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ABSTRACT In decision theory models, expected value of partial perfect information (EVPPI) is an
important analysis technique that is used to identify the value of acquiring further information on individual
variables. EVPPI can be used to prioritize the parts of a model that should be improved or identify the parts
where acquiring additional data or expert knowledge is most beneficial. Calculating EVPPI of continuous
variables is challenging, and several sampling and approximation techniques have been proposed. This paper
proposes a novel approach for calculating EVPPI in hybrid influence diagram (HID) models (these are
influence diagrams (IDs) containing both discrete and continuous nodes). The proposed approach transforms
the HID into a hybrid Bayesian network and makes use of the dynamic discretization and the junction tree
algorithms to calculate the EVPPI. This is an approximate solution (no feasible exact solution is possible
generally for HIDs) but we demonstrate it accurately calculates the EVPPI values. Moreover, unlike the
previously proposed simulation-based EVPPImethods, our approach eliminates the requirement of manually
determining the sample size and assessing convergence. Hence, it can be used by decision-makers who do
not have deep understanding of programming languages and sampling techniques.We compare our approach
to the previously proposed techniques based on two case studies.

INDEX TERMS Bayesian networks, dynamic discretization, expected value of partial perfect information,
hybrid influence diagrams, value of information.

I. INTRODUCTION
Value Of Information (VOI) is a powerful technique in deci-
sion analysis that identifies and prioritizes the parts of a
decision model where additional information is expected
to be useful. Specifically, VOI identifies the potential
gain that could be acquired when the state of a currently
unknown variable becomes known before the decision is
made [1].

A convenient, but rather ineffective, VOI technique is
called the Expected Value of Perfect Information (EVPI)
which provides an aggregate measure showing the expected
gain when we have perfect information about the states of
all the variables in the model. EVPI can be easily computed
with sampling methods, but its benefits are limited. A deci-
sion analyst is normally interested in the value of acquiring
additional information on specific individual variables rather
than an aggregate value over all variables. In such cases,
the Expected Value of Partial Perfect Information (EVPPI)

is used to measure the potential gain from the perfect infor-
mation on individual (or subgroups) of variables. However,
in contrast to the EVPI, computation of the EVPPI of contin-
uous variables can be difficult. Several techniques (which we
review in Section III) have been proposed [2]–[8]. These tech-
niques were developed specifically for sampling-based mod-
elling approaches. Although some have been implemented
as R packages or online apps, they still require the user to
compute the posteriors of their model by using sampling
techniques. This requires technical knowledge and program-
ming skills to undertake necessary modelling, computation
and sampling to assess convergence. As a result, the use of
these sampling-based techniques is limited to domains where
such experts are available.

In this paper, we present a novel approach for calculating
EVPPI for individual variables using an extended type of
Influence Diagram (ID) and recent developments in Bayesian
inference algorithms. An ID is a probabilistic graphicalmodel
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that is able to represent large decision problems in a com-
pact way and is a powerful and flexible modelling tool for
decision analysis [9]. IDs that contain both discrete and
continuous variables are called Hybrid IDs (HIDs). Many
popular decision analysismodelling tools, includingDecision
Trees (DTs), Markov Models (MMs) and Bayesian decision
models, can be transformed into an equivalent ID (which we
discuss in Section II). Recent advances in inference algo-
rithms make it possible to solve increasingly complex HID
models efficiently [10], [11]. As a result, IDs offer a flexible
and powerful modelling tool for decision analysis. Novel
contributions of this paper include the following:

• It proposes an EVPPI technique that uses a completely
different approach than the previous sampling-based
approaches for calculating EVPPI for individual vari-
ables. Because our approach uses the Dynamic Dis-
cretization (DD) and Junction Tree (JT) algorithms. it
does not require users to assess convergence of its results
since this is automatically handled by the underlying
algorithm. This makes the proposed method accessible
to a much wider class of end users who are interested in
VOI analysis.

• It proposes approximations of the proposed method to
trade-off accuracy with speed. The performance of the
proposed approach and its approximations are evaluated
in two case studies from the health-care domain. Each
case study compares our approach and its approxima-
tions with previous approaches in terms of accuracy,
computation time and usability.

The paper also illustrates how different decision modelling
techniques that are commonly used in the health economics
domain can be represented as an equivalent HID. As a result,
our EVPPI approach can be applied to a wide variety of deci-
sion problems as different modelling tools can be transformed
into an HID.

The case studies also illustrate the performance of DD in
solving HIDs that have mixture distributions with constants
for their utility distributions. Computing the posteriors of
such models is challenging as their state space is likely to
have point values. TheDD algorithm removes states with zero
mass to prevent their exponentiation.

The paper is structured as follows: Section II provides an
overview of IDs and discusses how other popular decision
modelling techniques can be transformed into an ID. Section
III reviews the previous methods for computing EVPPI, and
shows how EVPPI is generally computed in IDs. Section
IV presents our method for calculating EVPPI in HIDs.
Section V illustrates its application to two case studies, and
Section VI presents our conclusions.

II. INFLUENCE DIAGRAMS (IDs)
An ID is an extension of a Bayesian Network (BN) for
decision problems. In this section, we give a recap of BNs
and IDs, and show how other popular modelling approaches
such as DTs and MMs can be represented as an ID.

A. BAYESIAN NETWORKS (BNs)
ABN is a probabilistic model that is composed of a graphical
structure and a set of parameters. The graphical structure
of a BN is a Directed Acyclic Graph (DAG). Each node
of the DAG represents a random variable and each directed
edge represents a relation between those variables. When two
nodes, A and B, are connected by a directed edge A→ B,
we call A a parent and B a child. Each child node has a
set of parameters that defines its Conditional Probability
Distribution (CPD) conditioned on its parents. If both the
child node and its parent nodes are discrete nodes, the CPD
is encoded in a Node Probability Table (NPT). BNs that
contain both discrete and continuous nodes are called Hybrid
BNs (HBNs).

The graphical structure of a BN encodes conditional inde-
pendence assertions between its variables. For example,
a node is conditionally independent from the rest of the BN
given that its parents, children and the parents of their chil-
dren are observed (see Pearl [12] and Fenton and Neil [13]
for more information on BNs and their conditional indepen-
dence properties). The conditional independence assertions
encoded in the DAG enables a BN to represent a complex
joint probability distribution in a compact and factorized way.
BNs have established inference algorithms that make exact
and approximate inference computations by exploiting the
conditional independence encoded in the structure. Popular
exact algorithms, such as the JT algorithm [14], provide
efficient computations for BNs with only discrete variables
by transforming the BN structure into a tree structure with
clusters. Exact solutions are also available for a class of HBNs
in which the continuous nodes are Gaussian. While there is
no feasible exact algorithm possible for computing general
HBNs (i.e. without Gaussian distribution constraints), effi-
cient and accurate approximate algorithms have recently been
developed [10].

B. INFLUENCE DIAGRAMS
An ID is an extension of BNs for decision prob-
lems [9], [15], [16]. While all nodes in a BN represent
random variables, an ID has two additional types of nodes
representing decisions and utilities. Thus, the types of nodes
in this ID are:

• Chance Node: A chance node (drawn as an ellipse) is
equivalent to a BN node. It represents a random variable
and has parameters that define its CPD with its parents.
We distinguish two classes of chance nodes in an ID:

◦ Observable chance nodes, Ō = O1, . . . ,Op: These
precede a decision and are observable at the time
of, or before, the decision is made

◦ Unobservable chance nodes,N̄ = N1 . . .Nq.

• Decision Node: A decision node (drawn as a rectangle)
represents a decision-making stage. An ID may contain
multiple decision nodes, D̄ = D1, . . . ,Dk , each with
finite, discrete mutually exclusive states. Each decision
node Di has a set of decision states di1, di2, . . . , dini
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FIGURE 1. Influence diagram for treatment selection.

A parent of a decision node is connected to it by an
‘information’ arc (shown by a dashed line) representing
that the state of a parent must be known before the deci-
sion is made. The information arcs in an ID only define
the sequential order of the decisions D̄ = D1, . . . ,Dk
and observable chance nodes Ō = O1, . . . ,Op. There-
fore, a decision node does not have parameters or an
associated CPD.

• UtilityNode:Autility node (drawn as a diamond) has an
associated table that defines the utility values or distribu-
tion for all state combinations of its parents. There may
be multiple utility nodes Ū = U1, . . . ,Ul in an ID, and
these nodes have a child utility node that aggregate the
utilities by a conditionally deterministic equation [17].
Nodes of other types cannot be a child of a utility node.

A HID is an extension of an ID in which utility nodes Ū ,
and observable and unobservable chance nodes, Ō and N̄ , can
be either discrete or continuous.

An example ID model is shown with its parameters in
Figure 1. This ID models the following decision problem:
‘‘A clinician evaluates two mutually exclusive and exhaus-
tive diagnosis hypotheses (D). According to the clinician,
the probabilities that the patient has disease X and Y are
0.25 and 0.75 respectively. Two treatment options (T), treat-
ments A and B, are available to treat these diseases, which
are effective for diseases X and Y respectively. The clinician
can order a diagnostic test (S) that can decrease the uncer-
tainty about the presence of the diseases. The probability of
a positive test (R) result is 0.9 when disease X is present, and
it is 0.2 when disease Y is present.’’

Note that there is a sequential order between the test (S),
the test result (R), and the treatment (T ), and this order
is shown by information arcs (i.e. dashed lines) in the ID.
Incoming arcs to chance and utility nodes (shown by solid
lines) represent CPDs or deterministic functions in the same
way as a BN. The decision problem is asymmetric as the test
result (R) cannot be observed if the test (S) is not made. This is
modelled by adding a state named ‘‘NA’’ (representing ‘‘not
applicable’’) to R.
IDs offer a general and compact representation of

decision problems. It is possible to transform other popular
decision modelling approaches to IDs. In Sections II.B.1,
II.B.2 and II.B.3 we describe how DTs, MMs and

FIGURE 2. Decision tree for treatment selection.

Bayesian decision models can be represented as IDs
respectively.

1) DECISION TREES (DTs)
A DT models a decision problem by showing all possible
combinations of decision and observations in a particular
sequence on a tree structure. A DT also has decision, chance
and utility nodes shown by rectangle, circle and diamond
shapes respectively (see Figure 2). Each outgoing arc from a
decision node represents a decision alternative, and each out-
going arc from a chance node represents an outcome labelled
with its name and probability. The utility nodes are located
at the leaves of the tree structure and cannot have outgoing
arcs. As a result, each path from the root node to a leaf node
represents a decision scenario with a sequence of decisions
and observations. DTs have been popular decision modelling
tools due to the simplicity of their use and computation.
However, the size of a DT grows exponentially as its number
of variables or states increases.

There is a large literature on the use of IDs as an alternative
to DTs, as IDs can represent a decision problem in a more
compact way than DTs [9], [15]. Figure 2 shows the DT
representation of the same decision problem as Figure 1. IDs
represent each decision and chance variable with a single
node; whereas in a DT a variable requires multiple associated
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FIGURE 3. Markov state transition model.

FIGURE 4. Dynamic Bayesian network.

nodes if it is conditioned on other variables in the DT. For
example, D is modelled with a single node in the ID of
Figure 1 but it needs to be modelled with six nodes in the DT
of Figure 2. Moreover, adding two states to S would double
the size of the DT shown in Figure 2 but it would not change
the graphical structure of the ID in Figure 1. The additional
states would only change the NPT of S and R in the ID.
Therefore, it is widely accepted that IDs provide a clearer and
more compact representation of complex decision problems.

2) MARKOV MODELS (MMs)
In medical decision-making, a MM is used for evaluating
the outcomes of a decision over time. A MM is composed
of discrete time stages. The state of the system in a time
stage is only dependent on the previous time stage. A MM
is called a Hidden MM (HMM) if the state cannot be entirely
observed at a time stage. Both MM and HMM models can
also be represented as a Dynamic BN (DBN) [18]. A DBN
is an extension of BNs that has a replicated BN structure for
different time stages.

Figure 3 shows a simple MM that evaluates the state of
a patient over time. The patient can be ‘Healthy’, ‘Sick’
or ‘Dead’, and the state of a patient at a time stage only
depends on the previous time stage. Figure 4 shows a DBN
representation of this model. In this example, the transition
probabilities are fixed hence each node has the same NPT
shown in Figure 4. The time stages in the DBN can repeated
to analyze the model over a desired time period. MMs with
time-dependent transition probabilities can also be modelled
as DBNs that have different NPT parameters for different
time stages.

In clinical decision making models, MMs of out-
comes are often combined with DTs to analyze the
outcome of a decision over a long period of time

FIGURE 5. Influence Diagram combined with a Dynamic Bayesian
Network.

TABLE 1. Bayesian cost-effectiveness model example.

(see Sox, et al [19, Ch. 7], and Hunink, et al. [20, Ch. 10],
Fenwick, et al. [21]). It is also possible to do this by combin-
ing an ID model with a DBN. For example, Figure 5 shows
a combination of the ID model in Figure 1 with the DBN
model in Figure 4. This model analyses the outcomes of the
treatment selection model in Figure 1 over multiple years.

3) BAYESIAN DECISION MODELS
Bayesian decision models are becoming increasingly pop-
ular in the health economics domain. Many EVPPI tech-
niques [2]–[7] have been specifically developed for Bayesian
models computed by Monte Carlo (MC) or Markov Chain
Monte Carlo (MCMC) sampling approaches. These models
are often represented by a set of mathematical equations that
show the CPDs and the functions of each parameter.

Table 1 shows a simple Bayesian cost-effectiveness model
example that aims to evaluate the net benefit of two treat-
ment alternatives based on Response to Treatment (RT) and
Side Effects (SE) of each treatment. Treatment A is a safer
option as it has a smaller risk of leading to a side effect
and the response to treatment is fairly consistent regardless
of whether it is applied by experienced or trainee clinicians.
Treatment B has better outcomes than treatment A when it is
applied by experienced clinicians, but it also has higher risk
of causing a side effect. Moreover, special clinical skills are
required to apply treatment B and therefore the response to
treatment can be a lot worse when it is applied by clinicians
who are inexperienced with this treatment. Note that the
uncertain parameters and utility relevant to each treatment
decision are modelled separately; hence, there is not a sep-
arate decision variable in this model.
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FIGURE 6. Equivalent compact ID.

An ID equivalent of this Bayesian cost-effectiveness model
can be built by defining a decision node for the treatment
decision being analyzed and defining utility and chance nodes
corresponding to the variables in Table 1. There are usu-
ally multiple ID equivalents of a Bayesian cost-effectiveness
model. For example, Figure 6 shows a compact ID that is
equivalent to the model in Table 1. In this ID, RT and SE
are modelled as a child of the treatment (T ) decision. This
ID structure enables us to compute the optimal decision strat-
egy, and the EVPPI of Clinical Experience (CE). However,
to analyze the EVPPI of RT or SE using the EVPPI technique
proposed in this paper requires a different structure (which
we present in Section III); this is because we are adding an
information arc from the chance node analyzed to the relevant
decision node and this would mean an arc from, say, SE to T ,
which introduces a cycle into thismodel. Since IDs areDAGs,
the ID structure in Figure 6 therefore does not allow EVPPI
analysis of SE or RT.

An equivalent ID structure that enables the EVPPI analysis
on SE and RT is shown in Figure 7. In this model the parame-
ters of SE and RT are unfolded as separate variables for each
treatment. The decision node T is the parent of the utility
node (NB) as it modifies the utility distribution according to
SE and RT of each treatment option. Adding an information
arc from SE and RT of treatments to the decision node does
not introduce a cycle in this ID. Since SE and RT of each
treatment option are modelled as separate nodes, this ID also
allows the EVPPI analysis of SE or RE of only one treatment.

An ID equivalent to a Bayesian model can be built if each
parameter is represented separately and the decision variable
is added only as a parent of the utility node to adjust the
utility function for each decision, as shown in Figure 7. This
approach does not lead to a compact and simple ID but it
ensures that the resulting ID can make the EVPPI analyses of
all variables in the corresponding Bayesian cost-effectiveness
model.

III. VALUE OF INFORMATION: FORMAL DEFINITIONS
Consider a decision analysis model consisting of a set of pos-
sible decision options D and a set θ of uncertain parameters
with the joint probability distribution P(θ ). For each decision

FIGURE 7. Equivalent ID for EVPPI analysis of SE and RT.

option d ∈D themodel aims to predict the utility of d denoted
by U(d , θ ). The expected utility of each decision option d is

Eθ {U (d, θ)} =
∑
θ

U (d, θ)P (θ) (1)

If we do not know the value of any parameter in the model,
we would calculate the expected utility of each decision
option and select the decision option with the maximum
expected utility, i.e.

max
d

[Eθ {U (d, θ)}] (2)

If we could gather perfect information on all uncertain
parameters in the model, then we can change our decisions
to maximize the outcome based on this information, and
eliminate the losses caused by the uncertainty in the model.
In this case, the expected utility with perfect information is
calculated as:

Eθ

(
max
d

[U (d, θ)]
)
=

∑
θ

P (θ)max
d

[U (d, θ)] (3)

The expected value of perfect information (EVPI) is the dif-
ference between the maximum expected utility with perfect
information and the maximum expected utility:

EVPI (θ) = Eθ

(
max
d

[U (d, θ)]
)
−max

d
[Eθ {U (d, θ)}]

(4)

The EVPI can be calculated by using Monte Carlo sam-
pling techniques but it has limited use for a decision analyst
who would like to know the most beneficial improvements
in a model. Analysts are usually interested in the value of
information of specific individual variables so that they can
identify the parts of the model that are most advantageous to
improve. In this case, the EVPPI for individual parameters is
used. Suppose θ is divided into two subsets, the parameter
θx and the rest of the parameters θ−x . If we collect perfect
information about the true state of θx , the expected net benefit
given this information on θx is:

Eθx
(
max
d

[
E θ−x |θx {U (d, θ)}

])
(5)
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The EVPPI of θx is calculated as:

EVPPI
(
θx
)
= Eθx

(
max
d

[
E θ−x |θx {U (d, θ)}

])
− max

d
[Eθ {U (d, θ)}] (6)

The EVPPI can be solved analytically for linear mod-
els and multi-linear models with independent inputs. Multi-
linear models with correlated inputs sometimes also have
analytic solutions [3], [6]. However, apart from these few
special cases, complex techniques are required to calculate
the EVPPI. Several techniques are available for comput-
ing EVPPI in health economics models, and most of them
are developed for Monte Carlo sampling-based approaches.
In the remainder of this section, we review the EVPPI
techniques developed for MC Sampling based approaches
(Section III-A) and examine how EVPPI is computed in IDs
(Section III-B).

A. EVPPI IN MONTE CARLO (MC) SAMPLING
Two-level MC sampling with nested outer and inner loops
can be used when the EVPPI cannot be solved analytically.
In this technique, the inputs are sampled in the outer loop and
the remaining parameters are sampled within the inner loop.
Nested MC sampling can demand excessive computation
resources and time, even for moderately sized models [2].
It can also generate biased results if small sized inner samples
are used [22]. The computational burdenmay further increase
if the inputs are correlated and the conditional distributions
are difficult to sample [2].

Several approximation methods have been proposed
to calculate the EVPPI using one-level MC sampling.
Sadatsafavi, et al. [5], Strong and Oakley [3],
Strong, et al. [4] use the data generated by probabilistic sensi-
tivity analysis to calculate an approximate EVPPI. For analy-
sis of individual parameters, Strong and Oakley [3] partition
the output data into bins and calculate an approximate EVPPI.
For multiple parameters, Strong, et al. [4] use the data to
build a non-parametric regressionmodel where the dependent
variable is the net benefit and the independent variables are
the parameters that are analyzed for the EVPPI. They used
Generalized Additive Models (GAM) and Gaussian Process
(GP) approaches, as flexible regression methods are required
for estimating EVPPI. The methods of Sadatsafavi, et al. [5],
Strong and Oakley [3] and Strong, et al. [4] have been imple-
mented in the BCEA package in R [23]. Online applications
for running these methods are also available but they require
the results of the model to be analyzed in the form of a
large set of MC or MCMC samples [24], [25]. Readers are
referred to Heath, et al. [8] for a detailed review of different
approximate sampling basedmethods for computing VOI and
EVPPI [3]–[5], [7], [26].

B. EVPPI IN INFLUENCE DIAGRAMS
EVPPI analysis in an ID examines the impact of changing the
order of observations by observing one previously unobserv-
able chance node and adding it to the sequential order. EVPPI

FIGURE 8. Modified ID for analyzing EVPPI of SE_B.

is therefore equivalent to modifying the structure of the ID
by adding an information arc and computing the difference
between the modified and original IDs.

LetG be an ID, and X be an unobservable chance node in G
i.e. X ∈ NG. In order to analyse EVPPI of X for the decision
D ∈ DG let G′ be a modified version G where an information
arc is added from X toD, and the rest of the graph is the same.
As a result, X ∈ OG′ in G′. Note that, this information graph
must not introduce a cycle as IDs are DAGs. The EVPPI of
observing X is the difference between the expected utilities
of G′ and G.

EVPPI (X) = EU
(
G′
)
− EU (G) (7)

For example, Figure 8 shows the modified IDs used for
computing EVPPI of knowing the state of the node SE_B
(Side Effect of treatmentB) in the cost-effectiveness ID shown
in Figure 7. In the original ID (Figure 7), SE_B is unobserv-
able and thus there is no information arc connected to it. In the
modified ID (Figure 8), SE_B is observed before making the
decision because it is connected to the decision node by an
information arc.

In summary, computation of EVPPI in IDs requires solv-
ing two ID models and subtracting their expected utili-
ties. There is an extensive literature on solving discrete
IDs. Earlier research on this topic focused on solving
IDs by marginalizing variables or transforming them to
DTs or BNs [12], [27]–[30]. Jensen and Dittmer [31] modi-
fied the JT algorithm for IDs, which they call a strong JT, and
developed a special propagation scheme to compute expected
utilities. Dittmer and Jensen [32] proposed a VOI approach
to compute EVPPI directly on strong JTs. Shachter [33]
focused on improving this approach by generating more
efficient strong JTs for VOI, and reusing them for different
EVPPI analyses. Liao and Ji [34] proposed an approach that
can evaluate the combined EVPPI for a series of observa-
tions in IDs with certain constraints. Since most popular BN
algorithms, including JT, were designed to solve discrete
models, ID algorithms that use BN conversion or strong
JT only apply to discrete IDs. Solving HIDs is, how-
ever, a more challenging task. Initial research on solving
HIDs focused on Gaussian distributions due their convenient
computational properties [35]–[37]. Cobb and Shenoy [38],
Cobb and Shenoy [39] and Li and Shenoy [40] proposed a
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method that can adopt a wider variety of statistical distribu-
tions by approximating continuous chance and utility nodes
to mixtures of truncated exponential functions and mixtures
of polynomials. However, these methods are not closed for
non-linear deterministic functions and their computation can-
not currently be fully-automated. MCMC methods have also
been used to compute HIDs [41], [42] but their limitations
are similar to the Markov chain VOI methods discussed in
the previous section.

IV. COMPUTING EVPPI IN HYBRID IDs
In this section, we describe a novel method to compute the
EVPPI of discrete and continuous variables in HIDs using the
dynamic discretization (DD) algorithm. Sections IV-A and
IV-B respectively describe the DD algorithm and show how
DD is used to solve HIDs. Section IV-C presents a method to
compute EVPPI using DD, and Sections IV-D and IV-E show
two approximations for the proposed method. Section IV-F
illustrates the use of the proposed method.

A. DYNAMIC DISCRETIZATION ALGORITHM
Until relatively recently, the apparent intractability of solving
HBNs and HIDs (i.e. BNs and IDs with both discrete and
continuous variables) was one of themain limitations of using
these modelling approaches for complex decision problems.
However, the advent of the DD algorithm [10] now offers a
powerful and flexible solution to solve such models. The DD
algorithm was developed for propagation in HBN models.
Since a HID can be transformed to a HBN (which is discussed
in Section IV-B), the DD algorithm also offers a powerful
approach for solving HIDs.

The DD algorithm iteratively discretizes the domain of
continuous variables in a HBN model by minimizing the
relative entropy between the true and the discretized marginal
probability densities. It adds more states to high-density areas
and merges states in the zero-density areas. At each iteration,
DD discretizes each continuous variable in the area of highest
density, and then a standard propagation algorithm for dis-
crete BNs, such as the JT algorithm, is used to calculate the
posterior marginal given this discretization. The JT algorithm
computes the posteriors of a discrete BN by transforming the
BN structure into a tree structure with clusters, which is called
a JT. The discretization of all continuous variables in the JT
are revised by the DD algorithm every time new evidence is
entered into the BN.

The approximate relative entropy error between the true
probability density function f and its discretization is com-
puted by

Ej =
[
fmax− f̄
fmax−fmin

fminlog
fmin
f̄
+

f̄ −fmin
fmax−fmin

fmax log
fmax
f̄

]
|wj|

(8)

where Ej is the approximate relative entropy error, and fmax ,
fmin, f̄ are the maximum, minimum and mean values of the
function in a given discretization interval wj respectively.

The convergence threshold of the DD algorithm sets an
upper bound relative entropy for stopping the algorithm. The
algorithm stops discretizing a node if the sum of approximate
entropy errors of all intervals of the node is smaller than
the convergence threshold. The relative entropy decreases as
the discretization has more states, and it approaches zero as
the number of discretized states approaches infinity. There-
fore, the user can set the trade-off between the speed of
computation and accuracy of the discretization by using the
convergence threshold. DD provides an accurate posterior
model as the discretization chosen for the marginal is applied
to all clusters in the JT. The DD algorithm is formally sum-
marized as follows:
Choose an initial discretization for all continuous
variables in the BN
Define the convergence threshold CT and the maximum
number of iterations MN
for each iteration until MN
Compute the NPT for each node for the current
discretization
Enter evidence, and compute propagation in the JT
using a standard JT algorithm [14]
for each continuous node
Get the posterior marginal for each node.
Compute the approximate relative entropy error
between the true and discretized distributions
by using Equation 8.
if the approximate relative entropy error is
smaller than CT
Stop discretization for this node

else
Split the interval with the highest entropy error
Merge consecutive intervals with zero entropy
errors

end if
end for

end for
For a given threshold, the DD algorithm computes the

optimal discretization of any parameterized statistical dis-
tribution or conditionally deterministic functions for chance
and utility nodes. A fully automated version of the DD algo-
rithm is implemented in AgenaRisk [43]. Readers are referred
to [10], [44] for technical details, performance assessments
and comparisons of the DD algorithm with other approxima-
tion methods.

B. INFERENCE IN HYBRID IDS USING DD
An algorithm to solve HIDs using DDs has recently
been developed by Yet et al. [11]. This approach has two
main stages: first a HID is transformed to a HBN, then
the DD algorithm is used together with JT to propa-
gate the HBN, and a minimal DT containing only deci-
sion and observable chance nodes is generated from the
propagated HBN. The optimal decision policies are shown
on the minimal DT. The steps of this approach are as
follows:
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Step 1 - Transform HID to HBN:
Record the sequential order of the decisions
D̄ = D1, . . . ,Dk and observable chance nodes
Ō = O1, . . . ,Op according to the information arcs in
the HID;
for each decision node Di in D̄
Convert Di to a corresponding BN node 1i
Convert incoming information arcs of Di to conditional
arcs
for each state dij of the decision node Di
Convert dij to a state δij of the corresponding
BN node 1i
if there is asymmetry regarding dij
Assign zero probabilities to those state combina-
tions associated with δij

end if
Assign uniform probabilities to the rest of the state
combinations

end for
end for
Transform the utility nodes Ū = U1, . . . ,U l into continu-

ous BN nodes ϒ̄ = ϒ1, . . . , ϒ l
Step 2 - Propagate the HBN and prepare aminimal DT:
Propagate the HBN
Call PrepareMinimalDT (1st node in the sequential
order)
Evaluate the decision tree using the ‘average out and fold
back’ algorithm as described in .Korb and Nicholson [45].
The function PrepareMinimalDT is defined as follows:
PrepareMinimalDT(ithnode in the sequential order)
for each state of the node:
Remove all evidence from the node and subsequent
nodes in the sequential order.
if a corresponding node does not exist in the DT
if i = 1
Add a decision or chance node to the DT
corresponding to the type of the node in the HID.

else
Add a decision or chance node next to the last arc
added in the DT corresponding to the type of
the node in the HID.

end if
end if
Add an arc next to the corresponding node in the DT.
Label the name of the state on that arc.
if the current state is from an observable chance node
Label its posterior probability from the HBN on the
arc added in the DT.

end if
Instantiate the state and propagate the HBN.
if the state entered is from the last node in the
sequential order
Add a utility node next to the last arc added in the
DT, and label the value of this node with the
posterior value of the aggregate utility node from the
HBN.

else
Recursively call PrepareMinimalDT by using the
i+1th node in the sequential order.

end if
end for
This approach allows all commonly used statistical distri-

butions, and any commonly used linear or non-linear condi-
tionally deterministic function of those distributions, to be
used for chance and utility nodes. It presents the computed
decision strategies in a minimal DT that shows only the deci-
sion and observable chance nodes. In the following section,
we use this algorithm to compute EVPPI in HIDs.

C. COMPUTING EVPPI USING DD
The steps for computing the EVPPI of any discrete or con-
tinuous unobservable chance variable X ∈ N̄ before decision
D ∈ D̄ in an ID G are:

1. Build the modified ID G’ by adding an information arc
from X to D;

2. Solve G and G’ by using the algorithm described in
Section IV.B;

3. EVPPI(X) = EU(G’) – EU(G).

The complexity of the JT algorithm is exponential in the
largest cluster in the JT. Our algorithm transforms an HID to
a HBN and solves it by using DD and JT algorithms. Calcu-
lating G and G’ can be computationally expensive especially
if there are multiple decision and observable chance nodes
withmany states. In the following section we present a further
approximation of the proposed EVPPI technique that enables
us to trade-off accuracy with speed.

D. FURTHER APPROXIMATION OF EVPPI USING DD
The algorithm described in Section IV-B enters evidence
for each state combination of the observable chance and
decision nodes. The DD algorithm revises its discretizations
every time evidence is entered. To calculate EVPPI of an
unobservable chance variable, it needs to be transformed
into an observable variable in the modified ID as described
in Section IV-C. Therefore, the modified ID has an even
higher number of state combinations of observable chance
and decision nodes. Rather than revising the discretizations,
a further approximation of our EVPPI technique uses DD
only once initially, and then generates a fixed discretization
of this model. The propagations, for all state combinations,
in the following steps are applied to this fixed discretization
by using only JT. This means observations entered in to the
model preserve the prior discretized points on all unobserved
variables. We call this approximation DD with Fixed dis-
cretization (DD-Fixed).

As we show later in Section V, DD-Fixed works faster
but is also less accurate than DD because the discretizations
are not optimized for the posteriors in each iteration. In the
following section, we show another approximation that com-
putes only the expected utility and EVPPI values rather than
the whole distribution of them.
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E. EXTERNAL CALCULATION OF UTILITY FUNCTIONS
In health economics models, the utility function is a deter-
ministic function of random variables such as costs and life
expectancy. The DD algorithm can solve hybrid models with
all common conditional deterministic functions of random
variables. It computes the entire probability distribution of
such functions and thus it enables the decision maker to
assess the uncertainty of the model’s estimates as well as the
expected values.

In an HID, deterministic utility functions are modelled as
a child node to all the variables of that function. Therefore,
this node has many parents if the utility function has many
variables. The computational complexity of standard propa-
gation algorithms, such as JT, depends on the largest clique
size, and the clique size can explode if a variable has many
parents. Although solutions have been proposed for this [46],
solving a HID that has a utility node with many parents can
still be slow or infeasible.

If a decision maker is interested in the expected value of
additional information, computing the expected values of the
utility function, rather than the entire probability distribution,
is sufficient. In this case, we can calculate the posteriors
of the marginal probability distributions of the independent
variables and joint probability distribution of the dependent
variables in the utility function, and then we can simply sum
and multiply the expected values of the variables externally.
For example, in Figure 8, the utility functions associated with
each treatment alternative are ‘1000×RT_A – 4000×SE_A’’
and ‘1000×RT_B – 4000×SE_B’ respectively. Since RT_A
and SE_A, and RT_B and SE_B are respectively independent
of each other, we can simply calculate their posterior distri-
bution, and then apply the utility functions to the expected
values obtained from these variables. We only calculate the
expected values of NB, rather than the whole distribution,
resulting in much faster computation of EVPPI.

F. EVPPI EXAMPLE
In this section, we illustrate the use of the proposed EVPPI
technique based on the HID models shown in Figure 6 and
Figure 7. We compute the EVPPI of a discrete node (CE)
and a continuous node (SE_A). Note that these HIDs model
exactly the same problem as discussed in Section II.B.3.

1) EVPPI OF CE
We first create the modified ID G′ by adding an information
arc from CE to T . Then we solve G and G′ by using the HID
solver algorithm described in Section IV-C. This algorithm
first converts the IDs to BNs as described below:

1. Sequential order of decisions and observations is
recorded based on the information arcs. The original ID
G has no sequential order as it has only one decision
and no information arcs. The modified ID G′ has an
information arc between CE and T , thus it has the
sequential order CE ≺ T , i.e. CE is observed before
decision T is made.

FIGURE 9. Minimal DT from Original ID.

2. The decision nodes and information arcs are trans-
formed into BN nodes and conditional arcs respec-
tively. Since there is no asymmetry in these models,
the decision nodes have uniform distributions.

3. The utility node is modelled as a mixture distribution
conditioned on the decision node.

After both G and G′ are converted to BNs, the algorithm
instantiates and propagates the BNs for all possible state
combinations in the sequential order. The original ID, G,
has only one decision node, T , in the sequential order. The
minimal DT for G is built by propagating the BN for each
decision alternative and recording the expected values of the
posterior utilities as shown in Figure 9. The optimal decision
is treatment B with an expected utility of 19.03.

The sequential order of the decision and observable chance
nodes of the modified ID G′ is CE ≺ T . Next, the minimal
DT is built by using the algorithm described in Section IV.B.
The steps of this algorithm are as follows:

1. Starts generating the minimal DT with the first node in
the sequential order, i.e. CE. The DT is initially empty,
therefore it adds a chance node labelled ‘CE’.

2. Adds an arc next to this node for its first state ‘CE =
Trainee’ and labels it with the name and probability of
this state.

3. Instantiates ‘CE = Trainee’ and propagates the BN
model.

4. The next node in the sequence is T . Adds a decision
node labelled ‘T ′ in the DT.

5. Adds an outgoing arc from this node and labels it with
its first state ‘A’. Since T is a decision node, a proba-
bility is not labelled on this arc.

6. Instantiates ‘T = A’ and propagates the BN model.
7. Since ‘T = A’ is the last node in the sequential order

of this state combination, it adds a utility node next this
node in the DT, and labels it with the posterior of the
utility node.

8. Clears the evidence entered on ‘T ’ and continues with
its second state ‘T = B’. It adds an arc labelled ‘B’ next
to the node ‘T’.

9. Instantiates ‘T = B’, propagates the BN, and adds
another utility node in the DT.

10. Since the algorithm has evaluated all states of ‘T ’,
it continues the second state of ‘CE’.

The algorithm analyzes the remainder of the state combi-
nations in the same way as above by using the algorithm
described in Section IV-C.
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FIGURE 10. Minimal DT for the modified BN.

FIGURE 11. Dynamic discretization of SE_A.

TABLE 2. States, probabilities and expected utilities of SE_A computed
by DD.

Figure 10 shows the minimal DT built from the modified
BN. The optimal decision policy is selecting treatment A
when the treatment is applied by a trainee and selecting
treatment B when it is applied by an experienced clinician.
The expected utility of this policy is 38.58.

The EVPPI of CE is the difference between the expected
utility values of optimal decisions in each these graphs:

EVPPI (CE) = 38.58− 19.03 = 19.55 (9)

2) EVPPI OF SE_A
In order to compute the EVPPI of SE_A in Figure 7, we
also add an information arc from this node to the decision
node (see Figure 8). The DD algorithm provides an optimal
discretization of SE_A for the given convergence threshold,
and therefore enables us to solve this HID and compute the
EVPI of SE_A as if it were a discrete node. Figure 11 shows
a discretization of SE_A by using DD with a convergence
threshold of 10−3.
Table 2 shows a subset of the discretized states and proba-

bility values of SE_A together with the state of the associated
decision variable in the state combination, and the expected
utility value. For example, when SE_A is between 0 and 0.01,
and the treatment decision is A, the expected utility of this

FIGURE 12. Expected net benefit of treatments A and B given perfect
information on SE_A.

FIGURE 13. Minimal DT of the modified BN for SE_A.

combination is 713.93, and P(0 ≤ SE_A < 0.01) = 0.0034.
We use these values to build the minimal DT and compute the
optimal decision policy. However, since discretized continu-
ous variables often have a large number of states, building
a DT for all of these state combinations would have many
branches with the same decision policy. Rather than showing
each discretized state of the continuous chance nodes, we can
show its intervals where the optimal decision policy is the
same. Figure 12 shows the expected utilities of treatments A
and B given different states of SE_A. The optimal decision
policy is T = A for all states of SE_A between [0,0.184)
because the expected utility of T = A is more than T = B
for these states. Therefore, we can combine the branches
associated with these states in the DT to get a simpler and
clearer DT. Figure 13 shows the minimal DT for computing
the expected utility of the modified ID.

The EVPPI of SE_A is:

EVPPI (SE_A) = 167.84− 19.03 = 148.81 (10)

V. CASE STUDY
In this section, we compare the results of the proposed EVPPI
technique and its approximations (i.e. DD and DD-Fixed) to
the nested two-level sampling approach [2], the GAM and
GP regression approaches [4], and to another two approxi-
mate EVPPI techniques proposed by Strong and Oakley [3],
Sadatsafavi, et al. [5] (see Section III-A for a discussion of
these techniques). The nested two-level sampling, Strong and
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TABLE 3. Sampling based EVPPI approaches used in case study.

FIGURE 14. ID model - case study 1.

Oakley’s and Sadatsafavi et al.’s techniques will be referred
as NTL, STR and SAD respectively.

Table 3 shows the sampling settings used for these tech-
niques. Since the results of sampling-based approaches differ
slightly every time they are computed, we repeated their
analyses 100 times and present the average of their results.

We assumed that the ‘‘true’’ EVPPI value of each parame-
ter is the average result of 100 NTL analyses, with 10000 ×
1000 inner and outer level samples, for that parameter,

AgenaRisk and was used to compute DD and DD-Fixed.
JAGS and R software were used together with R2JAGS inter-
face to compute EVPPIs with NTL. The BCEA package of
R was used in addition to JAGS and R2JAGS to compute
EVPPIs using GAM, GP, STR and SAD. The remainder of
this section shows the results of these methods in calculating
EVPPI for two case studies.

A. CASE STUDY 1
For the first case study, we have used the model described in
Baio [47, Ch. 3]. This model calculates the cost-effectiveness
of two alternative drugs. A description of the model structure
and parameters is shown in the appendix. An equivalent ID
structure for this model is shown in Figure 14. We calculated
the EVPPI for the parameters ρ, γ and π [1] as the rest of the
unobservable parameters are defined based on these variables
by simple arithmetic expressions or binomial distributions.

TABLE 4. EVPPI using DD, DD-fixed and NTL in case study 1.

1) DD AND DD-FIXED WITH DIFFERENT CONVERGENCE
THRESHOLDS
We tested DD and DD-Fixed with 5 different convergence
thresholds settings: i.e. 10−1, 10−2, 10−3, 10−4, and 10−5.
Figure 16 shows the EVPPI values of ρ and the calculation
times when different thresholds settings are used. The hori-
zontal line shown in Figure 16a shows the ‘‘true’’ NTL result.

Both the DD and DD-Fixed approaches provide an accu-
rate approximation of the EVPPI value even with high con-
vergence thresholds. DD accurately computes the EVPPI
starting from the convergence threshold of 10−2. Its calcula-
tion time is 19 and 650 seconds at 10−2 and 10−3 thresholds
respectively. The calculation time of DD increases exponen-
tially after the convergence threshold of 10−3 but the EVPPI
results do not change.

The results of DD-Fixed is close to the true value when the
convergence threshold is 10−4 and 10−5. Its calculation time
is 14 and 266 seconds at 10−3 and 10−4 thresholds respec-
tively. DD-Fixed is considerably faster thanDDbut it does not
compute the EVPPI as accurately as DD at any convergence
threshold setting. This is expected, as DD calculates the
posteriors more accurately by revising discretizations at every
step. The EVPPI of γ and π [1] are 0. DD is able to find the
correct value at all convergence thresholds used. DD-Fixed
calculates a positive EVPPI for π [1] at 10−1 thresholds, and
is able to find the correct value starting from 10−2.

2) COMPARISON WITH OTHER APPROACHES
Table 4 shows the results of DD, DD-Fixed and NTL in
the first case study. The results of DD and DD-Fixed are
calculated with the convergence thresholds of 10−3 and 10−4

respectively. We selected these threshold settings because
smaller thresholds have a much higher calculation time with-
out any substantial accuracy benefit. A convergence threshold
setting of 10−2 for DD also provides similar EVPPIs much
faster as shown in the previous section.

The EVPPIs of ρ calculated byDD andNTL are very close,
and γ andπ [1] have no value of information. DD-Fixed finds
a slightly higher value for the EVPPI of ρ, and its calculation
is faster.

GAM, GP, STR and SAD find similar values for ρ with
only 1% - 3% difference from the DD, DD-Fixed and NTL
results (see Table 5). SAD, however, finds positive values for
the EVPPI of γ and π [1] while these values are supposed to
be 0.
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FIGURE 15. ID structure - case study 2.

FIGURE 16. EVPPI values and calculation time of ρ.

TABLE 5. EVPPI using GAM, GP, STR and SAD in case study 1.

B. CASE STUDY 2
We used the model described by Brennan, et al. [2] for
our second case study. The structure and parameters of this
model are shown in the appendix, and an equivalent ID
structure for this model is shown in Figure 15. The parame-
ters2[5],2 [7],2[14] and2[16] have a multivariate normal
distribution with a pairwise correlation coefficient of 0.6.
Similarly, the parameters 2[6] and 2[15] have a bivariate
normal distribution and the same pairwise correlation coeffi-
cient. Since the parameters of each variable in an ID represent
a CPD, the multivariate Normal distributions are modelled as

TABLE 6. EVPPI using DD, DD-fixed and NTL in case study 2.

multiple CPDs in the ID [48]. We calculated the EVPPI for
these 6 parameters as the rest of the parameters in this model
are independent of each other and have very low or no value
of information.

1) DD AND DD-FIXED WITH DIFFERENT CONVERGENCE
THRESHOLDS
Figures 17 and 18 show the EVPPI values and the calculation
times of 2 [5], 2[6], 2[7], 2[14], 2[15] and 2[16] when
different convergence threshold settings are used. The hor-
izontal lines show the NTL results. Both DD and DD-Fixed
accurately calculate the EVPPI values of all parameters at the
convergence threshold of 10−3.

In the DD approach, calculation of the EVPPI for
both 2[6] and 2[16] took significantly longer than the other
parameters. This is possibly caused by the way multivariate
Gaussian distributions are modelled in the ID model. These
variables have several other parents, and this increases their
calculation time in DD and JT. There is ongoing research to
speed up inference of such variables with many parents by
using region based approximations.

2) COMPARISON WITH OTHER TECHNIQUES
Table 6 shows the results of DD, DD-Fixed and NTL in
the second case study, and Table 7 shows the results of the
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FIGURE 17. EVPPI and calculation times of 2[5], 2[6] and 2[7].

approximate sampling-based approaches. DD and DD-Fixed
were calculated with a convergence threshold setting of 10−3

and 10−4 respectively. The results of all approaches are close
to each other and to the results of NTL. The calculation time
of DD is higher than the alternative approaches especially in
cases where a variable has many parents. DD-Fixed is faster
than DD and NTL, but still slower than GAM, GP, STR and
SAD.

C. SUMMARY OF THE RESULTS
Both the DD and DD-Fixed approaches accurately calcu-
late the EVPPI values even with high convergence threshold
settings. Starting from the convergence threshold of 10−2,
the results of DD are close to the results of the NTL approach
with 10,000 × 1000 inner and outer level samples, which we
assume to be the ‘‘true’’ result. The results of both DD-Fixed
and DD converge to the true values starting from the 10−3

threshold setting. This also illustrates that DD successfully
calculates the posteriors of the utility variables that are com-
posed of mixture distributions with constants.

FIGURE 18. EVPPI and calculation times of 2[14], 2[15] and 2[16].

TABLE 7. EVPPI using GAM, GP, STR and SAD in case study 2.

Computation speed was the main limitation of our method.
Although both DD and DD-Fixed were generally faster
than NTL, they were slower than the sampling-based
approaches at all convergence threshold settings with accept-
able accuracy.
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However, the main advantage of our method is its usability
as it is based on discretized posterior distributions that are
automatically handled by the DD algorithm which is imple-
mented in a widely available tool. Therefore, in contrast to
the other approaches, it does not require users to assess the
convergence of sampling.

VI. CONCLUSIONS
This paper presented a novel technique to calculate the
EVPPI of individual continuous variables in IDs, and an
approximation of this technique to trade-off accuracy for
speed. We demonstrated the use of this technique and
applied it to two case studies that were used in simi-
lar studies. We compared the results of our approach to
five other general techniques used for computing EVPPI,
namely those of Brennan, et al. [2], Strong and Oakley [3],
Sadatsafavi, et al. [5], and the GP and GAM regressionmeth-
ods of Strong, et al. [4]. While all previous techniques use
sampling to calculate EVPPI, our approach uses an entirely
different technique that dynamically discretizes all continu-
ous variables, and calculates the posteriors by using a popular
Bayesian inference algorithm called JT. As a result, it can
handle a large class of models with virtually any kind of
continuous distribution. Our approach successfully calcu-
lated EVPPIs for individual variables in both case studies.
In contrast to the previous techniques, our approach can be
used by decision-makers who do not have deep understanding
of programming languages and sampling techniques, since it
offers a simpler way of calculating EVPPI. The case studies
show that, while our approach requires longer computation
times, there is no compromise on EVPPI accuracy.

Our technique uses a powerful inference algorithm that
is readily implemented in a commercial tool with a user-
friendly graphical interface. Application of the technique
requires only simple graphical operations on the ID models
and computing these models by using the proposed algo-
rithms. As further research, the proposed approach could be
extended to calculate the EVPPI of a group of parameters.
This could be achieved by adding multiple information arcs
on an ID and computing the difference between expected util-
ities. An automated implementation of the EVPPI algorithm
and the proposed approximations would enable a wider use of
these techniques by clinicians and domain experts. We also
plan to further evaluate the general accuracy of DD-Fixed
approximation in HBN and HID models.

APPENDIX A
BAYESIAN MODELS USED IN CASE STUDIES
A. BAYESIAN MODEL IN CASE STUDY 1
for (s in 1:N.studies) {

se[s] ∼ Binomial(π [1], n[s])
amb[s] ∼ Binomial(γ , se[s]) }

ρ ∼ TruncatedNormal(µ = 0.8, σ = 0.2,
LowerBound=0, UpperBound=2)
π [1] ∼ Beta(0.5,0.5)
π [2] = π [1]∗ρ

γ ∼ Beta(α = 0.5, β = 0.5)
c.amb ∼ LogNormal(µ = 4.774, σ = 0.165)
c.hosp ∼ LogNormal(µ = 8.597, σ = 0.177)
for (t in 1:2) {

SE[t] ∼ Binomial(π [t],N)
A[t] ∼ Binomial(γ ,SE[t])
H[t] <- SE[t] - A[t] }

NB[t] = λ∗ (N - SE[t]) - (c.amb ∗ A[t] + c.hosp ∗ H[t] +
c.drug[t] ∗ N)
N=1000
n = {32,29,24,33,23}
se = {9,3,7,4,9}
amb = {5,2,3,2,5)
N.studies = 5
c.drug = {110,520}
λ = 25, 000

B. BAYESIAN MODEL IN CASE STUDY 2
2[1] ∼ Normal(µ = 1000, σ = 1)
2[2] ∼ Normal(µ = 0.1, σ = 0.02)
2[3] ∼ Normal(µ = 5.2, σ = 1)
2[4] ∼ Normal(µ = 400, σ = 200)
2[5,7,14,16] ∼ MultivariateNormal(µ=[0.7,3,0.8,3],

6 = .


0.010 0.030 0.006 0.060
0.030 0.250 0.030 0.300
0.006 0.030 0.010 0.060
0.060 0.300 0.060 1.000

)
2[6,15] ∼ MultivariateNormal(µ=[0.3, 0.3], 6 =[
0.01 0.003
0.003 0.0025

]
)

2[8] ∼ Normal(µ = 0.25, σ = 0.1)
2[9] ∼ Normal(µ = −0.1, σ = 0.02)
2[10] ∼ Normal(µ = 0.5, σ = 0.2)
2[11] ∼ Normal(µ = 1500, σ = 1)
2[12] ∼ Normal(µ = 0.08, σ = 0.02)
2[13] ∼ Normal(µ = 6.1, σ = 1)
2[17] ∼ Normal(µ = 0.1, σ = 0.05)
2[18] ∼ Normal(µ = −0.1, σ = 0.02)
2[19] ∼ Normal(µ = 0.5, σ = 0.2)
NB[1] ∼ λ∗ (2[5] 2[6] 2[7] + 2[8] 2[9] 2[10])-( 2[1]
+ 2[2] 2[3] 2[4])
NB[2] ∼ λ∗ (2[14] 2[15] 2[16] + 2[17] 2[18] 2[19])-

(2[11] + 2[12] 2[13] 2[4])
λ = 10, 000

APPENDIX B
LIST OF ACRONYMS
BN Bayesian Network
CPD Conditional Probability Distribution
DAG Directed Acyclic Graph
DD Dynamic Discretization
DT Decision Tree
EVPI Expected Value of Perfect Information
EVPPI Expected Value of Partial Perfect Information
GAM Generalized Additive Model
GP Gaussian Process
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HBN Hybrid Bayesian Network
HID Hybrid Influence Diagram
HMM Hidden Markov Model
ID Influence Diagram
JT Junction Tree
MC Monte Carlo
MCMC Markov Chain Monte Carlo
MM Markov Model
NPT Node Probability Table
NTL Nested Two-Level Sampling
SAD Sadatsafavi, et al.’s EVPPI Technique [5]
STR Strong and Oakley’s EVPPI Technique [3]
VOI Value of Information
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