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Abstract 
 
Bayesian networks have the ability to combine sparse 

data, prior assumptions and expert judgment into a single 
causal model. We present such a model of an Extreme 
Programming environment and show how it can learn 
from project data in order to make quantitative effort 
predictions and risk assessments. This is illustrated with 
the use of a real world industrial project. 

 

1. Introduction 
 
In [10] we presented the case for modeling the 

Extreme Programming process using Bayesian Networks 
(BNs). BNs allow prior assumptions, incomplete data and 
expert judgment to be combined in a single, causal, 
model, allowing us to reason in the presence of 
uncertainty. We now apply the model developed in [10] 
to a real Extreme Programming (XP) project. 

The model depends heavily on Project Velocity (PV), 
the one management metric that is always available in 
XP. Roughly speaking, PV can be thought of as 
"productive effort per iteration". The exact definition of 
PV is given in section 2.2.  

PV data is collected from the first iteration in any 
project. This is incorporated into the model, enabling it to 
learn key parameters and increase the confidence of its 
predictions in subsequent iterations. 

As argued in [10], the model satisfies the following 
requirements. 

 
1. It monitors and predicts PV, taking into account 

the impact of relevant process factors. 
2. The core model is very small. This enables it to be 

replicated multiple times in order to represent the 
multiple iterations of an agile development 
environment. 

3. The model can be adapted to handle different types 
of data for different environments. In particular, 
the model handles key XP practices, while being 
dependent on none of them. 

4. Many projects report low initial productivity, 
gradually rising on subsequent iterations [6], [7] 
and [4]. As shown in [10], the model is capable of 
replicating this empirical behavior. 

5. The model learns from data, either as a result of 
observations or as a result of expert judgment 
entered as evidence. 

6. It gives useful and clear advice to managers. 
 
While these features were initially demonstrated in 

[10], no attempt was made to validate the model against a 
real XP project. In this paper we address this by using 
data from a case study based around a project from 
Motorola [4]. The model’s predictions of XP User Stories 
(defined below) as they are delivered over time, are in 
good agreement with the actual User Stories delivered. 

The model was implemented using the AgenaRisk 
toolset [3]. This was due, amongst other things, to the 
ease with which dynamic models can be constructed and 
the availability of a wide range of built-in conditional 
probability functions. 

Section 2 defines XP terminology as it is used in the 
model. Sections 3 and 4 summarize the key components 
of the model [10], with Bayesian Nets being discussed in 
Section 3 and a breakdown of the model components 
being presented in Section 4. Section 5 applies the model 
to the industrial case study. Finally, Section 6 provides 
some conclusions and indications of future work. 

 

2. Definitions and Terminology 
 
The basic unit of work in Extreme Programming (XP) 

is the User Story. When an XP iteration finishes, the 
estimated efforts for the completed user stories are added 
together to create the Project Velocity (PV). In the sub-
sections that follow we describe how user stories and PV 
are defined, and how they are incorporated into the model 

 
2.1. User Stories 

 
Developers assign the effort that they believe is 

required for them to design, code and test each user story. 
Efforts are estimated using a unit called Ideal 
Engineering Days (IEDs). This is a day devoted entirely 
to user story completion, free from overheads and 
distractions. It includes detailed design, coding, unit 
testing and acceptance testing. It excludes all other effort 
that can consume developers’ time, including but not 



limited to administrative tasks, mentoring, support  and 
learning. 

We denote the estimated effort for the jth user story in 
iteration i by Ui

j. 
 

2.2. Project Velocity 
 
Once iteration i is complete, the estimates for the 

completed user stories are added together. This is the 
project velocity Vi for iteration i.  
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 Eq.  1 
 

 
Assuming that the next iteration, i + 1, is the same 

length, the customer selects the highest priority 
uncompleted user stories whose estimated IEDs sum to 
Vi. These user stories are then scheduled for iteration i + 
1. The work scheduled for iteration i + 1 therefore has the 
same estimated ideal effort as the estimates for the actual 
work completed in iteration i.  

Note that the actual time taken to complete a user 
story is not used here. To relate actual productive time to 
estimated productive time, we introduce a bias, bi, into the 
model. The word “bias” is not intended in the statistical 
sense of a biased estimator. 

If Ai
j are the actual efforts taken then: 
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Eq.  2
 

 
This scheduling mechanism assumes that the ratio of 

effort (people × working days) to V remains constant. 
This assumption can be justified by examining the two 
possible estimation scenarios. 

 
1. User story estimates are being consistently 

overestimated or underestimated. This consistency 
ensures that any bias in the estimates for the previous 
iteration will be repeated in the current iteration. 

2. There is no consistent bias in the effort estimations, 
i.e. there is as much overestimation as 
underestimation. These inaccuracies will even 
themselves out over multiple iterations. This further 
assumes that teams are able to schedule additional 
work in an iteration when the effort of existing tasks 
has been over-estimated and slack time is available. 

 
2.3. Process factors 

 
To model the relationship between total effort and 

productive effort, there is a single controlling factor 
which we call Process Effectiveness, e. This is a real 
number in the range [0,1]. A Process Effectiveness of one 
means that all available effort becomes part of the 
productive effort. 

The Process Effectiveness is, in turn, controlled by two 
further parameters: Effectiveness Limit, l, and Process 
Improvement, r. The Process Improvement is the amount 
by which the Process Effectiveness increases from one 
XP iteration to the next. To allow for failing projects, the 
Process Improvement can take on negative values. 

The Effectiveness Limit recognizes the fact that there 
are often limits to how productive a team of people can 
be. Effectiveness Limit is therefore the maximum value 
which the model allows Process Effectiveness to take. 

 

3. Bayesian Net Model  
 

A Bayesian Net (BN) is a directed acyclic graph (such 
as the one shown in Fig.  1), where the nodes represent 
random variables and the directed arcs define causal 
influences or functional relationships. Nodes without 
parents are defined through their prior probability 
distributions. Nodes with parents are defined through 
Conditional Probability Distributions (CPDs). Some 
CPDs are deterministic functions, such as the ones shown 
in Fig.  1; others, such as the priors for the initial settings 
in section 4.2, are defined as probability functions. 
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Fig.  1.  Project velocity model. 

Table 1 summarizes the model variables for the BN 
described in [10]. Measures of effort are denoted by 
capital letters. All other variables use lower case letters. 
Subscripts are used to denote a specific XP iteration. For 
example V2 denotes the velocity in iteration 2. Where the 
iteration is not important, we drop the subscript and refer 
simply to V.  



Table 1 Symbol definitions  
3.1. Dynamic Bayesian Networks 

 

Symbol 
 

Meaning 

di Number of working days in iteration i. 
di = 0, 1, 2, ... This is an integer value.  

pi Number of team members in iteration i. This 
can be fractional if one or more people do 
not work full time on the project. ei ∈ [0, 
∞).  

si Productive effort to date.  
si = si-1 + Vi = ΣVi, si ∈ [0,∞). 

Ei Iteration effort in man-days.  
Ei = pi × di, Ei ∈ [0,∞). 

Ui
j Estimated effort of jth user story in iteration 

i. Ui
j ∈ [0,∞). 

Ai Actual productive effort in iteration i.  
Ai = Ei × ei, Ai ∈ [0,∞). 

Vi Project Velocity in iteration i. 

∑=
j

j
ii UV , Vi ∈ [0,∞). 

bi Estimation bias. bi =  Vi / Ai, bi ∈ [0,∞). 
fi Load Factor in iteration i. fi = Ei / Vi, fi ∈ 

[1,5]. Used to estimate timescales. The 
upper limit is arbitrary. 

ei Process effectiveness in iteration i.  
Vi = Ei × ei, ei ∈ [0,1].  

li Effectiveness limit. The maximum value 
that the ei can take, li ∈ [0,1]. 

ri Process improvement.  
ei = min (ei-1 + ri , li) , ri ∈ [-1,1]. 

 
Dynamic Bayesian Nets (DBN) extend BNs by adding 

a temporal dimension to the model. Formally, a DBN is a 
temporal model representing a dynamic system, i.e. it is 
the system being modeled which is changing over time, 
not the structure of the network [8]. A DBN consists of a 
sequence of identical Bayesian Nets, Zt, t = 1,2,..., where 
each Zt represents a snapshot of the process being 
modeled at time t. We refer to each Zt as a timeslice. For 
XP, where the software production process is split into a 
series of discrete iterations, this is a particularly apt 
approach. 

The models presented here are all first order Markov. 
This means that the P(Zt | Z1:t-1) = P(Zt | Zt-1) 
(informally, the future is independent of the past given 
the present). The first order Markov property reduces the 
number of dependencies, making it computationally 
feasible to construct models with larger numbers of 
timeslices. Consistent propagation is achieved using 
standard Junction Tree algorithms [5]. 

Nodes that contain links between two timeslices are 
referred to as link nodes. Fig.  1 shows a single timeslice 
Zt, t =1,2…., but with the link nodes from the previous 
timeslice shown lightly shaded. The link nodes to the next 
timeslice are shaded black. Fig.  2 shows the same model, 
this time “rolled out” as a three iteration DBN (link nodes 
are shaded). 
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When the value of a variable has been measured, it can 
be entered as data in the corresponding node. The rules of 
Bayesian probability are then applied to propagate 
consistently the impact of the evidence on the 
probabilities of the variables of interest. More information 
on Bayesian Nets and suitable propagation algorithms can 
be found in [1] and [5]. 

When we wish to distinguish between a model 
prediction and a measured value, we will use an 
underscore to denote the measurement. So if V3 is the 
predicted value for the velocity at iteration three, then V3 
is the measured value. Fig.  2 Model as a DBN 

Not all of the variables shown in Table 1 are shown in 
Fig.  1. Several of the variables are included only to make 
the definitions of others more rigorous (d, and p). Some 
exist to relate the model to XP concepts (f and U), and 
others to relate the model to management concepts (s). 

 
3.2. Parameter Learning 

 
The process effectiveness limit (li) , rate of process 

improvement (ri) and bias (bi) are the key parameters in 
this model. Between them they control the process 
effectiveness, which in turn controls the velocity. It is 
important that the model is capable of adjusting these 
parameters as a result of entering data about the project. 

Before presenting the model in detail, we need to 
discuss a few preliminaries about Dynamic Bayesian 
Nets. 

 
 



In particular, the model must respond to observations of 
the V i. 

4. Model Breakdown  
 
We describe a single timeslice by breaking it down into 

distinct fragments (section 4.1). The model is constructed 
by linking these timeslices together. A special initial 
timeslice is used to create the initial prior probability 
distributions (section 4.2). 

 
4.1. Iteration Model 

 
The BN shown in Fig.  1 is used as a single iteration 

model for project velocity. The model is best thought of 
as comprising three distinct fragments.  

Fragment 1 controls the Productive Effort (Fig.  3). A 
single variable, Process Effectiveness (ei), is assumed to 
determine the Productive Effort. High Process 
Effectiveness means a high Productive Effort and a 
correspondingly high velocity. Process Effectiveness 
increases or decreases based on the value of the Process 
Improvement (ri). It is constrained to the range [0, li]. 

The CPD of li is a function of li-1. In this case li is set 
equal to li-1. The process effectiveness limit (li) is really a 
single variable which is global to all timeslices. Copying 
it between timeslices allows us to preserve the first order 
Markov property. Similarly ri is just a copy of ri-1. 
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Fig.  3 Fragment 1 - Process effectiveness nodes 

Fragment 2 contains the "effort" nodes (Fig.  4). It 
combines the total Iteration Effort (Ei) with the process 
effectiveness (ei) to create the actual Productive Effort 
(Ai). Note that, although Ai is not required by the XP 
methodology, we need it in this model for reasons that 
will be explained below. 

 
 Ei Ai  

Fig.  4 Fragment 2 - Effort nodes 

 
Fragment 3 holds the project velocity (Fig.  5). 

Velocity can either be predicted by the model (Vi), or 
once an iteration is completed, it can be entered as 
evidence (Vi) and used to learn the model parameters. The 

bias, bi, allows for any consistent bias in the team’s effort 
estimation. If there was no bias then the productive effort, 
A, would be the same as V and there would be no need to 
distinguish between the two.  
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Fig.  5 Fragment 3 - Project Velocity 

 
4.2. Setting the initial conditions 

 
An initial timeslice, Iteration 0 (shown in Fig.  6), is 

used to set the initial model conditions.  
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Fig.  6.  Initial Velocity model 

 
For iteration 0, the prior distributions of the input 

effectiveness limit (l0), process improvement (r0) and 
process effectiveness (e0) are all set to be normal 
distributions, with variances of 0.3 and means of 0.8, 0.2 
and 0.3 respectively. These values are based on a 
controlled case study by Abrahamsson and Koskela [7], 
where process effectiveness varied between 0.4 and 0.75. 
We have simply extended this range slightly and chosen 
r0 so that the lowest to highest transition can take place 
within four iterations. 

The prior of the estimation bias (b0) is set to a log 
normal distribution with a mean of approximately 1.0, 
and a variance of 0.1. The log normal distribution follows 
from the fact that the bias cannot be less than zero but has 
no upper bound. For example, a pessimistic bias, where 
estimates are 2 times the actual, results in a bias of 2, 
whereas an optimistic bias results in a bias of ½. This 
distribution is confirmed empirically, for example by 
Little [12]. 

Evidence is entered in all of the Ei nodes. 



  
  

Iteration 1

Iteration 8

 

5. Model Validation  
 

In [10] we showed that the model reproduced known 
empirical behavior in XP projects. This includes the 
gradually increasing values of V observed in several 
studies [6], [7] and [4].  

In this section we apply the model to an industrial case 
study (section 5.1). The model can learn from the initial 
data entered from the project (section 5.2) and adjusts its 
predictions once beneficial XP practices are taken into 
account (section 5.3) Section 5.4 provides an example of 
how the model can be calibrated for a specific XP 
practice. Finally, in Section 5.5 the model provides 
predictions for the time taken to deliver a fixed amount of 
functionality. These are in good agreement with the actual 
functionality delivered. 

 

 Fig.  7 Distributions for Vi , one per timeslice 
5.1. The Motorola Project 

Predic ted 

Actua l 

 

 
Williams, Shukla and Anton [4] provided a detailed 

description of an XP project developed at Motorola. The 
project was developed in a series of eight iterations of 
between two and three weeks duration. The number of 
people on the team varied from three to nine people over 
the duration of the project. The full data set is shown in  
Table 2. 

 
Table 2 – Motorola project data 

 
    i 1 2 3 4 5 6 7 8 
di 15 15 15 16 12 10 8 10 
pi 3 3 6 6 7 7 9 4 
Ei 45 45 90 96 84 70 72 40 
V i 9 13 35 30 40 40 36 20 

 
The definition of Project Velocity used by the 

Motorola team corresponds to what we have called 
Process Effectiveness. We will continue to use the 
definition given in Eq.  1. The values for Vi given in 
Table 2 have been calculated using our definition. 

Fig.  8. Predicted vs. actual Motorola V (medians) 

5.2. Parameter Learning  
 
There are a number of problems with the predicted 

values in Fig.  8. The most obvious is that, apart from 
iteration 6, the predicted values are consistently too high. 
In this section we demonstrate how the model can learn 
from real project data and quickly improve the accuracy 
of its predictions. 

Initially we simply enter values for Ei into the model 
(no values for Vi entered). Fig.  7 shows the resulting 
marginal distributions which are generated for the Vi 
node. There is one distribution for the node in each 
timeslice. 

A good example of this can be seen in Fig.  9. This 
shows the behavior of the Bias node, bi, when all of the Vi 
values have been entered. The central dotted line, which 
is almost co-incident with the solid line, shows the mean 
and median values respectively. The outer dotted lines 

The median values from the Vi distributions are shown 
in Fig.  8 (the “Predicted” graph). Actual values for Vi  
are shown in the same figure for comparison (the 
“Actual” graph). 

 



show the mean ± 1 standard deviation (SD). The SD gets 
smaller as more evidence is entered into the model. This 
illustrates that, not only does the model learn the values 
of its parameters, but the uncertainty in those values 
decreases as more evidence becomes available. 

 

 
Fig.  9 Bias - median, mean ± 1 SD, actual data 

The effect of this learning process can be seen by 
taking the “Predicted” scenario and entering Vi 
observations for completed iterations. As each new piece 
of information is entered, back propagation takes place, 
causing the distributions for the model parameters to be 
updated. These updated parameter distributions then 
affect the predictions of future iterations.  
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Fig.  10 Predicted vs. actual V, 2 observations 

The graphs in Fig.  10 show the change in predicted 
values when the first two Vi values have been entered. 
The whole of the “Predicted” graph moves to lower 
values as the model learns from the observations. The 
predictions for Vi in iterations 3 and 4 improve as a result. 

However, the predicted Vi for iterations 5, 6 and 7 are 
significantly worse. 

The Williams, Shukla and Anton paper [4] points out 
that various XP practices were implemented more 
effectively in later iterations. In the next section, we show 
how this can be incorporated into the model. 
 

5.3. Indicator Nodes 
 

Indicator nodes are nodes with a single parent and no 
children. They are often used to provide evidence for 
variables that are themselves unobservable. Indicator 
nodes are one of the main mechanisms used to introduce 
XP practices into the model. 

An indicator node for the Effectiveness Limit is shown 
in Fig.  11: the “Onsite Customer” node. This is the extent 
to which an authoritative customer was available to 
answer questions about requirements and provide 
feedback on development. It is a ranked node, consisting 
of five discrete values ranging from Very Low to Very 
High. These discrete values define five equal, discrete 
partitions of the real number range [0,1]. 

The probability of these five values is derived from a 
truncated normal distribution whose mean is li, and whose 
variance is set to 0.1. This distribution ensures that a high 
degree of customer input leads to a high effectiveness 
limit. The variance determines the strength of the 
relationship. More information on ranked nodes and the 
use of the truncated normal distribution can be found in 
[11]. 
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Fig.  11 The "Onsite Customer" indicator node 

It is important to emphasize that the values entered into 
the “Onsite Customer” node must be relative to the need 
for customer input. If the project team have developed 
similar projects for this customer in the past, or are 
themselves experts in the application domain, then 
constant customer input may not be useful. In these 
circumstances a “Very High” value for “Onsite 



Customer” might be appropriate, even if the customer is 
not physically present, but was still able to provide input 
when needed. 

Fig.  12 shows how the indicator node’s parent is 
affected by changes in its values. The central, straight line 
shows the median from the Effectiveness Limit node’s 
distribution when only effort data has been entered; this is 
the “Predicted” scenario. When all the Vi data is entered, 
then the Effectiveness Limit varies throughout the project 
(the “Actual” curve). The “Learned” curve shows the 
Effectiveness Limit that is learned when only V1 and V2 
have been entered as observations. This is the curve 
which is responsible for the modified predictions shown 
in Fig.  10. 
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Fig.  12.  Effectiveness Limit with and without 
indicator node evidence 

At the start of the 5th iteration, the Motorola team had 
constant access to an onsite customer. The “Onsite 
Customer” indicator node was therefore set to “Very 
High” for these iterations. The result is the “Onsite Cust” 
curve. It shares the same values for the Effectiveness limit 
as the “Learned” curve, until the values for the Onsite 
Customer indicator node are modified. 

The result of entering indicator node evidence is an 
improvement in the predicted Vi values, as shown in Fig.  
13. 

 
5.4. Calibrating the Onsite Customer Node 

 
The distribution for the “Onsite Customer” node is 

based on data from Korkala, Abrahamsson and Kyllönen 
[9]. In their paper, four case studies are described with 
varying degrees of customer interaction. The percentage 
of effort devoted to fixing defects, including specification 
defects, varied greatly in the four case studies. Where 
customer input was very high, only 6% of effort was 
spent fixing defects. Moreover this level remained 

constant across iterations. At the other extreme, when 
customer input was very low, the time spent fixing 
defects grew across iterations until it reached about 40% 
in iteration 3. 
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Fig.  13 V with and without indicator node 
evidence 

Our model does not explicitly include details of rework 
effort or defect fixing effort; they are simply included as 
effort which does not contribute to V. We therefore make 
the following definitions and assumptions concerning the 
relationship between defect fixing effort and non-velocity 
effort. 

 
1. Define “Misdirected Effort”, mi, to be the fraction of 

effort which does not contribute to completed user 
stories. 

2. Misdirected effort is composed of effort to fix 
defects, di, and other overheads, oi. 

3. The other overheads, oi, are fixed for a given 
environment. 

4. When the onsite customer input is at its maximum, 
the defects fixing effort is at its minimum. 

 
With these assumptions in place, we can use the 

Bayesian Network shown in Fig.  14 to calibrate the 
Onsite Customer node. The algorithm proceeds as 
follows. 

 
1. An initial guess is made at the Onsite Customer 

distribution. 
2. The values of oi are chosen so that, when the Onsite 



5.5. Timescale Prediction customer node is set to “Very High”, di produces a 
constant mean value of about 6% across all iterations.  

Fig.  16 shows a slightly modified version of the 
velocity fragment of the model. This includes an 
additional link node, si, which acts as the cumulative sum 
of V to date. 

3. Modify the Onsite Customer distribution, with the 
value set to “Very Low” until the time spent fixing 
defects in iteration 3 is about 40%. 

4. Repeat steps 2 and 3 until both conditions are 
satisfied simultaneously.  

 
bi-1 Vi bi 

si-1 si = si-1 + Vi  
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Fig.  16. Project Velocity summed to date. 

Plots of si for the initial prediction, the learned 
prediction and the actual scenarios are shown in Fig.  17. 
If the total estimate to complete the entire project is, say, 
200 IEDs, then we can immediately read off from the 
graph how long it will take to complete the project.  

The initial predictions of the model are too optimistic. 
However, once the model has learned from the V1 and V2 
observations, and account has been taken of the onsite 
customer, the predictions are virtually indistinguishable 
from the actual outcome. Fig.  14 BN used to calibrate the Onsite Customer 

node  

In itia l 
Actua l 

Learned 

 

The resulting defect effort percentages for each value 
of “Onsite Customer” across four iterations are shown in 
Fig.  15. These are similar to the empirical curves of 
Figure 3 in [9]. 
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Fig.  17 Sum Vi to date 

The model can also quantify the uncertainty involved 
in completing 200 IEDs of user stories within 8 iterations. 
Fig.  18 shows the cumulative distribution functions for 
the si node in iteration 8. The vertical line allows us to 
read off the probability of completing up to 200 IEDs by 
the end of the 8th iteration. For the “Initial” scenario, 
there is only a 10% chance of completing less than 200 
IEDs, i.e. there is a 90% chance of completing 200 IEDs 

Fig.  15 Defect effort % for each Onsite Customer 
setting 

 



or more. 4. It is relatively simple to add new XP practices or 
other environmental features, making the model 
extremely versatile. 

Once the model has learned from V1 and V2, the 
probability is revised down to a 65% probability. The 
actual number of IEDs delivered was 224.  

The model has already been extended to reproduce the 
mentoring overhead of assimilating additional team 
members. This closely follows the model of Williams, 
Sukla and Anton[4]. This is an important aspect of the 
"Brooks’ factor", i.e. the tendency for larger teams to be 
less productive [2].  
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A similar approach can be used to create a defects 
prediction model, with the effort model as one of its 
primary inputs. This allows a family of models to be 
constructed which represent a wide variety of XP 
environments and which can be used to model either 
effort alone, effort plus defects, or cost versus time trade-
offs. Each will be able to cope with varying size project 
teams. 
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