questions and a final question regarding whether they had undertaken the problem 

in the study before. 

Data Analysis. The same dual criteria to determine correct answers used in 

experiment one was again employed in experiment two. 

Results 

Quantitative. Overall accuracy for the experiment was 13.5% with an 

average accuracy of 9.0% for the non-nested conditions and 18.1% for the nested 

conditions. In Figure 10 below, accuracy for all eight conditions can be seen. 
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Figure 10. The percentage of participants providing the normative Bayesian 

answers across all eight conditions. Error bars represent one standard error. 

 

A between subjects GLM with binomial distribution and logit function, 

using ‘score’ as the dependent variable and the three condition-comparisons (non-

nested vs nested; whole vs decimal; simple vs hard) as independent variables 

found a highly significant main effect for the non-nested-nested comparison (Wald 

= 8.984, p=.003), no main effect for the whole-decimal comparison (Wald = .184, 

p=.668) and no main effect for the simple-hard comparison (Wald = 1.350, 

p=.245). 

To determine if the effect of the nested sets framing was significantly present 

within the four ‘decimal’ conditions, the same GLM model was run on this group 

only. A main effect of the non-nested-nested comparison was found (Wald = 
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4.821, p=.028). Similarly, to determine if the nested sets effect was present within 

the four ‘hard conditions, a GLM was run on this group only and a main effect of 

the non-nested-nested comparison was found here also (Wald = 4.784, p=.029). 

Qualitative. Process model. In Figure 11 below, the percentage of 

individuals achieving every step of the process model can be seen for all eight 

conditions. A highly similar pattern to overall success is immediately apparent, 

with the nested sets conditions producing more process models in every instance. 

 
Figure 11. The percentage of individuals achieving all steps of the nested sets 

process model for all eight conditions. Error bars represent one standard error. 

 

A binary logistic regression was run using ‘All Steps’ (a variable which was 

coded to be ‘1’ if participants completed all steps in the process, and 0 otherwise) 

as the dependent variable and the nested sets vs non-nested, simple vs causal and 
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whole vs decimal variables as independent variables. A highly significant effect of 

the nested vs non-nested variable was seen (Wald = 9.728, p = .002), while no 

significant effect was seen for the simple vs causal (p = .161) or for the whole vs 

decimal condition (p = .816). 

In Figure 12 below, a similar drop-off graph to experiment one for both 

computational steps and representations can be seen. A similar pattern in both 

cases is once again apparent, wherein the vast majority of drop off occurs prior to 

representation one / computational step one, with further substantial but smaller 

drop off between these and representation two / computational step two, and no 

substantial subsequent drop off between these and step three or accurate 

completion of the problem. Further, similar curves were once again seen for both 

the nested and non-nested conditions. The major difference between the two 

conditions was the amount of drop off at representation one / step one. After this, 

and identically to experiment one, highly similar subsequent proportional attrition 

in both conditions was seen. 
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Figure 12. Drop off graphs for each computational and representational step. Error 

bars represent one standard error. 
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Confirming the results of Figure 12, a further analysis was conducted to test 

the finding from experiment one that the nested sets framing effect on the data-

focused representation, and computational step two, while significantly predictive 

alone was non-significant when controlling for the presence of the hypothesis-

focused representation, and computational step one, respectively. When examining 

only those who produced the hypothesis-focused representation, the nested sets 

framing did not predict the frequency of data-focused representations in this 

experiment (Wald = .04, p=.841). When examining only those who produced 

computational step one, the nested sets framing also did not predict the frequency 

of computational step two (Wald = .019, p=.891). 

Conversion to real numbers. Think aloud data indicated that eighty eight 

participants (16.9%) converted the problem from percentages into real numbers 

before attempting solution. For this classification, a ‘sample’ or ‘population’ of 

women with a real number rather than a percentage or probability had to be 

expressed. For example P105 said ‘To make my math easier, I am going to 

assume there are 100 women.’ and P186 began ‘Out of 100 women, 10 have 

breast cancer, while 90 do not.’ Out of the 88 participants who converted the 

problem to whole numbers, 73 converted to a population of 100 women, and 9 

converted to a population of 1000. 

Conversion of the problem into real numbers was highly associated with 

success on the problem. Out of the 434 participants who did not convert the 
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problem, 6.5% provided the normative answer, while out of the 87 individuals who 

did convert the problem, 48.3% provided the normative answer. This relationship 

was highly significant (Wald = 80.6, p<.001). 

Conversion of the problem was also associated with a greater frequency of 

nested sets and data-focused representations. Binary logistic regressions showed a 

significant main effect of conversion on the hypothesis-focused representation 

(Wald = 93.1, p<.001) and on the data-focused representation (Wald = 75.4, 

p<.001). 

 A between subjects GLM with binomial distribution and logit function 

examined the prevalence of conversion between conditions. A significant main 

effect of the nested sets condition was found (Wald = 7.233, p=.007) with 12.4% 

converting in the non-nested condition and 21.3% converting in the nested 

condition. However no main effect of the whole-decimal comparison (Wald = 0.7, 

p=.412) or the simple-hard comparison (Wald = 0.3, p=.615) was found on 

conversion rate. 

 Finally, it should be stressed that this conversion was not unanimous 

amongst successful participants, nor amongst those who followed the nested sets 

process. Of successful individuals, 40.0% did not convert from percentages. For 

example, P245 correctly solved the problem while entirely using percentages: 

‘10% have breast cancer, 90% do not - Participants / 76% of the 10% test 

positive / 15% of 90% test positive / / 76% of 10% is 7.6%. 15% of 90% is 13.5% 

/ / 13.5% + 7.6% = 21.1% / / 13.55%/21.1 = 63.981%’ 
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Dealing with decimals. Out of those individuals who converted the problem 

to real numbers, nine used a base of 1000 and eight of these were in one of the 

decimal conditions. Converting to a sample of 1000 simultaneously turned the 

values in the decimal problem into whole numbers, suggesting this was one 

strategy that some individuals used to deal with the problem of decimals. 

However, out of the 34 (13.7%) individuals who achieved step two in the decimal 

conditions, only two converted to a base of 1000. One more individual converted 

to a base of 110 which also provided whole numbers in that particular condition. 

The remaining 31 individuals (91.2%) dealt with the decimal values in a precisely 

analogous way to the equivalent figures in the whole-number conditions and no 

single individual attempted to round the decimal values up or down. Further it has 

already been shown above that an equal amount of nested sets and data-focused 

representations were found in the decimal conditions as the whole-number 

conditions. These results suggest that apart from three individuals, successful 

participants in the decimal conditions dealt with the figures in the precisely same 

way as individuals in the whole-number conditions. This was not only the case 

when participants dealt directly with percentages either. Fifteen participants out of 

the 34 who achieved step two in the decimal conditions converted to a sample of 

100 and these individuals frequently mentioned fractions of women. For example, 

P109 said ‘Out of 100 women, 23.5 women will have test results show positive for 

cancer’, P482 said ‘so 13.5 women who don’t have breast cancer will also get a 
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positive mammography’ and P480 said ‘This would mean that 7.6 women out of 

10 women who have breast cancer would have a positive mammogram.’ 

Errors. Error were categorised by type using the same method as 

experiment one. The five most frequent errors can be seen below. 

 

Error Type 

Grand 

Total Control Nested Whole 

Total (Frequency) 451.0 243.0 208.0 237.0 

1-P(D|-H) 20.2% 28.8% 10.1% 20.3% 

P(H&D) (Simple [H]) 7.3% 10.7% 3.4% 5.9% 

Hard Only: P(H&D) 6.0% 3.7% 8.7% 6.3% 

P(-H&-D) 4.4% 2.9% 6.3% 5.1% 

Hard Only: P(D|H) 4.0% 5.8% 1.9% 3.8% 

     

  

Decimal Simple Hard 

Total (Frequency) 

 

214.0 218.0 233.0 

1-P(D|-H) 

 

20.1% 20.6% 19.7% 

P(H&D) (Simple [H]) 

 

8.9% 9.2% 5.6% 

Hard Only: P(H&D) 

 

5.6% 0.0% 11.6% 

P(-H&-D) 

 

3.7% 9.2% 0.0% 

Hard Only: P(D|H) 

 

4.2% 0.0% 7.7% 

 

The think aloud data for the most common errors for both basic and nested 

conditions was also explored to determine if any underlying cognitive processes 

could be detected which could provide understanding of why the error occurred. 

To complement the analysis in experiment one and provide the most valuable 

information for future research to build upon, the present analysis examined only 
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the most ecologically valid conditions: the decimal-hard conditions. Brief 

comparisons to the overall rates will also be given. 

 Non-nested sets. The most common answer within the non-nested decimal-

hard condition used zero computational steps and was to provide the complement 

of the false positive rate, (1-P[D|H]). This answer was given by 25.8% of all 

participants in that condition. It was also the most common error in the non-nested 

conditions overall. 

The think aloud data was coded by the first author and second coded by the 

seventh author for further insight into common reasoning that lead to this mistake 

and a single piece of reasoning was found to be highly prominent (45.8% of 

cases). This was the confusion of the false positive rate (the rate at which women 

without cancer still get a positive test result) with the percentage of all positives 

that were in fact false. Following this confusion, the subsequent accurate deduction 

was made that 100% minus this value would give the percentage of positives 

which were correct, which is the answer to the question. This is a confusion of 

P(D|-H) with P(-H|D). For example, P228 said ‘The fact that 15% of positive 

mammographies are invalid means that 85% are valid. She therefore has an 85% 

chance of actually having breast cancer’, P20 who said ‘I guess since 10% of 

positive tests are inaccurate, that means there’s a 90% chance of her having 

cancer’ and P133 who said ‘Also of all the women who get a positive 

mammogram, 15% will not have breast cancer, so I think it is 85%.’. Each of these 
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participants produced the faulty logic that if 1-P(D|-H) = X, then P(H|D) = 1-X, 

heavily implying a confusion between 1-P(D|-H) and 1-P(-H|D). In some cases a 

direct confusion between these two was explicitly stated as in P177 who said ‘But 

there is a 10 percent chance that a woman without breast cancer will get a positive 

mammogram [true, P(D|-H)], so 10 percent of the positive mammograms are not 

accurate [false, P(-H|D)]’. In the remainder of participants’ think aloud data, the 

reasoning could not be extracted from the data. For example, many participants 

simply provided mathematical notation. 

Nested sets. The 1-P(D|-H) answer, while the most common in the non-

nested conditions, was in fact only given by 6.7% of all participants in the nested 

sets decimal-hard condition, making it the second most common answer. The two 

most common answers in this condition were the correct answer, and the 

conjunction P(H&D): the percentage, or number, of women with both breast 

cancer and a positive test result. Each of these was given by 16.7% of participants 

in this condition. Again these results were mirrored in the overall nested sets 

conditions. The P(H&D) answer is obtained by multiplying the base rate for cancer 

with the true positive rate. Its calculation is part of the first step to answering the 

question correctly. 

A single reasoning process behind this error proved more difficult to extract 

by the coders. However, out of the total 31 individuals who made this error, six 

clearly stated that they were aiming to find the ‘percentage of women with a 
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positive result and breast cancer’, suggesting a potential confusion in the reading 

of the question. For example, P420 concluded by saying ‘so it would be 8% that 

have positive screens and actual breast cancer.’ Similarly, a further 18 people 

simply stated that 10% of women had breast cancer and X% would get a positive 

result, then provided the product of these as the answer. This may suggest a similar 

misunderstanding of the aim of the problem to the six people who articulated this 

more explicitly. For example, P418 said ‘So if 10% of women actually have breast 

cancer and only 80% of those will actually have received a positive result. So 10% 

of 100 is 10 and 80% of 10 is 8.’ From the remaining seven individuals, no process 

could be divined. 

Mediation analysis. A mediation analysis was carried out to test if the effect 

of the nested-sets framing on the ‘score’ variable was mediated firstly by 

conversion to real numbers and secondly by the nested sets and data-focused 

representations of the process model proposed in experiment one. 

In the first model, the non-nested-nested comparison variable and the 

conversion variable were used as independent factors in a binary logistic model 

with score as the dependent variable. A borderline significant effect of the nested 

sets condition variable was found (Wald = 4.1, p = .042) and a large significant 

effect of conversion was found (Wald = 76.4, p<.001). 

In the second model, the nested condition variable and the hypothesis-

focused and data-focused representations were included as independent variables. 
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In this model, the nested sets condition variable was a non-significant predictor of 

accuracy (Wald = 0.0, p=.933) while both hypothesis-focused (Wald = 32.6, 

p=<.001) and data-focused (Wald = 19.9, p=<.001) representations were large 

significant predictors. 

The pattern of these results was confirmed by a series of Sobel tests. A 

significant mediation effect of conversion on the relationship between the nested-

non-nested variable and score was found (z = 2.57, p=.010). Further, mediation of 

the relationship between the nested-non-nested variable and score was found by 

the hypothesis representation variable (z = 3.47, p=0.00) and also by the data 

representation variable (z=3.03, p=0.00). 

Discussion 

Aims and Hypotheses. The present study aimed to determine if the nested 

sets framing effect (Macchi, 2000) on accuracy would remain with three 

methodological departures from experiment one; using a percentage base rate 

instead of frequency, using decimal values instead of whole numbers, and using a 

more complex problem than previous, which included false negatives. All three of 

these departures were intended to increase ecological validity of the problem. 

 Overall, a main effect of the nested sets condition variable on accuracy was 

found. No main effect of the whole-decimal comparison or the simple-hard 

comparison was found. The nested sets framing effect was also found separately 

within the four ‘decimal’ conditions and within the four ‘hard’ conditions. A 
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significant relationship between the nested sets condition and completion of the 

nested sets process was also observed while no main effect of the whole-decimal 

comparison or simple-hard comparison was observed. This confirms the first 

hypothesis. 

A mediation analysis compiling all conditions found full mediation of the 

nested sets effect on accuracy by the hypothesis-focused and data-focused 

representations of the process model. This latter finding confirms the second 

hypotheses of the study suggesting that the increase in accuracy obtained by 

employing a nested sets framing occurs by encouraging more individuals to follow 

the outlined nested sets process. 

Nested Sets and Natural Frequencies. The present results suggest that a 

nested sets format also increases accuracy on Bayesian problems when percentage 

base rates are used. In regards to whether this increase is equal in effect size to 

when real number base rates are used, a direct comparison cannot be made as 

percentage and real number base rates were not directly compared in the present 

experiment. However, some comparisons may prove informative. Overall accuracy 

in the simple-whole-nested condition (18.5%) was lower than the comparable 

condition in experiment one, which found 38.9% accuracy. This may be due to the 

repeated-measures nature of experiment one, however, accuracy in the nested-

whole-hard condition (15.9%) was also lower than the comparable condition in 

Macchi (2000), who found 33.3% and used a between subjects design. Thus, this 
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suggests that the use of ‘real number’ base rates instead of percentages may 

improve accuracy on Bayesian problems beyond the nested sets format alone. 

However, direct comparison would be beneficial. 

Previously, Hoffrage et al (2002) hypothesized that the success of the nested 

sets approach (Macchi, 2000; Fiedler et al., 2000) may have been due to 

participants constructing a ‘natural frequency’ version of the problem for 

themselves, thus providing the increased accuracy seen in those problems. In 

partial support of this theory, the present results demonstrate that the majority of 

successful participants (60%), when presented with percentage base rates, first 

constructed a ‘real number’ version of the problem. This phenomena was also 

noted by Cosmides and Tooby (1996), who briefly examined participants’ 

workings out in their experiments but did not conduct a systematic analysis. This 

conversion process was also highly associated with success. Furthermore, 

mediation analysis demonstrated a partial mediation effect of conversion of the 

problem to real numbers on the relationship between the nested sets framing and 

solution accuracy. This confirms that while the nested sets framing did encourage 

more individuals to convert the problem to real numbers, and this led to greater 

success, a substantial portion of the increased success of the nested sets framing 

cannot be attributed to conversion. A substantial portion of successful participants 

(40% of correct answers) were content to follow the nested sets process in 

percentage form, and without any mention of a population or subsequent creation 
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of a ‘natural frequency’ version of the problem (Hoffrage et al, 2002). This 

suggests that this process does not necessarily require the simulation of a ‘real 

number’ population, or the use of real numbers at all. Therefore, in temperance of 

Hoffrage et al.’s (2002) conjecture, our results indicate that the construction of a 

natural frequency format does not appear necessary for solving Bayesian problems 

or to follow the five-step ‘nested sets process’, but does appear to increase the 

likelihood that solvers will do so. 

The reason for the benefit of converting the problem from percentages to real 

numbers is unclear on the present data. A majority of participants who converted 

the problem did so from a base of 100% to a base of 100 women, making no 

mathematical change to the problem and suggesting some other benefit was 

conferred. The source of this benefit from real number presentations would be 

another fruitful direction for future research. 

Decimal Values. A further finding was that overall, individuals dealt with 

decimal values in exactly the same way as whole numbers. Even amongst those 

individuals who converted the problem into real numbers, no difference in 

accuracy was seen between decimal and whole-number conditions. A difference 

may have been plausible as there may be a psychological difference between 

conceptualizing ‘12.5% of women’ and ‘12.5 women’, with the latter being a 

metaphysical impossibility. However, the think aloud data indicated that no single 

individual attempted to round the real decimals up or down, and participants 
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appeared to deal with the fractional numbers of women in precisely the same way 

as their counterparts in the whole-number conditions. 

Errors. 1-P(D|-H) error. The most common error in the non-nested-

decimal-hard condition when presenting with an individual or ‘chance’ framing 

was 1-P(D|-H). This was also the second most common error in the nested-

decimal-hard sets framing. It was named the ‘False Alarm Complement’ in 

Gigerenzer and Hoffrage (1995), and was given by 3.4% of participants in their 

second experiment. It was also found by Macchi (2000) as well as by 5.5% of 

participants in our experiment one. Our think aloud data analysis determined that 

the most common reasoning process behind this error was to confuse P(D|-H) with 

P(-H|D), a finding which fits with previous work advocating the ’confusion 

hypothesis (e.g. Hamm, 1987; Hamm & Miller, 1988; Wolfe, 1995; Macchi, 

1995). 

P(H&D) error. The most common error within the nested-decimal-hard sets 

condition was to provide the conjunction P(H&D). This answer was also the 

second most common error in Gigerenzer and Hoffrage’s (1995) first experiment 

(there named ’Joint Occurrence’), and even more common than the correct answer 

in their second experiment. This answer was reported in combination with other 

‘Pseudo-Bayesian’ answers in Macchi (2000) which collectively totalled the most 

common error also. The error was not possible in experiment one as there was no 

possibility for false negatives. 
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It proved more difficult to discern a general pattern underlying this ‘Joint 

Occurrence’ error. However, the most frequent reason identified was a mis-reading 

of the question, wherein participants seemed to be searching for ‘the percentage of 

all women with a positive result and breast cancer’, rather than ‘the percentage of 

women who have breast cancer among those with a positive result’. 

Experiment three 

Experiment one produced a null finding for the causal framing. However, 

there were some notable differences between that experiment and previous work 

which may have contributed to this and were discussed. Experiment one firstly 

was within-subjects. It also used real-number base rates, a think aloud protocol and 

multiple scenarios, some of which previous work had not examined. Each of these 

may have contributed to the null finding for the causal framing. 

The aim of present experiment was therefore to test the causal framing effect 

without these potential confounds. We used percentage base rates similar to those 

use by Krynski and Tenenbaum (2007), which were ‘outside percentage’ in that 

experiment while the false positive rate was presented as an ‘inside percentage’. 

Further, to test the theory that a think aloud protocol may have affected the result 

(as theorised in experiment one) we also varied whether or not participants were 

asked to engage in the think aloud protocol. Based on results from experiment one 

it was hypothesised that in a GLM analysis with logit function a think aloud effect 

would be seen but no causal effect would be. It was also hypothesised that an 
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interaction between the think aloud and causal effect would be seen, with post-hoc 

analysis revealing a difference between causal and control within the non-think 

aloud conditions. 

Method 

Participants. Twenty seven participants were removed because they stated 

they had completed the medical diagnosis problem before. The final sample 

consisted of 429 participants, recruited through Amazon MTurk. A breakdown of 

the demographics for the experiment can be seen in Table 1. 

Design. The experiment comprised a between-subjects 2 (causal vs non-

causal) x 2 (think aloud vs non-think aloud) design. 

Materials. The experiment was an online survey which participants accessed 

through their own computers. Colour-blind safe colours were used where colour 

was necessary, which were sampled from www.colourbrewer.org. The same 

medical diagnosis problem used in experiments one and two was again used. 

Procedure. Participants were shown the consent form for the experiment, 

and then were randomly assigned to one of the four experimental conditions. Each 

group was then shown a set of instructions for the experiment which were more 

extensive for the ‘think aloud’ group (see supplementary materials for think aloud 

instructions). Participants were then presented with the problem and given the 

opportunity to respond. Participants in the non-think aloud groups were asked 

simply to provide a numerical response to the problem, while participants in the 
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think aloud groups were asked to provide a verbal record of their thoughts while 

working out the problem before being allowed to enter their numerical response on 

the following page. 

Data Analysis. Due to the fact that the main analysis of experiment three 

compared think aloud conditions to non-think aloud conditions, the same dual 

criteria analysis of ’correct’ answers employed in experiments one and two could 

not be used. Instead, in line with previous non-think aloud work (e.g. Krynski and 

Tenenbaum, 2007; McNair & Feeney, 2014a) answers within 1% of the normative 

correct answer were categorised as correct. 

 Results 

Quantitative. When comparing the think aloud to the non-think aloud 

conditions, analysis must rely entirely on the numerical answer to determine which 

participants were correct. The percentage of participants giving the correct 

numerical response for each condition can be seen below in Figure 13. 
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Figure 13. Percentage of participants providing the correct numerical response 

across all four conditions in experiment three. Error bars represent one standard 

error. 

 

It is clear that the think aloud conditions produced substantially more 

numerically correct answers than the non-think aloud conditions. However the 

causal conditions also clearly showed either equal, or less accuracy than the 

control condition. A logistic regression model, using the binary ‘correct’ variable 

as criterion and the ‘TA vs non-TA’ and ‘Causal vs non-Causal’ variables as 

predictors demonstrated a significant effect for the TA variable (Wald = 9.065, 

p=.003), but no significant effect for the causal variable (Wald = 2.774, p =.096) 

and no interaction effect (Wald = .114, p =.735) 

Within the TA conditions, think aloud protocols were analysed to ensure that 

participants who provided the correct numerical responses had also undertaken 
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an appropriate method to arrive at the answer provided. Within the control 

condition, 17 out of 18 participants who provided the correct answer were also 

classified as having used an appropriate method. Within the causal condition, all 

nine out of nine participants were classified this way. A binary logistic 

regression using ‘correct method’ as criterion variable and ‘causal vs non-

causal’ as predictor variable revealed the difference in participant accuracy 

between these two conditions was non-significant (B = -.707, = 2.583, p=.108). 

Qualitative. In terms of the process model outlined in experiment one, 2.6% 

of participants in experiment three completed every step of the model in the causal 

condition, and 4.6% in the non-causal condition. Out of those individuals who 

provided the normative answer, 36.8% demonstrated all five steps of the nested 

sets process. All other participants failed to demonstrate either one or more steps 

of the process. Only one approach other than the nested sets process was detected 

in a single participant: P379 directly used Bayes’ formula by plugging the values 

in the problem into the appropriate places in the formula and computing the 

answer. No representation of the problem in terms of a causal structure was 

detected in the think aloud protocol of any single participant. 

From the think aloud protocol it was also possible to replicate the analysis 

from experiment two of those participants who converted the problem from the 

original percentage format to a real-number format. Out of the 168 participants 

who did not get the correct method, no single participant made any numerical 
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conversion of the problem. However, out of the 26 participants in the think aloud 

conditions who provided the correct Bayesian answer, 14 (50%) converted the 

problem from percentages to whole numbers. Twelve of these converted to a 

sample of ‘100 women’, while one converted to a sample of 40 and another 

converted to a sample of 10. An example of this comes from P5 who began by 

stating ‘Say that 100 women get a mammogram. Then 20 will have positive 

findings because they have BC.’ 

It was also possible, using numerical analysis only, to make an estimate of 

the effect of the think aloud protocol on the three most common errors in this 

experiment: 1-P(D|-H), P(D|-H) and H. No significant difference in frequency of 

these errors was seen between non-think aloud and think aloud conditions for the 

1-P(D|-H) error (17.0% of all incorrect answers vs 12.6%: Wald =1.47, p=.255), 

the P(D|-H) error (17.5% of all incorrect answers vs 16.2%: Wald = .118, p=.731) 

or the H error (26.5% of all incorrect answers vs 22.2%: Wald = .966, p=.966). 

Discussion 

The aim of the third experiment was to test the null causal finding of the first 

experiment in a between-subjects design using a full-percentage scenario and 

without think aloud protocol. A further aim was to test whether an interaction 

effect existed between the think aloud protocol and the causal framing. An effect 

for the think aloud protocol was detected, but no effect for the causal framing and 

no interaction effect. Overall, the causal framing actually produced a non-
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significant, but lower, level of accuracy. Therefore the first and second hypotheses, 

of a think-aloud effect and a null overall causal effect, were confirmed. However, 

the hypothesised interaction effect between think aloud and causal variables was 

not detected. 

The results of this experiment suggest that the null finding for the causal 

framing in experiment one were not due to the within-subjects nature of that 

experiment, nor to do with the use of real number base rates or the use of a think 

aloud protocol. The results therefore give further evidence against Krynski and 

Tenenbaum’s (2007) theory that, firstly, participants represent simple Bayesian 

word problems as a causal mental model, and secondly, that providing the second 

’hidden’ cause in the medical diagnosis problem can increase accuracy rates.  

Experiment four 

The majority of previous work using the ‘outside view’ percentage format 

(e.g. Macchi, 2000; Fiedler et al, 2000; experiment one) has provided participants 

with either a population value or a base rate in ‘real number’ form in the problem 

text used. Hoffrage, Gigerenzer, Krauss and Martignon (2002) theorised that this 

may have encouraged participants to construct a ‘natural frequency’ representation 

of the problem, and that this may be part of the reason for the effect of the nested 

sets framing. However, experiment two provided percentage base rates, no real-

number figures at all and still found increased accuracy with the nested sets 

framing. This suggests that the provision of the real-number population / base rates 
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cannot account for the ‘nested sets’ effect. However, it is important to note that 

accuracy in experiment two was considerably lower than an equivalent condition 

in experiment one. The only two differences between these conditions is the use of 

a population figure vs. real-number base rates and the overall study design (within 

subjects vs between subjects). This suggests that one or both of these factors may 

increase accuracy on Bayesian word problems. Further, Experiments 2 and 3 found 

that a large proportion of participants who were not provided with real number 

population figures constructed such a figure for themselves in the early stages of 

solution of the problem. This ‘conversion’ of the problem into real numbers was 

also highly associated with success on the problem, with the participants who 

converted significantly outperforming those who did not. These two converging 

pieces of evidence suggest that providing problem solvers with a population figure 

may increase accuracy. The first aim of the present study is therefore to 

experimentally test the impact on solver accuracy of provision of a real-number 

base rate figure in addition to a percentage figure. 

Experiments one, two and three also revealed the importance of the ‘nested 

sets process’ in the successful solution of Bayesian problems. However, these 

experiments were confined to correlational analyses with no attempt to 

experimentally test this connection. One experiment in Cosmides and Tooby 

(1996) provided participants with leading questions which, in the language of the 

present studies, encouraged individuals to complete computational steps one and 
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two in a ’disease’ problem. They found a 20% greater accuracy with leading 

questions, but this difference was not significant in their paper. This experiment 

however included a very small sample size and so is likely to have lacked the 

power to detect an effect of this size or smaller. The second aim of the present 

experiment is therefore to prompt participants to make step one and two 

calculations to determine if this increases their accuracy on Bayesian word 

problems. 

Based on previous work it was hypothesised that the group provided with the 

population value would show a significantly higher accuracy rate than the group 

with no population value. It was also hypothesised that each leading question (for 

step one and then for step two) would increase accuracy alone and that both 

questions combined would increase accuracy further. 

Method 

Participants. From an original sample of 419 participants, 15 were removed 

because they stated they had undertaken the same problem in the past. Prior to any 

analyses, the 10% of participants with the fastest completion times were also 

removed as their completion times (<1.5 minutes) were considered to be unlikely 

to be conducive to an engaged completion of the problem. The final sample was 

therefore 364 and participant demographics can be found in Table 1. 

Design and Materials. The study was a between-subjects 2 (population 

figure provided vs no figure) x 2 (step one questions vs none) x 2 (step two 
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question vs none) design resulting in eight conditions. The study was an online 

survey which participants accessed through their own computers. A version of the 

classic medical diagnosis problem (Eddy 1982; Gigerenzer and Hoffrage, 1995) 

was used in all eight conditions which can be seen below along with all four 

questions, and the two phrases inserted for the population and non-population 

conditions: 

Every year the government advises women to take part in 

routine mammography screening using an X-ray machine to 

determine if they have breast cancer. 

[Pop: Out of 1,000 women at age forty] [Non-pop: Among 

women at age forty] who participate in this routine screening 10% 

have breast cancer, while 90% do not. 

However the screening test is not always accurate. 

Specifically, out of those women who have breast cancer, only 

76% will actually get a positive mammography. 

Furthermore, out of all those women who do not have breast cancer, 

15% will also get a positive mammography. 

 

1. What percentage of women have cancer and a positive result 

(P[H&D])? 

2. What percentage of women have no cancer but still received a positive 

result (P[-H&D])? 

3. What percentage of women receive a positive result in total P(D)? 

4. What percentage of women at age forty who get a positive 

mammography in routine screening actually have breast cancer 

(P[H|D])? 

 

Participants in the ’no leading questions’ conditions were only presented 

with question four; those in the step one conditions were presented with questions 

one, two and four; those in the step two conditions were presented with questions 
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three and four. Finally participants in the step one and step two combined 

conditions were presented with all four questions. Each of these conditions was 

presented in ’population’ and ’non-population’ versions. 

Procedure. Participants were recruited through Amazon MTurk. 

Participants were presented with the consent form, and then the instructions for the 

study. Participants were then randomly assigned to one of the eight conditions. For 

each problem they were presented with the problem text and then were presented 

with each question on a separate page and were required to click next to access 

each subsequent question. They were also provided with a link to an online 

calculator wherever a calculation was required. Finally they answered the 

demographic questions and a final question regarding whether they had undertaken 

the problem in the study before. 

Data Analysis. Answers within 1% of the correct answer were accepted as 

correct. Further, the answer corresponding to calculation of the wrong conjunction 

(i.e. giving the rate of ‘no cancer’ instead of ‘cancer’), which had been identified 

in experiment one and two was also accepted as it demonstrates accurate Bayesian 

reasoning while simply failing in misreading which conjunction was required. 

Answers within 1% of this were also accepted. Three answers of this type were 

given. 
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Results 

The percentage of solvers providing the normative answer showed no 

significant difference between those participants who were provided with a 

‘100’ population and those who were not (Wald = .182, p=.670). 

In Figure 14 below the percentage accuracy can be seen across the four 

‘question’ conditions for all four questions asked (the population / non 

population condition distinction has been collapsed due to the null finding). 

P(H|D) accuracy is shown in purple. In comparison to condition one, condition 

two, which included P(H&D) and P(-H&D) questions produced 7.6% accuracy 

(Wald = .530, p=.467), while condition three produced 6.5% accuracy (Wald = 

.174, p=.676). Neither of these results were significantly different to condition 

one. 

Condition four however produced 13.4% accuracy, which was 

significantly higher than the control condition (Wald = .4114, p=.043). A further 

combined analysis of the step one and step two question separately across all 

four conditions demonstrated a trend towards significance for the step one 

questions (Wald = 2.774, p=.096) while the step two questions did not show a 

significant result (Wald = 1.615, p=.204). 
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Figure 14. Percentage accuracy for all questions asked for all four conditions in the 

present study plus equivalent experiment two condition. Error bars indicate one 

standard error. 

 

To further test the impact of a think aloud protocol, condition one in the 

present experiment was compared to the equivalent condition in experiment two, 

which was identical in other respect. Sixteen point seven percent accuracy was 

seen in that condition, while 5.1% accuracy was seen in condition one in the 

present study, which is a significant difference (Wald = 5.900, p=.015). 

It is also immediately clear from Figure 14 that accuracy on step one and two 

questions was substantially higher than the accuracy for the final question, P(H|D). 

In condition four, 31.4% of those who answered the step two question correctly 
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also answered the P(H|D) question correctly. Conversely, no one who failed to 

answer the step two question answered the P(H|D) question correctly. This was a 

significant difference (Wald = 16.4, p<.001). This pattern also held in condition 

three, where 16.7% of those who answered the step two question correctly also 

answered P(H|D) correctly, while only 1.6% of those who failed the step two 

question answered P(H|D) correctly. This difference was also found to be 

significant (Wald = 7.657, p = .006). 

Similarly for the step one P(H&D) and P(-H&D) questions, in condition two 

only 1.9% of those who got these questions wrong subsequently answered the final 

question correctly and in condition four this figure was 2.8%. However out of 

those who got these questions correct in condition two, 27.3% got the final answer 

correct and in condition four this figure was 33.3%. This difference in final 

solution accuracy between those who answered the step one questions correct was 

significant for both condition two (Wald = 15.9, p<.001) and condition four (Wald 

= 11.1, p=.001). 

Overall, accuracy on the P(H&D) step one question was considerably higher 

than accuracy on the P(-H&D) question (Wald = 15.2, p<.001). Accuracy on the 

P(-H&D) question was predictive of step two accuracy in condition four (Wald = 

12.017, p<.001) but when P(H&D) accuracy was added to the model, P(-H&D) 

ceased to be a predictive factor (Wald = 1.428, p=.232), while P(H&D) remained 

highly significant (Wald = 15.060, p<.001). Similarly, the P(H&D) question was 
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predictive of step three accuracy in conditions 2 (Wald = 4.524, p=.033) and 4 

(Wald = 4.657, p=.031), but again ceased to be a significant predictor when 

P(H&D) was added to the model (condition two [Wald = .414, p=.520]; condition 

four [Wald = .683, p=.408]) while P(H&D) remained a significant predictor in 

both conditions (condition two [Wald = 13.016, p<.001]; condition four [Wald = 

4.732, p=.030]). 

Further, in condition four, when H&D, P(-H&D) and step two accuracy were 

all included as independent factors in a model predicting step three accuracy, 

P(H&D) did not act as a significant predictor (Wald = .870, p=.351), P(-H&D) did 

not act a significant predictor (Wald = .172, p=.678), while step two did act as a 

significant predictor (Wald = 4.837, p=.028). 

Discussion 

Think Aloud. The control condition in the present study produced 

considerably lower accuracy than the equivalent condition in experiment two. The 

two studies used the same population and exactly the same problem. The only 

difference was the inclusion of a think aloud protocol in experiment two. The 

control condition in the present study also performed at a similar level to Micallef 

et al (2012) (around 6%), who used a natural frequency version of the medical 

diagnosis problem in the general population (also using Amazon MTurk) but with 

no think aloud protocol. This suggests that such a protocol increases accuracy (to 
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an equal or greater extent than the provision of all three leading questions in this 

study). 

Population Prompt. The present experiment hypothesised that the provision 

of a real number base rate would increase accuracy on the problem. This 

hypothesis was based upon previous work (Hoffrage et al, 2002) which theorised 

that conversion to natural frequencies was the cause of a large proportion of the 

success of the nested sets approach. A large number of participants were in fact 

found to do exactly this in experiment two, which also found a partial mediation of 

the relationship between nested sets framing and solution accuracy. 

No relationship between the provision of a ‘100’ population sample and 

accuracy on the problem was found however. This suggests that while some 

individuals do appear to benefit from converting the problem to real numbers, they 

are not assisted in doing this by the provision of a real number population 

alongside a percentage figure. However, as a base of ‘100’ was used in the present 

experiment, conversion of the problem for participants into real numbers in the 

non-population condition may have been a simple process, allowing those 

participants who wished to convert the problem to do so easily regardless of which 

condition they were in. Future work testing the provision of a real number 

population figure with numbers which do not allow such easy conversion from 

percentages to real numbers may therefore find differing results. 
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Leading Questions. A non-significant increase in accuracy was seen for the 

provision of both step one and step two questions separately. However a 

significant and substantial increase was seen for the provision of both together. 

Overall this suggests that encouraging individuals to undertake the steps identified 

in the nested sets process model in experiment one can increase accuracy but only 

in combination. This is in line with previous work (Cosmides and Tooby, 1996) 

who actually found a larger (20%) increase with the provision of the same leading 

questions, but may have lacked statistical power due to small sample size. This 

result suggests that the provision of such ‘primer’ questions can be an efficacious 

way to increase accuracy on Bayesian problems. 

 However, considerably lower accuracy was seen in this experiment on the 

final question (P[H|D]) compared to the leading questions. Further, successful 

completion of the leading questions was, while highly related to success, 

considerably less so than the comparable computational steps in experiment two. 

This appears in contradiction to the findings of experiment two which found that 

the successful completion of step one (questions one and two) and step two 

(question three) near-guaranteed success on the P(H|D) question. 

 A notable major difference between these two experiments is that the result 

from experiment two is correlational while the present was experimental. Further, 

in the present experiment participants undertook the leading questions without any 

conception of 'where they were leading'. In contrast, in experiment two, 
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participants may have been more likely to undertake the earlier stages of the nested 

sets process model if they already have an idea in mind of their final solution 

process (i.e. as a necessary step towards the end goal). In combination with the fact 

that the leading questions appear easier than the final question, this means that 

many participants who are in fact not capable of solving the Bayesian problem 

without leading questions (or indeed, answering the final question in the present 

experiment) would have still been able to answer the leading questions, reducing 

the strength of the relationship between successful solution of early stages / 

leading questions and the correct final answer to the problem. 

 Another related possible factor is that participants were not provided an 

overview of the steps they needed to undertake to solve the problem in the present 

experiment. They were presented with four questions which they may have 

considered to be entirely disconnected from each other. They may not have 

recognised that they were being intentionally drawn through a single solution 

process and so when they arrived at the final question, many participants may not 

have even attempted to use the knowledge gained from the previous questions in 

their answer. 

 If, when faced with a Bayesian problem, participants are broadly 

conceptualising a solution procedure before attempting any mathematics (and 

before writing anything in their think aloud answer), this suggests that leading 

questions (while beneficial, according to this study) may not be the best approach 
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to increasing accuracy. Instead of forcing participants to blindly compute each step 

in the hope that they will perceive the correct solution process it may be more 

beneficial to provide prompts which help individuals perceive the correct solution 

procedure in rough form. The findings of the present experiment in combination 

with experiment two suggest that it is this rough conceptualisation of the nested 

sets process which is the greatest guarantor of success on Bayesian problems. This 

may be done through hypothesis-focused representation diagrams (which some 

previous work e.g. Sloman et al [2003] has found success with) or, as we would 

advocate, in combination with data-focused representation diagrams (which no 

previous work has attempted). 

General Discussion 

The Nested Sets Approach 

Across experiments one and two altering Bayesian problems to use Macchi’s 

(2000) outside-framed percentages instead of inside-framed percentages has been 

demonstrated to increase participant accuracy rates for the normative answer. This 

effect was consistently produced in both simple and hard (including false 

negatives) problems, with whole numbers and with decimals and with base rate 

information in both real number and percentage forms. In experiment one it was 

also found likely to be present within both low and high numeracy groups and 

across two experiments has been shown to increase accuracy using both within and 

between subjects designs. 
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Step One versus Step Two 

In a deeper analysis of Macchi’s outside-framed approach, results from 

experiments one and two have both demonstrated that Macchi’s approach has a 

large impact on the frequency with which individuals produce the hypothesis-

focused representation. As the drop-off curves (e.g. Figure 7 and Figure 8) for both 

experiments demonstrate, the clear difference between the nested and non-nested 

conditions is that substantially more individuals in the nested sets condition 

produce the hypothesis-focused representation and computational step one. 

However, as the drop-off graphs suggest, and statistical analysis in both 

experiments further demonstrates, when controlling for the presence of the 

hypothesis-focused representation (or computational step one), the outside-frame 

approach does not increase the frequency of data-focused representations (or 

computational step two). This can be seen visually in the flattening of the drop-off 

curves after the hypothesis-focused representation / computational step one. 

As stated previously, the outside-frame approach makes changes to both the 

body text and the question format. The information regarding the hypothesis-

focused representation / computational step one is contained within the body of the 

text of the problem, while the data-focused representation / computational steps 

two and three are contained within the question. Based on the above analysis, 

Macchi’s approach is successful in improving the frequency of the hypothesis-

focused representation and computational step one, but has little or no impact on 
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the frequency of the data-focused representation or computational step two other 

than indirectly via that increase in the hypothesis-focused representation and 

computational step one. This possibility is further supported by the pattern of 

errors in experiment two. Firstly the nested sets condition showed a far smaller 

rate of 1-P(D|-H) errors, which were predominantly identified as caused by a 

confusion of the false positive rate. However, the most prominent error in the 

nested sets conditions was the P(H&D) error, which was identified as being caused 

by confusion of the question being asked in the problem. This further suggests that 

while the nested sets approach does effectively enhance clarity around the false 

positive rate (used in populating the hypothesis-focused representation), it is less 

effective in enhancing clarity of what the solver is ultimately being asked to 

compute (the latter stages of the nested sets process). 

These results fits with Evans et al. (2000) who found no difference between 

two question formats very similar to those compared in the present study 

(‘individual percentages’ (inside) vs ‘proportionate percentages’ (outside)). It also 

fits with results by Fiedler et al (2000) who found a nonsignificant difference 

between a Bayesian problem with an outside-framed text body but inside-framed 

question and a natural frequency version of the same problem. It does not as easily 

fit with work by Girotto & Gonzalez (2001) who found an effect on accuracy by 

altering the question form only. However, the changes made by Girotto and 

Gonzalez were somewhat different: they included two ‘steps’ in their question, 
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asking solvers to firstly calculate D separately (i.e. the total number of positive 

results) and only then to calculation P(H|D). While experiment four also required 

participants to compute D before computing P(H|D) and found a limited effect, 

this was presented as a separate question on a separate page ‘before’ requesting 

P(H|D). As speculated previously, this may have reduced participants’ recognition 

of the connection between the two answers. Girotto and Gonzalez’s approach 

instead requested both D and P(H|D) simultaneously as a two-step question, 

making the connection between the two entirely apparent. 

In combination these results suggest that a simple flip of the question form 

from inside to outside perspective may not be a sufficient intervention to improve 

accuracy, and tentatively suggest that the same results would have been seen in the 

present experiment if the question form had not been changed at all. However, a 

more involved change directly requesting D prior to calculation of the final 

product (and, making the connection between these two clear), may have impact, 

as demonstrated by Girotto and Gonzalez (2001). This therefore suggests that 

future work may benefit from further enhancing the question form, with an aim of 

encouraging individuals to construct the data-focused representation (and to 

calculate D) at the correct moment in the solution process. 

Process Model 

Based upon the think aloud data in experiment one, a five-stage process was 

proposed and was purported to be used by the vast majority of participants who 
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provided the normative answer. This process involved two representations of the 

problem and three computational steps. This model built upon and formalised a 

large amount of theoretical work in the previous literature and also introduced 

novel contributions, including a clear distinction between the hypothesis and data-

focused representations of the problem, previously missing from the literature. 

This process was present in the data of the vast majority of successful solvers in all 

four conditions, including the control and causal conditions, suggesting that it is 

the preferred solution process of successful solvers, regardless of particular 

framing / prompts. This finding runs counter to a commonly-held view in the field 

that the ’default’ problem-solving perspective in the absence of any specific 

prompt is the ’inside’ or ’individual’ perspective (e.g. Tversky & Kahneman, 

1983; Sloman et al, 2003). In experiments one, two and three a large proportion of 

individuals spontaneously adopted the outside perspective and followed the nested 

sets process in the absence of any specific prompt to do so (e.g. in the ’inside’ and 

’causal’ conditions). These findings contribute to the aim of Johnson and Tubau 

(2015) to gain a greater understanding of why leading facilitative approaches to 

Bayesian problems achieve their success. The answer, based on this work, is that 

they do so by encouraging more individuals to follow the nested sets process. 

Experiment two furthered this finding by demonstrating that successful 

individuals also follow the nested sets process when presented with decimal 

numbers, whole numbers and percentages. Experiment four, cementing the 
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importance of the nested sets process found that providing individuals with step 

one and step two leading questions increases their accuracy on Bayesian problems 

by 8.3% (previous work by Cosmides and Tooby (1996) found a 20% increase in 

accuracy, but likely lacked statistical power). 

Previous work (e.g. Girotto and Gonzalez, 2001) has also shown that 

participants are facilitated by an ‘outside view’ structure with the abstract units of 

‘chance’ (although see Brase [2013] for a reinterpretation of that work). Further, 

work by Sirota, Juanchich and Hagmayer (2014) has demonstrated that increased 

accuracy with an outside-frame approach can be seen when divisible units such as 

‘mgs of wheat’ are used, as opposed to ‘whole’ units such as a ‘bag of wheat’, 

which was predicted would not be the case by Brase (2007). While overall this 

experiment has found a general preference for real numbers as opposed to 

percentages, no preference was seen for whole numbers over decimal values. 

These findings in combination contradict some previous theorising by Gigerenzer 

and Hoffrage (1995), Brase (2007) and Cosmides and Tooby (1996) who theorised 

that “if there are [mental] mechanisms which represent frequencies in terms of 

discrete, countable entities, it should be difficult to think about a tenth of a person, 

and therefore the level of Bayesian performance should decrease.” (Cosmides & 

Tooby, 1996, pp. 55). 

The present findings combined with previous (Girotto & Gonzalez, 2003; 

Sirota, Juanchich & Hagmayer, 2014) suggest that problem solvers are able to 
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solve Bayesian problems using a vast range of different units (although there may 

be some preference for particular values, such as real numbers) so long as they are 

guided to follow the nested sets process model outlined in this paper. These 

findings emphasise that it is the process which is most integral to solution, and not 

the particular unit of analysis. 

Future work may be beneficial in determining the role that individual 

differences play in unit preference. The present methodology was not able to 

determine why some participants were more able to solve the problem by 

converting to real numbers and some participants able to solve with percentages. 

Numeracy level and familiarity with percentages are proposed as plausible factors 

for future work to consider. 

Drop Off and Problem Difficulty 

Experiments one and two both demonstrated that out of those participants 

who failed to achieve success on the problem, the majority failed at the 

representation one / computational step one phase, while a smaller proportion 

failed at later stages. This finding was echoed by data on numeracy levels from 

experiment one which showed that the numeracy levels of individuals achieving 

the later stages of the process was higher than those who only achieved 

representation one / computational step one, which was in turn higher than those 

who achieved no steps. These correlational findings were broadly confirmed in 

experiment four which showed that participants found the earlier questions (e.g. 
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step one) easier than the later questions (e.g. steps two and three). Overall these 

findings suggest that the later steps in the nested sets process may be more 

difficult, and require greater numerical ability to undertake than earlier steps. In 

combination with the results across several experiments on the typical errors 

individuals make, these findings go some way towards providing the 

understanding of the stages at which problem solvers err (Johnson and Tubau, 

2015). It also again suggests that future work should focus more on altering the 

question form (which contains the information for the later steps) than the body of 

the text in Bayesian problems. 

Nested Sets and Natural Frequencies 

While a direct contrast was not possible, a comparison between experiment 

one and Macchi (2000), which both used real number base rates, and experiment 

two, which used percentages, suggests there may be a further increase in accuracy 

when real numbers base rates are used. Further evidence for this comes from the 

fact that 60% of successful individuals in experiment two, and 50% in experiment 

three felt the need to convert the problem from percentage form to real number 

form. This also gives some support to Hoffrage et al.’s (2002) conjecture that the 

nested sets outside-percentage format may work via encouraging individuals to 

construct a natural frequency version of the problem for themselves. However, 

while the tendency for people to prefer to work with real numbers appears clear, it 

is important to recognise that a large proportion of individuals in both experiments 
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correctly solved the problem using the same process, but entirely using 

percentages. This may not sit well with some evolutionary explanations for the 

benefits of natural frequency formats that assume such formats should be 

universally beneficial (Cosmides and Tooby, 1996). However, the finding is not 

contradictory to theoretical work by Brase (2008) who labelled natural frequencies 

as a ’privileged’ format, and stated that, while the brain systems designed to 

process natural frequencies will always prefer that format, they can be persuaded 

to work on other formats, albeit with lesser efficiency. The present finding, that 

some individuals were able to work through the problem using percentages, while 

others felt the need to convert to natural frequencies to solve the problem, fits with 

this view. However, in terms of the evolutionary argument, it must be noted that 

the present experiment is unable to determine whether participants’ preference for 

real numbers is due to a greater familiarity with that format or due to the 

frequentist proposal that our evolutionary history has designed our brains to deal 

with them more effectively. 

The finding of problem conversion fits well with previous work. Brase 

(2013) showed participants ambiguous ‘chance’ wording Bayesian problems 

(adapted from Girotto and Gonzalez, 2001) and found that individuals who 

interpreted the problems as frequencies (i.e. real numbers) were more successful 

than those who interpreted the problem as probabilities. The present work suggests 

that these frequency-interpreting individuals in Brase’s work may have constructed 
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a ‘real number’ sample for themselves, and that this may have led to their greater 

increase in accuracy in that study. In temperance of this view, an experimental 

attempt to increase accuracy by providing participants with a real number 

population rate failed in experiment four. However, as noted previously, 

conversion of the problem (which used a base of 100) may have been overly 

simple in this experiment, allowing all participants who wished to convert to do so 

regardless of which condition they were in. Future work would be beneficial in 

determining if assisting individuals to convert percentage problems to real 

numbers in less standardised scenarios would increase accuracy. 

Causal Framing 

No effect was found across two experiments (one and three) for Krynski and 

Tenenbaum’s (2007) causal framing. The null finding was found for the medical 

diagnosis problem and three other novel problems with real number base rates in 

experiment one for high and low numerates within the general population in a 

within subjects design. It was also found with a between subjects design with and 

without a think aloud protocol and with percentage base rates in experiment three. 

Several things should be noted about this null finding. Firstly, all of the 

replications of Krynski and Tenenbaum’s (2007) findings, including the present, 

have focused on the medical diagnosis problem. While it appears, given the mixed 

results of previous work, and the present, that this effect does not reliably 

replicate, it is quite possible that a causal framing would be assistive in other 
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problems, including the other problems included in that original paper. Secondly it 

should also be strongly noted that we do not consider that the null finding and 

subsequent theorising in this paper discredits Krynski and Tenenbaum’s (2007) 

causal account of Bayesian reasoning in general. The present experiments 

examined relatively simple Bayesian problems which may be very different from 

the Bayesian situations that people deal with in everyday life (and from which 

Krynski and Tenenbaum’s theory was derived). If it is, in fact, the case that the 

proposed process model is the best description of human reasoning in the simple 

Bayesian word problems in the present study it does not necessarily follow that 

this will hold in more complex situations. In fact, given that the process that 

humans take in these simple problems appears to be non-intuitive (Lesage, 

Navarrete, & De Neys, 2013; Sirota, Juanchich, & Hagmayer, 2014) it seems 

likely that as variable numbers increase and quality of information decreases (such 

as in the real life situations discussed by Krynski and Tenenbaum), such a 

reasoned approach will become impossible and a different approach entirely (e.g. 

intuitive estimates) will become the dominant approach. It is perfectly plausible 

that in these more realistic situations a causal model will predict and describe 

human decision making more accurately. More work in these complex situations 

would therefore be valuable to provide a more thorough understanding of human 

Bayesian reasoning. 
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The Confusion hypothesis and Base Rate Neglect 

In experiments one and two, think aloud data revealed the P(D|-H) and 1-

P(D|-H) errors as the most frequently observed among incorrect answers. These 

answers have been the most frequent answers labelled ‘base rate neglect’ by 

previous work, as they only utilise the ‘new data’ and do not incorporate the 

‘prior’ or base-rate in their calculation (Tversky & Kahneman, 1982; Casscells et 

al, 1978; Bar-Hillel, 1980; Cosmides & Tooby, 1996; Evans et al, 2000; Barbey & 

Sloman, 2007). No direct evidence for the base rate neglect error was found in the 

think aloud data of any participant, with underlying logic undiscernible in many 

cases. However, many participants (45.8%) committing the 1-P(D|-H) error 

demonstrated a clear confusion of P(D|-H) with P(-H|D). This error in reasoning is 

also known as the ‘transposed conditional’ fallacy (Foreman et al, 2005), or the 

‘prosecutor’s fallacy’ in law (e.g. Fenton & Neil, 2011; Nance & Morris, 2005). 

While many participant’s think aloud data for the P(D|-H) error also 

provided little insight into underlying logic, no direct evidence for base rate 

neglect was found here either. Five participants demonstrating this error also 

clearly showed confusion between P(D|-H) and P(-H|D), providing some further 

evidence for the confusion hypothesis and against base rate neglect. It should be 

noted that base rate neglect also does not provide a convincing explanation for the 

pattern of errors observed in this experiment or previous experiments which have 

closely examined errors (e.g. Gigerenzer and Hoffrage, 1995; Macchi, 2000) as a 
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whole. As can be seen in experiment one, two of the most common errors also 

include the provision of H and – H (the two base rates) as percentages of the 

population, a phenomenon known as base rate conservatism (e.g. Gigerenzer and 

Hoffrage, 1995), or a general undervaluing of the false positive / true positive rates 

on Bayesian word problems. The simultaneous large rates of errors using both the 

false positive rate only, and the base rates only, therefore appear to make base rate 

neglect a poor general explanation of human error on Bayesian word problems. 

Examination of the think aloud data for the base-rate-only errors revealed little 

about their underlying logic, but with two participants demonstrating some under-

valuing of the false positive rate. 

The pattern of findings fit more closely with previous authors who have 

theorized that semantic misunderstanding of problem texts lies behind many errors 

on Bayesian word problems (e.g. Hamm, 1988; Hamm and Miller, 1990; 

Gigerenzer and Hoffrage, 1995; Macchi, 2000; Wolfe, 1995; Macchi and Mosconi, 

1998; Macchi, 2000; Fiedler et al., 2000; Welsh and Navarro, 2012). The finding 

also fits with previous work which has theorised a similar ‘confusion’ hypothesis 

(Braine and Connell, 1990; Cohen, 1981; Dawes, 1986; Eddy, 1982; Hamm and 

Miller, 1990; Fiedler et al., 2000) for the other major answer labelled as base rate 

neglect: providing the variable P(D|H) (the true positive rate). The confusion 

hypothesis has theorised that this is due to a complete misunderstanding of the 

difference between P(D|H) and the correct answer, P(H|D). In the present paper a 
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similar confusion was seen, but in this case the confusion was between P(D|-H) 

and P(-H|D). Evans et al. (2000) did not use a think aloud protocol to analyse 

errors but also theorised that this error was because “participants misinterpret the 

false positive rate (5%) as the overall error rate of the test and therefore assume 

that it is correct 95% of the time.” (Evans et al. 2000, pp. 199). The present 

findings confirm this conjecture. 

Confusion of an element of the text was also the most prominent reasoning 

error uncovered in the outside-framed conditions in experiment two. The most 

common error in those conditions was to provide the conjunction P(H&D), the 

number of women with cancer and a positive result. It proved more difficult to 

discern a general reasoning error behind this mistake. However, the most frequent 

reason identified was a mis-reading of the question, wherein participants seemed 

to believe the aim of the problem was to provide the ‘percentage of all women 

with a positive result and breast cancer’, rather than ‘the percentage of women 

with a positive result who actually have breast cancer’. This suggests that future 

work looking to reduce this error should focus on making the question clearer, 

perhaps using Girotto and Gonzalez’s (2001) two-step method. 

Think Aloud Protocol 

Several strands of evidence from experiments one to four suggest that the 

use of a think aloud protocol increases accuracy on Bayesian word problems. This 

was demonstrated firstly in a comparison of the control condition in experiment 
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four to the equivalent condition in experiment two and which used the same 

participant pool (mTurk workers with the same requirements). In the non-think-

aloud experiment four condition, 5.1% accuracy was seen, while in the think-aloud 

condition in experiment two 16.7% accuracy was seen. This compares closely to 

the more direct comparison made in experiment three: here large differences 

between non-think-aloud and think aloud conditions were seen both for the non-

causal (5.8% vs 18.4%) and causal (3.5% vs 9.4%) conditions. Combining these 

three comparisons, the addition of a think aloud protocol appears to provide 

around a 9.8% increase in individuals providing the correct answer, from 4.8% (16 

/ 333) to 14.6% (37 / 254). 

Despite many theoretical suggestions to this effect previously (e.g. Wilson, 

1994) and similar findings in related situations (Kim, 2002), this is the first time to 

the authors’ knowledge that this has been demonstrated empirically on a Bayesian 

word problem. While it may not be possible to directly test whether the think aloud 

protocol changes the nature of the cognitive processes individuals employ (as, by 

definition, these cannot be recorded in a non-think aloud condition), as Ericsson 

and Simon (1998) have maintained, it does appear to increase accuracy. 

The think aloud protocol employed in this experiment required individuals to 

work through the problem before they were allowed to submit their numerical 

answer. The increased accuracy seen with this methodology may be due to a lack 

of sufficient engagement on the part of participants in non-write-aloud 
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experiments, or may be due to the process encouraging them to engage in more 

rule-based processing of the problem (as theorised by Barbey & Sloman, 2007) by 

typing / writing out the logical steps. This fits with some findings from experiment 

two which found that the two most common errors made by individuals who do 

not provide the normative answer were due to a misunderstanding of either the 

false positive rate, or the meaning of the question. The forced contemplation 

provided by the present think aloud protocol may provide the opportunity to avoid 

such confusion. This theory also fits with previous work by Sirota, Juanchich & 

Hagmayer (2014) who found that accuracy on the Cognitive Reflection Test 

(CRT), designed to test the capacity to ignore incorrect intuitive responses and 

inspect more deeply into a problem showed greater predictive power for accuracy 

on Bayesian problems than any other measure including cognitive ability. Overall, 

these findings suggests that increasing engagement / processing time may be a 

promising target for future interventions to increase Bayesian accuracy. 

Conclusion and Future Work 

The present paper has demonstrated the efficacy of Macchi’s (2000) outside-

framed approach to improving accuracy on Bayesian word problems across two 

experiments with within- and between-subjects designs, with and without the 

possibility for false negatives, with percentage and real number base rates and with 

whole number and decimal values. This framing was also found to be efficacious 

within high and low numeracy groups. Macchi’s approach can therefore be 



69 

 

recommended for improving the presentation of Bayesian problems to the general 

public in a wide range of situations and formats, including in medical contexts. 

The present paper has also demonstrated that Macchi’s (2000) outside-

framed approach could be improved further. Analysis over several experiments 

suggest that the improvement in accuracy seen as a result of using Macchi’s 

framing is due to the changes to the body of the text, and that the changes to the 

question form may be superfluous. Further however, drawing on other previous 

work such as Girotto and Gonzalez (2001), it appears that more-extensive 

alterations to the question form can improve accuracy. Future work is therefore 

recommended either in combining Macchi’s text body with Girotto and 

Gonzalez’s two-step question form, or attempting to improve Macchi’s question 

form to further increase accuracy. Such work should also focus on improving the 

clarity of that question form to reduce the chance of individuals misinterpreting it 

to mean the percentage of women with cancer and a positive result (the most 

common error in the nested sets condition in experiment two). 

The present paper has also demonstrated that, regardless of specific problem 

framing (either inside-frame, outside-frame or causal framing), successful 

individuals overwhelmingly follow a single solution process. This process was 

defined in experiment one, comprised five stages and was subsequently found in 

experiments two and three in both control and causal conditions. The 
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interventionist experiment four also found that encouraging individuals to follow 

these steps prior to giving their final answer increased accuracy. 

Given the ubiquity of this process across framing types, it is suggested that 

this process may be the preferred approach of the majority of individuals, and 

therefore future attempts to improve accuracy on Bayesian problems should use it 

as a framework to guide their design of interventions. Future interventions should 

be designed to make it as easy as possible for solvers to follow this five-stage 

process, rather than attempt to encourage them to solve the problem through some 

entirely different process. 

In the longstanding debate over the relative distinctiveness of the nested sets 

and natural frequency approaches to increasing accuracy on Bayesian problems, 

the present paper also contributes valuable findings and theoretical developments. 

In both the nested sets and natural frequency literature, the same underlying 

process has been alluded to (with varying degrees of explicitness), which has here 

been formally outlined for the first time as the ’nested sets process’. It has been 

named this here, rather than the ’natural frequency process’ because evidence from 

Experiments 2 and 3, while indeed suggesting a preference for real numbers (60% 

in experiment two, 50% in experiment three), has shown that many individuals are 

fully capable of undertaking the same basic process with non-real numbers 

(percentages). Combined with previous findings (e.g. Girotto and Gonzalez, 2011; 

Sirota, Juanchich & Hagmayer, 2014) there is converging evidence that 
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individuals can solve Bayesian problems using a range of ’units’ other than whole 

real numbers, or even real numbers at all. This suggests that while there may be a 

preference for that particular unit of analysis, this is less important than the process 

itself, which has been the central message of the nested sets approach for several 

decades (Tversky and Kahneman, 1983; Macchi, 1995; Macchi and Mosconi, 

1998; Lewis and Keren, 1999; Mellers and McGraw, 1999; Macchi, 2000; Evans 

et al., 2000; Girotto and Gonzalez, 2001; Sloman et al., 2003). 

Further, in the debate over the cause of error on Bayesian problems, the 

present paper has contributed several valuable findings. It was determined through 

analysis of the think aloud data that two of the most common causes of error were 

due to misunderstanding of, firstly, the meaning of the false positive rate and 

secondly, the statistic that the question was requesting. This finding, as well as the 

overall pattern of errors, provides evidence towards the ’Confusion hypothesis’ 

view of error on Bayesian problems (Cohen, 1981; Eddy, 1982; Dawes, 1986; 

Hamm, 1988; Hamm and Miller, 1990; Braine and Connell, 1990; Gigerenzer, 

1996; Macchi, 1995; Wolfe, 1995; Macchi and Mosconi, 1998; Macchi, 2000; 

Fiedler et al., 2000; Welsh and Navarro, 2012) and against the base rate neglect 

view of error (Kahneman and Tversky, 1972; Ajzen, 1977; Casscells et al., 1978; 

Bar-Hillel, 1980). 

Finally, the present paper has found that the mere addition of a think aloud 

protocol can increase accuracy considerably. This process forces individuals to 
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engage with the problem before they can provide a numerical answer. It also 

encourages individuals to type (or write) their thought process out, potentially 

encouraging rule-based thinking over ‘associative’ processing (Barbey & Sloman, 

2007). This finding may therefore suggest that either engagement or an over-

reliance on intuitive reasoning are factors in inaccuracy on Bayesian problems, and 

that think-aloud type procedures may be valuable not only methodologically for 

examining underlying thought processes, but also for encouraging sound reasoning 

in real contexts. Further, while a think aloud protocol has here been advocated, it 

has also been noted that the approach can under-detect certain mental processes 

e.g. when participants only provide mathematical notation and do not explain their 

thoughts in words. Future work therefore may be valuable in devising methods for 

extracting the mental processes of solvers with greater fidelity. 
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