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BAYESIAN BELIEF NET WORKS 

Bayesian belief 
networks to predict the 
reliabi1ity of mi1itary 
vehicles 
by Martin Neil, Norman Fenton, Simon Forey and 
Roger Harris 

Predicting the reliability of military vehicles has traditionally concentrated on 
estimation using failure data gathered during trials or use. However, it is 
increasingly recognised that predicting reliability earlier in the life cycle, using 
design and process capability evidence, is one way of improving predictions and 
positively influencing reliability. This article presents the use of Bayesian belief 
networks (BBNs) as a decision support tool to achieve these twin goals. The 
BBN models presented are built into the TRACS software tool, which is in daily 
use within DERA Land Systems. 

n behalf of the UK Ministry of Defence 
(MOD), DERA assesses procurement bids 
from various companies seeking to build new 0 vehicle systems against MOD specifications. 

Typically the Data Analysis and Reliability Section 
(DARS) at DERA Land Systems compares several bids on 
the basis of reliability data for individual systems. 

In terms of predictive accuracy, DERA’s previous 
generation of reliability evaluation methods were found 
to be optimistic because they were based on data collected 
from mature designs and so did not take explicit account 
of design faults at the vehicle level. Much of classical 
reliability theory has focused on using trials to evaluate 
reliability. Once an unreliable vehicle has been built it is 
very expensive to re-design and re-test to improve 
reliability. The challenge for reliability engineers is to 
predict reliability before vehicles are tested or in some 
cases even built. Having historical reliability data, 
gathered in use or from testing, can provide a helpful 
baseline here but ultimately prediction also depends on 
non-statistical sources of information. 

Recent initiatives within DERA and the MOD have led 
to a number of new standards and innovations to 
encourage a more holistic and wide-ranging view of 
reliability. A prime example is the MODS 00-42 guidelines 

that present the idea of an R&M (reliability and 
maintainability) case whereby the manufacturer is 
expected to argue for R&M properties using all available 
relevant evidence.l 

This need to take account of all relevant evidence for 
reliability assessment is what drives the work described 
in this article. DERA engineers have accrued con- 
siderable knowledge about vehicle failures and their 
causes over the last 30 years and have collected extensive 
statistical data. However, most of this information is 
‘hard’ (for example, failure counts, modes and exposure 
periods) in the sense that it only covers the areas required 
by traditional reliability evaluation methods. In contrast, 
much of the root-cause data is ‘soft’ knowledge and is 
contained only in the heads of engineers. Prime examples 
of soft knowledge included things like manufacturer 
reputation, design staff experience, and whether the 
design looks ‘solid’. Despite the tacit acceptance that soft 
factors did affect reliability the fact that the accegted 
‘objective’ models of reliability evaluation did not, and 
could not, factor-in subjective information meant that 
such information was ignored or played down. 

Fortunately, Bayesian probability allows the 
expression of uncertain knowledge, be it statistical or 
subjective, within a rational and unifying framework. 
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Hence, in 1997 DERA contracted a feasibility study 
with the Centre for Software Reliability (CSR) at City 
University to investigate whether BBNs could help 
improve on DER& approach to reliability prediction and 
bid assessment. Following the positive results of this 
study DERA contracted further work to develop and 
build a system, TRACS (Transport Reliability, Assess- 
ment and Calculation System), to predict the probability 
that non-combat land vehicles will fulfil the requirements 
of their specified mission. TRACS uses soft and hard data 
in a single decision support model. 

In the following sections, we describe the requirements 
of TRACS and the underlying technology (BBNs) and 
we explain the basic Bayesian assumptions underlying 
TRACS. It turns out that the BBN model for TRACS 
was built using a number of subnets. There are subnets 
corresponding to each subsystem of the vehicle under 
assessment (this is described in the section on predicting 
subsystem reliability) and there are further subnets 
corresponding to the design, production, and test 
processes described later. We also describe how we built 
the models, including how we elicited the relevant 
probabilities, and the validation of TRACS in practice. 

TRACS requirements 
DERA’s high-level technical goals for TRACS were to 

predict failure rate, reliability and MDBF (mean distance 
between failures) for vehicles and subsystems by taking 
account of evidence about a manufacturer’s design and 
production process capability when assessing reliability. 
These predictions would be made under different 
scenarios and would need to be updated through the life- 
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Fig. 1 Example BBN (this is a fragment of the 
TRACS BBN model 

cycle from concept stage to tender stage, through 
production and into use. At the vehicle level DERA 
needs to: 

Assess vehicles at the tender stage using design and 
production process information and combine this with 
historical baselines for subsystem reliabilities. 
Use real data gathered from vehicle trials and combine 
this with data from subsystem or design level analysis. 
Assess production-line vehicle reliability and reconcile 
this with design and trial test information. 

0 Use informal information based on inspections of the 
vehicle as a whole by DERA staff (kicking the tyres!). 

In addition to an extensive range of reliability compu- 
tations and graphical outputs, TRACS provides all the 
supporting facilities necessary for an audited reliability 
assessment. This includes a detailed questionnaire1 
explorer view front-end that shields the user from the 
underlying BBN models, tools for working with reusable 
libraries of subsystems and components, and a range of 
tools for documenting assumptions and observations. 

What are Bayesian belief networks? 
Almost all realistic decision or prediction problems 

involve reasoning with uncertainty. Bayesian belief 
networks are an increasingly popular formalism for 
solving such problems. A BBN is a directed graph, like 
the one in Fig. 1, which is a fragment of the TRACS BBN. 
The nodes represent uncertain variables and the edges 
are the causal or influential links between the variables. 
For example, the value of the uncertain variable ‘design 
staff quality’ (which can be: ‘very low’, ‘low’, ‘average’, 
‘high‘, ‘very high’) will influence the ‘quality of design 
process’, which in turn will influence the ‘design 
document quality’. Associated with each node is a set of 
conditional probability values that model the uncertain 
relationship between the node and its parents. For 
example, associated with the node ‘design staff quality’ is 
a set of probabilities for each value (such as  ‘very low’) 
given the combinations of values of the parent nodes. 

The underlying theory of BBNs combines Bayesian 
probability theory and the notion of conditional 
independence. For introductory tutorial material on 
BBNs see References 2 and 3. Although Bayesian proba- 
bility theory has been around for a long time @ayes 
developed his theorem in the 18th century) it is only in 
the last few years that efficient algorithms (and tools 
to implement them) taking advantage of conditional 
independence have been developed. The recent explosion 
of interest in BBNs is due to these developments, which 
mean that realistic size problems can now be solved. 
These recent developments, in our view, make BBNs the 
best method for reasoning about uncertainty. 

Once a BBN is built it can be executed using an 
appropriate propagation algorithm, such as  the Hugin 
algorithm. This involves calculating the joint probability 
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Fig. 2 Schematic of the TRACS BBN and prediction process 

table for the model (probability of all combined states for 
all nodes) by exploiting the BBNs conditional probability 
structure to reduce the computational space (see Refer- 
ence 4). Once a BBN has been compiled it can be executed 
and exhibits the following two key features: 

The effects of observations entered into one or more 
nodes can be propagated throughout the net, in any 
direction, and the marginal distributions of all nodes 
updated. 
Only relevant inferences can be made in the BBN. The 
BBN uses the conditional dependency structure and the 
current knowledge base to determine which inferences 
are valid. 

To date BBNs have proven useful in applications such as 
medical diagnosis and diagnosis of mechanical failures. 
Their most celebrated recent use has been by Microsoft 
where BBNs are used in the intelligent help assistants in 
Microsoft Off i~e.~ Our interest in applying BBNs stems 
from the problem of predicting reliability of complex 
systems. Our objective was to improve predictions about 
these systems by incorporating diverse evidence, such as 
subjective judgments about the quality of the design 
process, along with objective data such as  the test results 
themselves. Since 1993 we have been involved in many 

collaborative R&D projects in which we have built BBNs 
for real. 

Because of our extensive practical use of BBNs we 
are well aware of their benefits in modelling uncertain 
domains. However, we are also aware of the problems. 
Practitioners wishing to use BBNs to solve large-scale 
problems have faced two significant barriers that have 
dramatically restricted exploitation. The first barrier is 
that of producing the ‘right’ graph topology, one that it is 
a sensible model of the types of reasoning being applied. 
The second barrier occurs when eliciting the conditional 
probability values, from a domain expert. For a graph 
containing many combinations of nodes, where each may 
have a large number of discrete or continuous values, 
this is infeasible. Although there has been extensive 
theoretical research on BBNs there is little guidance in the 
literature on how to tackle these two problems of scale. In 
our research projects we arrived at what we feel are very 
good partial solutions to both  problem^."^ As a result we 
have been able to build what we believe are some of the 
largest BBN models ever constructed. In particular, the 
BBN models that underlie TRACS are unsurpassed in 
terms of scale and it would have been impossible to build 
them without our recent research breakthroughs. 

Fig. 2 shows schematically the TRACS BBN structure 
and prediction process. Each component of the Figure 
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Fig. 3 Prior (bold line) and posterior (dotted line) 
failure rate distributions 

represents a subnet. In this article we will concentrate on 
the subsystem network and the design network, as  
building these parts of the model presented the greatest 
research challenges. 

We use evidence about historical subsystems and the 
capability of design and production processes to update 
our prior knowledge about the failure rate probability 
distribution of the vehicle. Bayes’ theorem with these 

variables is shown in eqn. 1. Here our prior belief about 
the failure rate, p(h), is updated by the likelihood of 
the evidence, D(elA), to give a posterior failure rate 
distribution, p(A 1 e): 

Fig. 3 shows how new evidence, e, changes the prior 
failure rate distribution into the posterior. The degree of 
change in the posterior failure rate depends on how 
evidence supports different values of h and how certain 
we are in our prior belief about h. 

Predicting subsystem reliability 
using a BBN 

Each vehicle is assumed to consist of a number of 
subsystems that have not yet been reliability-tested or 
used. Corresponding to each subsystem is a BBN. The 
goal of the subsystem BBN is to model the effects of trials 
evidence, gathered from previous ‘similar’ subsystems, 
on our belief about the failure rate of the subsystem under 
evaluation. 

The idea of learning a failure rate distribution from 
samples of similar subsystems is a very flexible one and 
suits our objective to define a product family on a case- 
by-case basis using historical data. For example, in the 

Fig. 4 Subsystem Bayesian network for predicting failure rate from population parameters 
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Fig. 5 Posterior failure rate distribution for h,,+lA from two data sources (weight = 1 each). Mean = 1.12 x lo4, 
median = 9.3 x lo", variance = 1.17 x lo4 

case of an engine, likely scenarios for this might be where 
the following is known about the new vehicle being 
evaluated 

It will be a petrol engine of a particular size. The 
product family is then defined as all engines in 
the database with these characteristics from different 
manufacturers. 

*It  will be a diesel engine. The product family is 
therefore all diesel engines. 
It might be either petrol or diesel. The product family is 
drawn from all petrol and diesel engines. 

A family of products known to have a very high variation 
between subsystem failure rates will be described in the 
failure rate distribution of h. For a product chosen at 
random from this distribution the high variation of its 
failure rate distribution will reflect this, even if similar 
subsystems all had their own individually tight, but 
different, failure rate estimates. The subsystem BBN is 
shown in Fig. 4. 

Each subsystem, from i = 1 to n, used to characterise 
the product family is represented by the nodes,f; (failure 
count), e, (exposure distance), and kt (failure rate). The 
failure rate distribution of the subsystem being predicted 
is represented by h,+l. The hyper-parameters repre- 

senting the product family are shown as nodes a, b. The 
implemented BBN allows up to 50 subsystems to be used 
for inference. 

Data from historical subsystems, such as contained 
in the TRACS data library, are entered into the BBN 
to define the product family of interest. These are 
represented by the failure count and exposure distances 
M, e,)  for each subsystem in the BBN. This new evidence 
updates the distributions for each A,, which in turn 
propagate to update the product family hyper-parameter 
distributions (a, b). In turn this is propagated by the BBN 
to update all h, and finally h?,+i. It is worthwhile noting 
that each subsystem failure rate changes as it is updated 
by its own actual failure data and the propagated effects 
from other subsystem rates, via the product family 
parameters 

In TRACS we can use weights to model bias towards 
one or more subsystem data sources over others in 
situations where we might believe that these are more 
likely to be representative of the unobserved subsystem 
being predicted. For example, suppose we wish to 
predict the reliability of a subsystem based on two data 
sources. One is a subsystem tested for 100 OOOkm that 
experienced five failures, while the other experienced 20 
failures in 100 000km. If we are indifferent to the choice 
between these two subsystem data sources then the 
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Fig. 6 Posterior failure rate distribution for h,+lA from two data sources (weight = 10 and 1, respectively). 
Mean = 6.1 x median = 5.5 x lo", variance = 112 x 

posterior failure rate for the unobserved subsystem is 
shown in Fig. 5. However, if we believe that the first 
subsystem is much more representative of the specific 
subsystem to be used by the manufacturer for the new 
vehicle being considered then we might give it more 
weight. The result of giving it a weight 10 is shown in 
Fig. 6. Notice that the mean has decreased considerably 
(in fact the scale here is in the 10" interval range rather 
than in Fig. 5). 

Design, production and test BBNs 
BBN structure 

The design, production and test BBNs are presented 
to the user as a modularised structure comprising five 
separate BBNs as an aid to understanding and naviga- 
tion. However, in fact, they are represented within TRACS 
as a single BBN and so evidence entered in one module 
affects the others. 

The structure of the design, production and test BBNs 
is shown in Figs. 7 and 8 (the dashed edge in Fig. 8 
represents the joins between the 'BBN modules'). In 
summary the functions of the BBNs are: 

0 Design and flroduction BBN.: Here the pre-vehicle 
failure rate, hpre, is adjusted to produce a prediction of 
the post-vehicle failure rate, according to the quality of 

the design process applied and any direct observations 
made of the post-vehicle failure rate, hposr. We adjust the 
pre-vehicle reliability distribution according to our 
beliefs about the differences, introduced over a period of 
time, between the historical (pre) vehicle and the vehicle 
of interest (post). This BBN is shown in Fig. 7. The 
production BBN has a similar structure. 
Test BBNs: If actual failure count and exposure data 
are available on the vehicle under assessment they can 
be used to update the failure rate distribution. Here 
exposure period and failure count data on the vehicle 
are used to update the failure rate distribution for the 
vehicle failure rate node, hpre. This BBN is shown in 
Fig. 8 by the three sets of node triads: representing 
the failure count, exposure period and failure rate 
respectively. For the pre-vehicle these are fpre, e,,, hpue, 
and similar conventions are used to denote the post- 
vehicle and production vehicle testing nodes. 

V2hic.k design BBN 
The vehicle design BBN is shown in Fig. 7. TRACS 

users assess the design process in terms of the historic 
capability, the current capability of the organisation and 
the quality of the project processes in place. Likewise, 
direct assessment of the vehicle is done by observing 
intermediate products, such as design documents and 
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risk analyses, and the final product, the vehicle itself. 
To give a flavour of the types of factors considered in 

the design BBN we list a subset below. These are 
organised according to the type of assessment being 
made (note the timeline of causality that permeates the 
design process): 

BAYESIAN BELIEF NET 

6) Assessment of reputation (how well did the 
organisation do in the past?) 

Historical design record this is the track record of the 
organisation in terms of its staff and procedure quality. 
Relevance of historical design record: given that orga- 

historical record is in terms of what it can tell us about 
the current organisation. 

Assessment of capability (what should the current 
team be capable oj!? 
*Design procedure quality: this is a measure of the 

quality of the written procedures, guidelines, standards 
and documentation in use to guide the design process. 
Complexity of design requirements: this represents the 
complexity of the MOD’S requirements for the vehicle. 
Tougher requirements may be more difficult to satisfy. 
Schedule compression: schedules that are unreasonably 

nisations change we need to assess how relevant the tight can have a devastating effect on the reliability of 

Fig. 7 The design BBN to predict A,, 
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Fig. 8 The pre, post and production vehicle test BBN fragments (the dotted 
arcs represent the rest of the design, production and test BBN) 

the resulting vehicle. 

(iiq Assessment of the actual design process (how good 
was the actual design pyocess applied?) 

Quality of inspection documents: this is a measure 
of the extent to which an R&M plan was applied and 
whether interdisciplinary and QA procedures were 
applied. 
Design risk analysis quality: this is a measure of FTA, 
FMECA and other types of risk,analysis that may have 
or may not have been carried out on the vehicle. 

(iv) Assessment of the vehicle reliability (how good was 
the final product?) 

Reliability differential: this measures the expected 
difference in failure rates between the pre and post- 
vehicles and is influenced by our assessment of the 
quality of the design process. 
Scope for change: it will be more difficult to improve 
very or ultra reliable vehicles with correspondingly low 
failure rates regardless of the quality of the design 
process applied. This node acts as a brake on 
improvement to reliability. 

As an example, we will show how TRACS uses negative 
process evidence to update post-vehicle prediction. 
Assume from an audit we had discovered the following: 

schedule = ‘very tight’ 
complexity of design requirements = ‘high’ 

design staff quality = ‘low’. 

Fig. 9 shows a TRACS screen 
dump with this evidence and the 
corresponding pre- and post- 
vehicle failure rate distributions 
shown alongside. The ‘blue’ 
histogram bars indicate that facts 
have been entered from those 
nodes in the design BBN. Red 
coloured distributions are shown 
for uncertain nodes of interest. 

The resulting reliability 
differential is slightly skewed to 
negative values for this evidence, 
resulting in a lower median failure 
rate for the post-vehicle compared 
to the pre-vehicle. Note that the 
predictions for the intermediate 
products of the design process, 
such as risk analyses and design 
inspections, tend towards the 
negative also. 

The post-vehicle failure rate 
distribution graph is shown in Fig. 
10. The vehicle’s median failure 
rate has increased from 1.9 x lo4 
(pre-failure rate) to 4.3 x lo4 (post- 

failure rate) and demonstrates the effects of negative 
process evidence on our beliefs about reliability. 

Probability elicitation and validation 
of predictions 

There were two elements of the design and production 
BBNs to develop for TRACS. Firstly, the BBN graph 
topology had to be agreed and then the node probability 
tables (NPTs) were required for all probability tables in 
the graph. 

The graph topologies for the design and production 
BBNs were developed by Agena and DERA senior staff 
together. This process was iterative and involved some 
negotiation to ensure that the factors that DERA 
identified and their relationships could be placed 
correctly according to sensible causal rules and in a way 
consistent with the idioms employed by Agena to build 
BBNs. 

The design and production BBN NPTs were elicited, 
typically, in sessions that included from three to ten 
engineers with differing levels of experience and 
seniority. During these elicitation sessions anecdotes and 
past cases were used to illustrate the likely shape of 
probability distributions and this process in a way served 
to cement a core of reliability knowledge between the 
more senior and junior members of the team. Clearly the 
probabilities elicited here are not personal beliefs but are 
products of a consensus of belief. 

Complete validation of prediction systems the size of 
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TRACS is difficult. The timescale of vehicle selection, 
deployment and use militates against collection of 
consistent useful data. Also, because of the historical 
focus on traditional ‘objective’ reliability evaluation 
methods little effort has gone into collecting any data on 
design and production processes. Therefore evaluation of 
the ‘soft’ elements of the BBN is difficult to do in the short 
term. But now that a data collection system exists, in the 
form of TRACS, we can use past studies to determine the 
extent to which the factors identified by DERA really do 
cause vehicle unreliability. 

Retrospective studies of vehicle assessments using 
TRACS already confirmed that TRACS generally fixed 
the problem of over-optimistic predictions encountered 
with previous methods. Under a recent 12 month valida- 
tion study by DERA (1999-2000) TRACS has been used 
on four further vehicle assessments, ranging from 
battlefield ambulances to motorcycles. Although the 
reliability predictions are confidential the results are 
extremely promising. DERA felt the predictions made 
appeared to be sensible. While it is therefore too early to 
make firm statements about predictive accuracy, we can 
claim that TRACS enhances repeatability of assessments 

BAYESIAN BELIEF NET 

and provides a decision support framework of 
considerable explanatory power. 

Conclusions 
The TRACS system serves as a good exemplar for 

the practical use and benefits of BBN technology. By 
producing TRACS we have shown that very large BBNs 
can be constructed in a modular fashion in a way that 
allows the overall BBN model to grow arbitrarily large. 
Likewise we have developed a very large ‘learning’ BBN, 
the subsystem BBN that learns the probability 
distribution of a subsystem failure rate from a population 
of similar subsystems. 

We have elicited very large subjective probability 
distributions from DERA relating to design and 
production process maturity using novel techniques. 
This experience has taught us that probability elicitation 
is neither as difficult as we expected nor as difficult as  the 
literature would have us belieye. The use of causal 
assumptions in building the graph topologies and our 
automatic methods for generating NPTs has significantly 
improved the efficiency and effectiveness of BBN 
construction. 

Fig. 9 TRACS screen dump showing positive process evidence and its effects 
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Fig. 10 Updated post-vehicle failure rate distribution, hposh when negative soft evidence entered. 
Mean = 5.87 x lo4, median = 4 . 3 ~  lo4, variance = 3.59 x 

TRACS has been very well received within DERA and 
its customers both within industry and the MOD. Where 
predictions have been made, in validation trials, the 
results have been excellent. However, it is important not 
to assess a decision support system on the basis of its 
predictive accuracy alone. The real benefit from the 
approach is being able to help DERA assessors think 
through the reasons that lie behind a prediction and also, 
perhaps more importantly, identify to the manufacturer 
areas for potential improvement. 

TRACS was designed to meet DERA's specific 
requirements and should not currently be considered as a 
general R&M package. However, some of the principles 
used in its development are general and can be easily 
tailored to other types of reliability analyses in other 
domains where reliability concerns are high priority. 

In the near future DERA plans to expand TRACS to 
cope with reliability growth trials, maintainability and 
availability assessment and the evaluation of the 
effectiveness of fixes made to vehicles during trials. 
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