
A Case Study Validation of an Extreme Programming Bayesian Network
Model

Peter Hearty, Norman Fenton, Martin Neil, David Marquez

Queen Mary, University of London
hearty, norman, martin, marquezd @dcs.qmul.ac.uk

Abstract

Bayesian networks have the ability to combine sparse

data, prior assumptions and expert judgment into a single
causal model. We present such a model of an Extreme
Programming environment and show how it can learn
from project data in order to make quantitative effort
predictions and risk assessments. This is illustrated with
the use of a real world industrial project.

1. Introduction

In [10] we presented the case for modeling the

Extreme Programming process using Bayesian Networks
(BNs). BNs allow prior assumptions, incomplete data and
expert judgment to be combined in a single, causal,
model, allowing us to reason in the presence of
uncertainty. We now apply the model developed in [10]
to a real Extreme Programming (XP) project.

The model depends heavily on Project Velocity (PV),
the one management metric that is always available in
XP. Roughly speaking, PV can be thought of as
"productive effort per iteration". The exact definition of
PV is given in section 2.2.

PV data is collected from the first iteration in any
project. This is incorporated into the model, enabling it to
learn key parameters and increase the confidence of its
predictions in subsequent iterations.

As argued in [10], the model satisfies the following
requirements.

1. It monitors and predicts PV, taking into account

the impact of relevant process factors.
2. The core model is very small. This enables it to be

replicated multiple times in order to represent the
multiple iterations of an agile development
environment.

3. The model can be adapted to handle different types
of data for different environments. In particular,
the model handles key XP practices, while being
dependent on none of them.

4. Many projects report low initial productivity,
gradually rising on subsequent iterations [6], [7]
and [4]. As shown in [10], the model is capable of
replicating this empirical behavior.

5. The model learns from data, either as a result of
observations or as a result of expert judgment
entered as evidence.

6. It gives useful and clear advice to managers.

While these features were initially demonstrated in

[10], no attempt was made to validate the model against a
real XP project. In this paper we address this by using
data from a case study based around a project from
Motorola [4]. The model’s predictions of XP User Stories
(defined below) as they are delivered over time, are in
good agreement with the actual User Stories delivered.

The model was implemented using the AgenaRisk
toolset [3]. This was due, amongst other things, to the
ease with which dynamic models can be constructed and
the availability of a wide range of built-in conditional
probability functions.

Section 2 defines XP terminology as it is used in the
model. Sections 3 and 4 summarize the key components
of the model [10], with Bayesian Nets being discussed in
Section 3 and a breakdown of the model components
being presented in Section 4. Section 5 applies the model
to the industrial case study. Finally, Section 6 provides
some conclusions and indications of future work.

2. Definitions and Terminology

The basic unit of work in Extreme Programming (XP)

is the User Story. When an XP iteration finishes, the
estimated efforts for the completed user stories are added
together to create the Project Velocity (PV). In the sub-
sections that follow we describe how user stories and PV
are defined, and how they are incorporated into the model

2.1. User Stories

Developers assign the effort that they believe is

required for them to design, code and test each user story.
Efforts are estimated using a unit called Ideal
Engineering Days (IEDs). This is a day devoted entirely
to user story completion, free from overheads and
distractions. It includes detailed design, coding, unit
testing and acceptance testing. It excludes all other effort
that can consume developers’ time, including but not

limited to administrative tasks, mentoring, support and
learning.

We denote the estimated effort for the jth user story in
iteration i by Ui

j.

2.2. Project Velocity

Once iteration i is complete, the estimates for the

completed user stories are added together. This is the
project velocity Vi for iteration i.

∑=
ij

j
ii UV
 in completed

 Eq. 1

Assuming that the next iteration, i + 1, is the same

length, the customer selects the highest priority
uncompleted user stories whose estimated IEDs sum to
Vi. These user stories are then scheduled for iteration i +
1. The work scheduled for iteration i + 1 therefore has the
same estimated ideal effort as the estimates for the actual
work completed in iteration i.

Note that the actual time taken to complete a user
story is not used here. To relate actual productive time to
estimated productive time, we introduce a bias, bi, into the
model. The word “bias” is not intended in the statistical
sense of a biased estimator.

If Ai
j are the actual efforts taken then:

∑∑
∑

==

j

j
i

j

j
i

j

j
i

i A
V

A

U
b 1

Eq. 2

This scheduling mechanism assumes that the ratio of

effort (people × working days) to V remains constant.
This assumption can be justified by examining the two
possible estimation scenarios.

1. User story estimates are being consistently

overestimated or underestimated. This consistency
ensures that any bias in the estimates for the previous
iteration will be repeated in the current iteration.

2. There is no consistent bias in the effort estimations,
i.e. there is as much overestimation as
underestimation. These inaccuracies will even
themselves out over multiple iterations. This further
assumes that teams are able to schedule additional
work in an iteration when the effort of existing tasks
has been over-estimated and slack time is available.

2.3. Process factors

To model the relationship between total effort and

productive effort, there is a single controlling factor
which we call Process Effectiveness, e. This is a real
number in the range [0,1]. A Process Effectiveness of one
means that all available effort becomes part of the
productive effort.

The Process Effectiveness is, in turn, controlled by two
further parameters: Effectiveness Limit, l, and Process
Improvement, r. The Process Improvement is the amount
by which the Process Effectiveness increases from one
XP iteration to the next. To allow for failing projects, the
Process Improvement can take on negative values.

The Effectiveness Limit recognizes the fact that there
are often limits to how productive a team of people can
be. Effectiveness Limit is therefore the maximum value
which the model allows Process Effectiveness to take.

3. Bayesian Net Model

A Bayesian Net (BN) is a directed acyclic graph (such
as the one shown in Fig. 1), where the nodes represent
random variables and the directed arcs define causal
influences or functional relationships. Nodes without
parents are defined through their prior probability
distributions. Nodes with parents are defined through
Conditional Probability Distributions (CPDs). Some
CPDs are deterministic functions, such as the ones shown
in Fig. 1; others, such as the priors for the initial settings
in section 4.2, are defined as probability functions.

li-1

ri-1

ei-1

bi-1

Ei Ai

Vi bi

li

ri ei

= bi Ai

= ei Ei

= min(ri + ei-1, li)

Fig. 1. Project velocity model.

Table 1 summarizes the model variables for the BN
described in [10]. Measures of effort are denoted by
capital letters. All other variables use lower case letters.
Subscripts are used to denote a specific XP iteration. For
example V2 denotes the velocity in iteration 2. Where the
iteration is not important, we drop the subscript and refer
simply to V.

Table 1 Symbol definitions
3.1. Dynamic Bayesian Networks

Symbol

Meaning

di Number of working days in iteration i.
di = 0, 1, 2, ... This is an integer value.

pi Number of team members in iteration i. This
can be fractional if one or more people do
not work full time on the project. ei ∈ [0,
∞).

si Productive effort to date.
si = si-1 + Vi = ΣVi, si ∈ [0,∞).

Ei Iteration effort in man-days.
Ei = pi × di, Ei ∈ [0,∞).

Ui
j Estimated effort of jth user story in iteration

i. Ui
j ∈ [0,∞).

Ai Actual productive effort in iteration i.
Ai = Ei × ei, Ai ∈ [0,∞).

Vi Project Velocity in iteration i.

∑=
j

j
ii UV , Vi ∈ [0,∞).

bi Estimation bias. bi = Vi / Ai, bi ∈ [0,∞).
fi Load Factor in iteration i. fi = Ei / Vi, fi ∈

[1,5]. Used to estimate timescales. The
upper limit is arbitrary.

ei Process effectiveness in iteration i.
Vi = Ei × ei, ei ∈ [0,1].

li Effectiveness limit. The maximum value
that the ei can take, li ∈ [0,1].

ri Process improvement.
ei = min (ei-1 + ri , li) , ri ∈ [-1,1].

Dynamic Bayesian Nets (DBN) extend BNs by adding

a temporal dimension to the model. Formally, a DBN is a
temporal model representing a dynamic system, i.e. it is
the system being modeled which is changing over time,
not the structure of the network [8]. A DBN consists of a
sequence of identical Bayesian Nets, Zt, t = 1,2,..., where
each Zt represents a snapshot of the process being
modeled at time t. We refer to each Zt as a timeslice. For
XP, where the software production process is split into a
series of discrete iterations, this is a particularly apt
approach.

The models presented here are all first order Markov.
This means that the P(Zt | Z1:t-1) = P(Zt | Zt-1)
(informally, the future is independent of the past given
the present). The first order Markov property reduces the
number of dependencies, making it computationally
feasible to construct models with larger numbers of
timeslices. Consistent propagation is achieved using
standard Junction Tree algorithms [5].

Nodes that contain links between two timeslices are
referred to as link nodes. Fig. 1 shows a single timeslice
Zt, t =1,2…., but with the link nodes from the previous
timeslice shown lightly shaded. The link nodes to the next
timeslice are shaded black. Fig. 2 shows the same model,
this time “rolled out” as a three iteration DBN (link nodes
are shaded).

l1

r1

e1

b1

E1 A1

V1

l2

r2

e2

b2

E2 A2

V2

l3

r3

e3

b3

E3 A3

V3

When the value of a variable has been measured, it can
be entered as data in the corresponding node. The rules of
Bayesian probability are then applied to propagate
consistently the impact of the evidence on the
probabilities of the variables of interest. More information
on Bayesian Nets and suitable propagation algorithms can
be found in [1] and [5].

When we wish to distinguish between a model
prediction and a measured value, we will use an
underscore to denote the measurement. So if V3 is the
predicted value for the velocity at iteration three, then V3
is the measured value. Fig. 2 Model as a DBN

Not all of the variables shown in Table 1 are shown in
Fig. 1. Several of the variables are included only to make
the definitions of others more rigorous (d, and p). Some
exist to relate the model to XP concepts (f and U), and
others to relate the model to management concepts (s).

3.2. Parameter Learning

The process effectiveness limit (li) , rate of process

improvement (ri) and bias (bi) are the key parameters in
this model. Between them they control the process
effectiveness, which in turn controls the velocity. It is
important that the model is capable of adjusting these
parameters as a result of entering data about the project.

Before presenting the model in detail, we need to
discuss a few preliminaries about Dynamic Bayesian
Nets.

In particular, the model must respond to observations of
the V i.

4. Model Breakdown

We describe a single timeslice by breaking it down into

distinct fragments (section 4.1). The model is constructed
by linking these timeslices together. A special initial
timeslice is used to create the initial prior probability
distributions (section 4.2).

4.1. Iteration Model

The BN shown in Fig. 1 is used as a single iteration

model for project velocity. The model is best thought of
as comprising three distinct fragments.

Fragment 1 controls the Productive Effort (Fig. 3). A
single variable, Process Effectiveness (ei), is assumed to
determine the Productive Effort. High Process
Effectiveness means a high Productive Effort and a
correspondingly high velocity. Process Effectiveness
increases or decreases based on the value of the Process
Improvement (ri). It is constrained to the range [0, li].

The CPD of li is a function of li-1. In this case li is set
equal to li-1. The process effectiveness limit (li) is really a
single variable which is global to all timeslices. Copying
it between timeslices allows us to preserve the first order
Markov property. Similarly ri is just a copy of ri-1.

li-1

ri-1

ei-1

li

ri ei

Fig. 3 Fragment 1 - Process effectiveness nodes

Fragment 2 contains the "effort" nodes (Fig. 4). It
combines the total Iteration Effort (Ei) with the process
effectiveness (ei) to create the actual Productive Effort
(Ai). Note that, although Ai is not required by the XP
methodology, we need it in this model for reasons that
will be explained below.

 Ei Ai

Fig. 4 Fragment 2 - Effort nodes

Fragment 3 holds the project velocity (Fig. 5).

Velocity can either be predicted by the model (Vi), or
once an iteration is completed, it can be entered as
evidence (Vi) and used to learn the model parameters. The

bias, bi, allows for any consistent bias in the team’s effort
estimation. If there was no bias then the productive effort,
A, would be the same as V and there would be no need to
distinguish between the two.

bi-1 Vibi

Fig. 5 Fragment 3 - Project Velocity

4.2. Setting the initial conditions

An initial timeslice, Iteration 0 (shown in Fig. 6), is

used to set the initial model conditions.

l1

r1

e1

b1

E1 A1

V1

l0

r0

e0

b0

Fig. 6. Initial Velocity model

For iteration 0, the prior distributions of the input

effectiveness limit (l0), process improvement (r0) and
process effectiveness (e0) are all set to be normal
distributions, with variances of 0.3 and means of 0.8, 0.2
and 0.3 respectively. These values are based on a
controlled case study by Abrahamsson and Koskela [7],
where process effectiveness varied between 0.4 and 0.75.
We have simply extended this range slightly and chosen
r0 so that the lowest to highest transition can take place
within four iterations.

The prior of the estimation bias (b0) is set to a log
normal distribution with a mean of approximately 1.0,
and a variance of 0.1. The log normal distribution follows
from the fact that the bias cannot be less than zero but has
no upper bound. For example, a pessimistic bias, where
estimates are 2 times the actual, results in a bias of 2,
whereas an optimistic bias results in a bias of ½. This
distribution is confirmed empirically, for example by
Little [12].

Evidence is entered in all of the Ei nodes.

Iteration 1

Iteration 8

5. Model Validation

In [10] we showed that the model reproduced known
empirical behavior in XP projects. This includes the
gradually increasing values of V observed in several
studies [6], [7] and [4].

In this section we apply the model to an industrial case
study (section 5.1). The model can learn from the initial
data entered from the project (section 5.2) and adjusts its
predictions once beneficial XP practices are taken into
account (section 5.3) Section 5.4 provides an example of
how the model can be calibrated for a specific XP
practice. Finally, in Section 5.5 the model provides
predictions for the time taken to deliver a fixed amount of
functionality. These are in good agreement with the actual
functionality delivered.

 Fig. 7 Distributions for Vi , one per timeslice
5.1. The Motorola Project

Predic ted

Actua l

Williams, Shukla and Anton [4] provided a detailed

description of an XP project developed at Motorola. The
project was developed in a series of eight iterations of
between two and three weeks duration. The number of
people on the team varied from three to nine people over
the duration of the project. The full data set is shown in
Table 2.

Table 2 – Motorola project data

 i 1 2 3 4 5 6 7 8
di 15 15 15 16 12 10 8 10
pi 3 3 6 6 7 7 9 4
Ei 45 45 90 96 84 70 72 40
V i 9 13 35 30 40 40 36 20

The definition of Project Velocity used by the

Motorola team corresponds to what we have called
Process Effectiveness. We will continue to use the
definition given in Eq. 1. The values for Vi given in
Table 2 have been calculated using our definition.

Fig. 8. Predicted vs. actual Motorola V (medians)

5.2. Parameter Learning

There are a number of problems with the predicted

values in Fig. 8. The most obvious is that, apart from
iteration 6, the predicted values are consistently too high.
In this section we demonstrate how the model can learn
from real project data and quickly improve the accuracy
of its predictions.

Initially we simply enter values for Ei into the model
(no values for Vi entered). Fig. 7 shows the resulting
marginal distributions which are generated for the Vi
node. There is one distribution for the node in each
timeslice.

A good example of this can be seen in Fig. 9. This
shows the behavior of the Bias node, bi, when all of the Vi
values have been entered. The central dotted line, which
is almost co-incident with the solid line, shows the mean
and median values respectively. The outer dotted lines

The median values from the Vi distributions are shown
in Fig. 8 (the “Predicted” graph). Actual values for Vi
are shown in the same figure for comparison (the
“Actual” graph).

show the mean ± 1 standard deviation (SD). The SD gets
smaller as more evidence is entered into the model. This
illustrates that, not only does the model learn the values
of its parameters, but the uncertainty in those values
decreases as more evidence becomes available.

Fig. 9 Bias - median, mean ± 1 SD, actual data

The effect of this learning process can be seen by
taking the “Predicted” scenario and entering Vi
observations for completed iterations. As each new piece
of information is entered, back propagation takes place,
causing the distributions for the model parameters to be
updated. These updated parameter distributions then
affect the predictions of future iterations.

P re d ic te d

A c tu a l

Fig. 10 Predicted vs. actual V, 2 observations

The graphs in Fig. 10 show the change in predicted
values when the first two Vi values have been entered.
The whole of the “Predicted” graph moves to lower
values as the model learns from the observations. The
predictions for Vi in iterations 3 and 4 improve as a result.

However, the predicted Vi for iterations 5, 6 and 7 are
significantly worse.

The Williams, Shukla and Anton paper [4] points out
that various XP practices were implemented more
effectively in later iterations. In the next section, we show
how this can be incorporated into the model.

5.3. Indicator Nodes

Indicator nodes are nodes with a single parent and no
children. They are often used to provide evidence for
variables that are themselves unobservable. Indicator
nodes are one of the main mechanisms used to introduce
XP practices into the model.

An indicator node for the Effectiveness Limit is shown
in Fig. 11: the “Onsite Customer” node. This is the extent
to which an authoritative customer was available to
answer questions about requirements and provide
feedback on development. It is a ranked node, consisting
of five discrete values ranging from Very Low to Very
High. These discrete values define five equal, discrete
partitions of the real number range [0,1].

The probability of these five values is derived from a
truncated normal distribution whose mean is li, and whose
variance is set to 0.1. This distribution ensures that a high
degree of customer input leads to a high effectiveness
limit. The variance determines the strength of the
relationship. More information on ranked nodes and the
use of the truncated normal distribution can be found in
[11].

li-1

ri-1

ei-1

li

ri ei

Collective
ownership

Onsite
Customer

Fig. 11 The "Onsite Customer" indicator node

It is important to emphasize that the values entered into
the “Onsite Customer” node must be relative to the need
for customer input. If the project team have developed
similar projects for this customer in the past, or are
themselves experts in the application domain, then
constant customer input may not be useful. In these
circumstances a “Very High” value for “Onsite

Customer” might be appropriate, even if the customer is
not physically present, but was still able to provide input
when needed.

Fig. 12 shows how the indicator node’s parent is
affected by changes in its values. The central, straight line
shows the median from the Effectiveness Limit node’s
distribution when only effort data has been entered; this is
the “Predicted” scenario. When all the Vi data is entered,
then the Effectiveness Limit varies throughout the project
(the “Actual” curve). The “Learned” curve shows the
Effectiveness Limit that is learned when only V1 and V2
have been entered as observations. This is the curve
which is responsible for the modified predictions shown
in Fig. 10.

P re d ic te d

A c tu a l
L e a rn e d

O n s ite C u s t

Fig. 12. Effectiveness Limit with and without
indicator node evidence

At the start of the 5th iteration, the Motorola team had
constant access to an onsite customer. The “Onsite
Customer” indicator node was therefore set to “Very
High” for these iterations. The result is the “Onsite Cust”
curve. It shares the same values for the Effectiveness limit
as the “Learned” curve, until the values for the Onsite
Customer indicator node are modified.

The result of entering indicator node evidence is an
improvement in the predicted Vi values, as shown in Fig.
13.

5.4. Calibrating the Onsite Customer Node

The distribution for the “Onsite Customer” node is

based on data from Korkala, Abrahamsson and Kyllönen
[9]. In their paper, four case studies are described with
varying degrees of customer interaction. The percentage
of effort devoted to fixing defects, including specification
defects, varied greatly in the four case studies. Where
customer input was very high, only 6% of effort was
spent fixing defects. Moreover this level remained

constant across iterations. At the other extreme, when
customer input was very low, the time spent fixing
defects grew across iterations until it reached about 40%
in iteration 3.

A c tu a l

L e a rn e d

O n s ite C u s t

Fig. 13 V with and without indicator node
evidence

Our model does not explicitly include details of rework
effort or defect fixing effort; they are simply included as
effort which does not contribute to V. We therefore make
the following definitions and assumptions concerning the
relationship between defect fixing effort and non-velocity
effort.

1. Define “Misdirected Effort”, mi, to be the fraction of

effort which does not contribute to completed user
stories.

2. Misdirected effort is composed of effort to fix
defects, di, and other overheads, oi.

3. The other overheads, oi, are fixed for a given
environment.

4. When the onsite customer input is at its maximum,
the defects fixing effort is at its minimum.

With these assumptions in place, we can use the

Bayesian Network shown in Fig. 14 to calibrate the
Onsite Customer node. The algorithm proceeds as
follows.

1. An initial guess is made at the Onsite Customer

distribution.
2. The values of oi are chosen so that, when the Onsite

5.5. Timescale Prediction customer node is set to “Very High”, di produces a
constant mean value of about 6% across all iterations.

Fig. 16 shows a slightly modified version of the
velocity fragment of the model. This includes an
additional link node, si, which acts as the cumulative sum
of V to date.

3. Modify the Onsite Customer distribution, with the
value set to “Very Low” until the time spent fixing
defects in iteration 3 is about 40%.

4. Repeat steps 2 and 3 until both conditions are
satisfied simultaneously.

bi-1 Vi bi

si-1 si = si-1 + Vi

li-1

ri-1

ei-1

li

ri ei

mi = 1 - ei

di oi = mi - oi

Onsite
Customer

Fig. 16. Project Velocity summed to date.

Plots of si for the initial prediction, the learned
prediction and the actual scenarios are shown in Fig. 17.
If the total estimate to complete the entire project is, say,
200 IEDs, then we can immediately read off from the
graph how long it will take to complete the project.

The initial predictions of the model are too optimistic.
However, once the model has learned from the V1 and V2
observations, and account has been taken of the onsite
customer, the predictions are virtually indistinguishable
from the actual outcome. Fig. 14 BN used to calibrate the Onsite Customer

node

In itia l
Actua l

Learned

The resulting defect effort percentages for each value
of “Onsite Customer” across four iterations are shown in
Fig. 15. These are similar to the empirical curves of
Figure 3 in [9].

V ery H igh

H igh

M ed ium

Low

V ery Low

Fig. 17 Sum Vi to date

The model can also quantify the uncertainty involved
in completing 200 IEDs of user stories within 8 iterations.
Fig. 18 shows the cumulative distribution functions for
the si node in iteration 8. The vertical line allows us to
read off the probability of completing up to 200 IEDs by
the end of the 8th iteration. For the “Initial” scenario,
there is only a 10% chance of completing less than 200
IEDs, i.e. there is a 90% chance of completing 200 IEDs

Fig. 15 Defect effort % for each Onsite Customer
setting

or more. 4. It is relatively simple to add new XP practices or
other environmental features, making the model
extremely versatile.

Once the model has learned from V1 and V2, the
probability is revised down to a 65% probability. The
actual number of IEDs delivered was 224.

The model has already been extended to reproduce the
mentoring overhead of assimilating additional team
members. This closely follows the model of Williams,
Sukla and Anton[4]. This is an important aspect of the
"Brooks’ factor", i.e. the tendency for larger teams to be
less productive [2].

In i t ia l 9 0 %

A c tu a l 7 0 %

L e a rn e d
6 5 %

A similar approach can be used to create a defects
prediction model, with the effort model as one of its
primary inputs. This allows a family of models to be
constructed which represent a wide variety of XP
environments and which can be used to model either
effort alone, effort plus defects, or cost versus time trade-
offs. Each will be able to cope with varying size project
teams.

10. References

[1] Jensen, Bayesian Networks and Decision Graphs, Springer-Verlag,
New York, 2001.

[2] Brooks FP, The Mythical Man-Month: essays on software
engineering, 2nd edition, Addison Wesley, 1995.

[3] AgenaRisk User Manual, Agena Limited, www.agenarisk.com.
Fig. 18 Iteration 8 cumulative distributions, Sum

V to date
[4] Williams L, Shukla A, Antón AI, An Initial Exploration of the

Relationship Between Pair Programming and Brooks’ Law,
Proceedings of the Agile Development Conference (ADC’04)

 [5] Lauritzen, S. L. and Spiegelhalter, D. J. Local computations with
probabilities on graphical structures and their application to expert
systems (with discussion). J.R. Statistical Soc. Series B, 50, no. 2,
pp. 157-224, 1988

6. Conclusions and Future Work

The model developed in [10] has been applied to a real
industrial project. Incorporating data from the early part
of the project enabled the model to update its parameters
and improve its predictions. When this was combined
with knowledge about the presence of an onsite customer,
the model was able to make extremely accurate
predictions about the level of functionality delivered over
time. In [10] we showed how collective code ownership
could be used in a similar role. Other XP practices can be
incorporated in the model using similar techniques.

[6] Ahmed, A.; Fraz, M.M.; Zahid, F.A., Some results of
experimentation with extreme programming paradigm, 7th
International Multi Topic Conference, INMIC 2003. Page(s): 387-
390

[7] Abrahamsson P, Koskela J, Extreme Programming: A Survey of
Empirical Data from a Controlled Case Study, 2004 International
Symposium on Empirical Software Engineering (ISESE'04), pp.
73-82

[8] K. P. Murphy. Dynamic Bayesian Networks: Representation,
Inference and Learning. PhD thesis, UC Berkeley, 2002.

[9] Korkala M, Abrahamsson P, Kyllönen P, A Case Study on the
Impact of Customer Communication on Defects in Agile Software
Development, Proceedings of AGILE 2006 Conference
(AGILE'06) There are several things which should be noted about

this type of model. [10] Hearty P, Fenton N, Marquez D, Neil M, Improved prediction in
Extreme Programming Projects using Bayesian Networks,
submitted IEEE TSE Nov 2006, http://www.dcs.qmul.ac.uk/~
norman/papers/

1. No extensive data collection phase was necessary.

The model started off making generic predictions,
but quickly altered them as local data became
available.

[11] Fenton NE, Neil M "Using Ranked nodes to model qualitative
judgements in Bayesian Networks" submitted IEEE TKDE, Feb
2006, http://www.dcs.qmul.ac.uk/~norman/papers/

[12] Little T, Schedule Estimation and Uncertainty Surrounding the
Cone of Uncertainty, IEEE SOFTWARE May/June 2006

2. Empirical data, project data, prior assumptions and
expert judgment are combined in a single intuitive,
causal model.

3. The predictions provide probability distributions, not
just single values. The model tells you what the
chances of various outcomes are.

Peter Hearty is a Ph.D. student at Queen Mary, University of London.
He gained a B.Sc. in Mathematics and Physics from the University of
Stirling in 1982. He worked as a programmer, analyst and designer for
various commercial organizations before founding his own database
company in 1997.

Norman Fenton is Professor of Computing at Queen Mary (London
University) and is also CEO of Agena, a company that specialises in risk
management for critical systems. At Queen Mary he is the Computer
Science Department Director of Research and he is the Head of the Risk
Assessment and Decision Analysis Research Group (RADAR).
Norman's books and publications on software metrics, formal methods,
and risk analysis are widely known in the software engineering
community. Norman’s recent work has focused on causal models
(Bayesian Nets) for risk assessment in a wide range of application
domains such as vehicle reliability, embedded software, transport
systems, TV personalisation and financial services. Norman is a
Chartered Engineer and Chartered Mathematician and is a Fellow of the
British Computer Society. He is a member of the Editorial Board of the
Software Quality Journal.

David Marquez is a Research Assistant for the RADAR (Risk
Assessment and Decision Analysis) Group, at the Department of
Computer Science, Queen Mary, University of London. Before joining
academia he worked as a Senior Researcher in the Oil industry,
developing and applying mathematical and statistical models in reservoir
characterisation problems. His research interests include Bayesian
statistical modelling, Bayesian Networks, Space-State models, and
statistical pattern recognition. He has a PhD in mathematic from the
University of Marne-La-Valle, France.

Martin Neil is a Reader in "Systems Risk" at the Department of
Computer Science, Queen Mary, University of London, where he
teaches decision and risk analysis and software engineering. Martin is
also a joint founder and Chief Technology Officer of Agena Ltd, who
develop and distribute AgenaRisk, a software product for modelling risk
and uncertainty. His interests cover Bayesian modelling and/or risk
quantification in diverse areas: operational risk in finance, systems and
design reliability (including software), project risk, decision support,
simulation, AI and personalization, and statistical learning. Martin
earned a BSc in Mathematics, a PhD in Statistics and Software Metrics
and is a Chartered Engineer.

	Introduction
	Definitions and Terminology
	User Stories
	Project Velocity
	Process factors

	Bayesian Net Model
	Dynamic Bayesian Networks
	Parameter Learning

	Model Breakdown
	Iteration Model
	Setting the initial conditions

	Model Validation
	The Motorola Project
	Parameter Learning
	Indicator Nodes
	Calibrating the Onsite Customer Node
	Timescale Prediction

	Conclusions and Future Work

