
Applying Bayesian Belief Networks to
System Dependability Assessment

Martin Neil Bev Littlewood and Norman Fenton

Centre for Systems Centre for Software Reliability

and Software Engineering City University

South Bank University London, UK

London, UK

Abstract

The dependability of technological systems is a growing social
concern. Increasingly computer based systems are developed that
carry the potential of increasing catastrophic consequences from
single accidents. There have been significant research advances in
assessment methods. However dependability assessment of
computer systems in practice is still a very uncertain and often ad-
hoc procedure. Decision making about system dependability is an
uncertain affair and must account of failures in expertise and be
capable of integrating different sources of evidence. A more
meaningful way of reasoning about systems dependability can be
achieved by rejecting current ad-hoc dependability assessment
methods and replacing them with the idea of dependability
argumentation. Bayesian Belief Networks (BBN’s) is proposed as
the most promising technology to support this kind of
dependability argumentation.

1 Introduction
The dependability of technological systems is a growing social concern as more
computer based systems are developed that carry the potential of increasing
catastrophic consequences from single accidents [Perrow 84, Mellor 94]. A large
amount of effort is spent in improving the dependability of these systems and also
in assessing this dependability to the satisfaction of regulatory agencies, insurers,
owners and the public at large. For systems where accidents may have serious
consequences on human life and health and on the environment, assessors apply
methods to help assure that such accidents will happen with acceptably low
probabilities. A variety of standards, models and risk assessment methods have
traditionally been employed to support these activities.

Despite the considerable success in the use of such methods, systems dependability
assessment is still a very uncertain and often ad-hoc procedure, especially where
systems contain software. Traditional PRA (Probabilistic Risk Assessment)
methods of assessing dependability have tended to concentrate on the dangers
presented by physical sources of failure rather than by design faults. Engineers
when they are asked to deal with uncertain situations, that require considerable
judgement, have tended to rely on strictly “objective” (relative frequency)
interpretations of accident likelihoods [Apostolakis 90]. The perception is that it is
difficult to apply such frequency considerations to design faults so there has been a
tendency to either ignore them or be less rigorous in their assessment.

There are however many standards and models that aim to address the
dependability problem. These methods provide a wealth of practical advise on
which development approach to choose to achieve dependability but are inadequate
when it comes to questions of dependability assessment. Software standards lack
engineering rigour and are imprecise [Devine et al. 93, Fenton et al. 94], and do
not address the fundamental problem of predicting dependability of software.
Alternative approaches to safety assessment for software have been presented
borrowing from the ideas of fault tree and hazard analysis [Leveson 95, DEF00-58
95]. There is good reason to believe that these approaches might make us more
confident in a system’s dependability but their rejection of the probability concepts
inherent in the original techniques weaken any attempt to assess dependability.
There have been a number of attempts at “characterising” software dependability
using quality models [Walters and McCall 78, Basili and Rombach 88]. These
approaches propose that if we can decompose dependability properties into
supposedly measurable attributes then we can indicate the degree of dependability
possessed by the system. This reductionist scheme seems promising but we argue
that it is flawed and cannot be used to reason about dependability in a meaningful
way.

We recognise that making decisions about system dependability is an uncertain
affair and must take into account disparate sources of evidence, the most prominent
being expert judgement [Littlewood 93]. However the impact of such evidence is
riddled with uncertainty. The relative contributions of different factors are often
unknown or controversial and difficult to quantify [Littlewood et al. 95a]. Generally
a dependability assessment is obtained by relying on the ability of human experts to
integrate the evidence, by applying their own judgement, to obtain important
conclusions and make predictions.

It is the contention of this paper that a more meaningful way of reasoning about
systems dependability can be achieved by rejecting current ad-hoc dependability
assessment methods and replacing them with the idea of dependability
argumentation. The use of the word argumentation emphasises the key role
concepts like uncertainty, judgement, belief, reasoning and evidence play in our
deliberations, whereas assessment is suggestive of dispassionate and objective
analysis.

We propose that the most promising technology to support this kind of
argumentation is Bayesian Belief Networks (BBNs). BBNs can formalise
dependability claims, the models employed to make those claims and the evidence
collected in a manner open to independent scrutiny [Littlewood et al. 95a].

2 Assessing Dependability

2.1 Overview
Dependability is defined as “ that property of a computer system such that reliance
can justifiably be placed on the service it delivers” [Laprie 92]. Depending on the
intended application of the system dependability is usually expressed as a number
of inter-dependent properties such as reliability, maintainability and safety.

There is as yet no definitive and agreed general definition of what constitutes
dependability assessment. Commercial companies engaged in assessment activities
and standards bodies that produce systems guidelines and standards have evolved
different interpretations of what constitutes the act of assessment. The scope of an
assessment can be as wide or as narrow as the customer or regulator desires it. For
example a company producing safety critical systems might obtain an assessment of
their process against ISO9000 criteria [TickIT 92] or if increased confidence is
demanded, might be asked by the regulator to produce a formal analysis of the
product. What we can and cannot conclude about dependability from an assessment
obviously depends on the type of assessment being undertaken. Indeed whether an
assessment would even explicitly consider dependability would depend on the
assessment approach. What could we say about the dependability of a system given
we know it was developed by a company registered under ISO9000? Such evidence
might offer some confidence in dependability but any claim that it was sufficient
would clearly be disputed.

Systems assessment can be carried out in a number of ways. Pre-deployment
assessment involves evaluating products and processes after the system has been
produced, but before deployment. In-process assessment involves executing an
assessment throughout the development process in order to identify and prevent
problems earlier. The third assessment approach, in-field, assesses a system that is
already being operated. Clearly the type and extensiveness of evidence obtainable
from an assessment, and indeed the validity of resulting dependability claims, will
depend on the type of assessment employed. In retrospective assessments data on
actual use, failure rates and user experiences all provide a rich set of diagnostic
evidence on the dependability of the product. Pre-deployment assessments would
tend to use evidence gathered solely from the testing process, with the
accompanying problem that testing data might not be enough for high reliability
requirements [Littlewood and Strigini 93]. In-process assessments would tend to
make dependability claims based on the application of trustworthy design methods,
even though there is little empirical evidence to support such reasoning [Fenton et
al. 94].

Differing assessment approaches and dependability claims concentrate on one or
more sources of evidence:

• Development process evidence: Knowing that systems developers are
using "best practice" project management and quality management
principles, coupled with a defined life-cycle, usually influences our
conviction that the eventual system will be fit for purpose.

• Product evidence: Specifications, designs and test plans, etc. also form
useful sources of evidence. The quality of these components may be
determined, in part, by the effectiveness of the processes put in place.
Similarly diagnosis of product attributes, by measurement etc., allows us to
form a better picture of potential future operational problems.

• Resource evidence: Resources are people, methods, tools and machines.
The ability of people is often identified as a major factor in systems
assessment. Knowing that developers are skilled and competent usually
makes us more confident about eventual system dependability. The
capability of methods and tools to handle the problem at hand is also of
interest.

• Evidence about the operating environment: The general environment
within which a project operates will have an effect on dependability at all
levels. A lax safety culture or a lack of training can negatively affect
dependability.

• Analogy: We may have the benefit of historical experience such as past
cases. These cases can be called analogues and their relevance will be
dictated by the degree of similarity between the present case and historical
ones. For instance a developer’s track record of building similar systems to
the one being assessed will inspire confidence. Likewise if similar design
solutions exist, and are being reused, this will often strengthen our
conviction.

2.2 Standards
Standards are used to provide the criteria upon which assessment is based.
Examples of relevant standards are IEC 65A [IEC65A 91], DIN-0801 [DIN-0801
89], and DEF-STAN 00-55 and 00-56 [DEF00-55 91, DEF00-56 91]. The
standards specify lists of criteria addressing a variety of requirements. For example
"the product shall be complete, consistent and correct" is an example of a standard
type criterion. Many of the criteria contained in standards are ambiguous and
difficult to assess objectively [Devine et al. 93].

One standard that is of particular relevance to dependability is the IEC 65A draft
standard. IEC 65A consists of two parts. The first part [IEC65 92] addresses
general requirements, whilst the second part [IEC65A 91] applies to firmware,
operating systems, high-level and low-level languages and PLCs.

IEC 65A predominantly focuses on development process “ best practices” , like
design methods and testing techniques. For high reliability requirements this seems
sensible because we cannot solely rely on evidence from testing alone [Littlewood
and Strigini 93]. From the developers point of view this advice is obviously
welcome. However, advice on best practice might not be enough. Assessors need
methods that can predict the system’s dependability with an acceptable degree of
confidence, using test and process evidence. It is perhaps unwise to solely rely on
the argument “ trust us we have used best practice” when we are generally ignorant
of how much of an advantage some practices provide.

For dependability assessment the IEC 65A standard requires application of a
systematic approach using PSA (Probabilistic Safety Assessment) terminology, the
most important of which are described below:

• Safety: The expectation that a system does not, under defined conditions,
lead to a state in which human life, limb and health, economics or
environment is endangered.

• Safety Integrity: The likelihood of a programmable electronic system
achieving its safety functions under all stated conditions within a stated
period of time. Safety integrity levels are defined for the system and for
software as ordinal rankings, as given in Table 1.

Level

Description of Software

Safety Integrity

(qualitative label)

Description of System Safety
Integrity

(probability of failure for

continuously operated

system, per hour)

4 Very High 10-8 ≤ p(failure) < 10-7

3 High 10-7 ≤ p(failure) < 10-6

2 Medium 10-6 ≤ p(failure) < 10-5

1 Low 10-5 ≤ p(failure) < 10-4

0 Non Safety-Related 10-4 ≤ p(failure)

Table 1: IEC 65A Safety Integrity Levels for Systems and Software

In IEC 65A uncertainty is represented by “ safety integrity levels” in two different
ways. Firstly at the system level the standard uses terms familiar to risk assessors in
more traditional hardware engineering fields. For a system it uses the concept of
"system safety integrity" to indicate four levels of probability expressed for systems
operating discretely or continuously. These system safety integrity levels indicate

the chance of future failure, expressed as a frequency. However when it comes to
software safety such rigour is disregarded. Software safety integrity is instead
expressed in imprecise natural language on a range from high to low and non-
safety related. Interpretation of these qualitative terms relies considerably on expert
judgement. This would be no cause for concern if software was an insignificant
component in modern systems - but it is not, such systems often have hundreds of
thousands of lines of complex code whose functionality has come to dominate
reliability concerns.

This unequal treatment of software in IEC 65A, and other standards concerned
with dependability of computer-based systems, raises some significant questions:

• How confident can the public be that a quantified system level
dependability target has been achieved when the potential unreliability of
the software that makes up much of the system has not itself been
quantitatively assessed?

• What is it about software that makes software developers reluctant to apply
quantitative estimates of reliability?

• Why do the role and power of expert judgement receive scant attention in
standards?

Despite the lack of a quantified approach to software risks, achievement of
reasonable reliability targets is clearly possible. However giving a convincing and
open justification of how they achieved the target is necessary especially when
much of an assessment consists of expert judgement. Currently assessments of
computer systems are not exercises in expert accountability and argument, because
the standards either do not require it or they do not provide methods for doing it.

An answer to the second question has partly been provided by Littlewood et al.
[Littewood et al. 95b]. A significant number of practising engineers do not appear
to accept the proposition that software can fail (or even that hardware design is a
cause of failure), and hence conclude that probability does not apply. We will not
go into the detailed arguments against this position here because they are well
documented in [Littlewood et al. 95b]. However it is sufficient to say that
expressing design reliability using probability is meaningful, whether it is for
software or traditional engineering artefacts, such as bridges [Blockley 80].

Given the use of subjective labels and the dependence on expert judgement one
would expect standards to offer concrete methods to model, express and validate
opinions. Apostolakis [Apostolakis 90] says that engineers doing risk analysis are
being asked to deal with situations that require extensive judgement, but they are
unaccustomed to mixing objective facts with opinion and so feel the exercise lacks
rigour. Additionally those engineers with some grounding in statistics find their
frequentist reasoning challenged by the need to apply judgement. There is a need
therefore to find ways of making judgement more visible and moving away from
strictly frequentist views of uncertainty.

2.3 Quality Models
We can think of software dependability assessment as part of the broader issue of
software quality assessment. It is therefore worth seeing what the established
software quality models have to offer. Quality models are essentially
decompositions of important product properties of software systems into a
hierarchical tree-structure. A generic example of this is shown in Figure 1.

Accuracy

Consistency

Device Efficiency

Accessibility

Completeness

Structuredness

Conciseness

Device independence

Legability

Self-descriptiveness

Traceability

Communicativeness

Reliability

Efficiency

Reusability

Maintainability

Portability

Testability

Usability

Product
operation

Product
revision

METRICS

Use Factor Criteria

Figure 1: Generic Software Quality Model

The best known approaches are those of Walters-McCall [Walters and McCall 78],
and Boehm [Boehm 78] which provide fixed decompositions. Basili and Rombach's
GQM (goal, question, metric) model [Basili and Rombach 88] provides a generic,
top-down approach. The Walter-McCall model has in fact been adopted as the
focus of an international standard [ISO9126 91]. The SCOPE (Software
Certification PrOgramme in Europe) project [Rae et al. 95] adopted this standard as
its basis for certification. Similarly the IEEE has developed a draft standard based
on the same approach [IEEE-1061 91].

Graph-based approaches, such as quality models, may add structure to
dependability assessments but by themselves do not, and cannot, go far enough.
Little of the work on quality models has concentrated on the semantics of the
relationships represented The relationship between criteria, factors and metrics
seem to bundle some related concepts together in an ad-hoc fashion. Little or no
distinction is made between temporal relations, such as cause and effect The
calculus for representing the strength of relations between factors, criteria and
metrics is left undecided. This makes reasoning based on quality models difficult
and impossible to formalise.

However the popularity of quality models to manage assessment evidence identifies
the usefulness and importance of a graph based framework. We will propose one
more rigorous than available at present.

2.4 Safety Analysis
From the 1950’s, when large complex industrial facilities were first built, studies
were performed to determine their safety. These studies had many synonyms, the
most well known being PSA (Probabilistic Safety Assessment) and Quantitative
Risk Analysis (QRA). Safety analysis studies essentially looked at the degradation
of physical components making up industrial plant and the resulting failures.
Central to safety analysis is the use of techniques like Failure Modes and Effects
Analysis (FMECA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA) and
and HAZard Operability studies (HAZOP) which have since become popular in the
chemical, transport and nuclear industries.

Quantification of risk and top-down decomposition formed the key principles
underlying the success of the safety analysis approach for hardware based systems.
Systems analysis allowed detailed and rigorous study of possible failure causes and
effects. Quantification made it easier to assess where risk predominated and also
helped prioritise fault prevention actions according to the favourability of
cost/benefit criteria. In addition to these technical advantages, quantified safety
analysis also conferred significant social benefits as well - by comparing the costs
of failure with the benefits of operation society had the potential to make informed
decisions using rational criteria.

How have these principles and techniques been transferred to the computer
domain? It is fair to say that the HAZOP method [DEF00-58 95] and some forms of
FTA and FMECA have been widely applied though in a different from that applied
for hardware.

The idea of top-down decomposition is easily transferable from hardware to
software because modern methodologies encourage block diagram representation of
functionality. Where some form of risk quantification has been performed it has
been done subjectively, as in the case of Frimtzis et al. [Frimtzis et al. 78] who used
a form of FMECA to identify essential system requirements and ranked them
according to expected failure.

The fact that software is a logical rather than physical artefact has led some to
examine how FTA could be applied to software. Leveson’s work in applying
Software Fault Tree Analysis (SFTA) to the Ontario Hydro shut-down system is
perhaps the most well known [Leveson 95]. Generally, the SFTA approach assumes
that the similarity between the logical components that make up an FTA (that is the
use of AND and OR connectives to link failure events) and semantics of a program
can be usefully exploited. The conjecture is that we can represent a program as a
fault tree and demonstrate that certain fault events cannot happen or do not exist
by using formal verification techniques. With regard to quantification Leveson says
that if SFTA detects a path to an unsound or unsafe output it should be eliminated
(designed out) rather than quantified. Eliminating design faults is worthy advice

but such reasoning places an absurd requirement on risk quantification. It implies
that quantification only targets known problems, when in actuality risk forecasts
are primarily concerned with predicting the likely effects of the unexpected or
unknown. Unfortunately there is no guarantee of zero defect software, even after
known design faults have been eliminated. Applying SFTA would simply help
increase our confidence not buy us certainty.

Safety analysis techniques obviously have a strong and useful role in software
dependability achievement. The use of such techniques to prove consistency and
highlight problem areas would form a valuable input to assessment. The main
element that made safety analysis of hardware systems so valuable, however, is
missing - rigorous quantification. Existing methods of software safety analysis
either prohibit us from expressing our uncertainty or restrict it to imprecise and
fuzzy subjective rankings. Even in the case of SFTA where formal verification is
used Leveson admits we might still get it wrong when building systems. It is this
residual doubt that we need to quantify.

2.5 The Ubiquity of Expert Judgement
We must recognise that making decisions about system dependability is an
uncertain affair and must take into account disparate sources of evidence
[Littlewood 93]. Such evidence would come from the many models and methods
employed during system construction, test and operation. However the impact of
such evidence is riddled with uncertainty. The relative contributions of different
factors are often unknown or controversial and difficult to quantify [Littlewood et
al. 95b]. Consequently engineers fail to combine the evidence in an open and
quantified way. Generally a dependability assessment is obtained by relying on the
ability of human experts to integrate the evidence, by applying their own
judgement, to obtain important conclusions and make predictions. Unfortunately
there is ample scientific evidence that human beings are not to be trusted a priori in
complex tasks of this kind [Ayton 94]. Unless the experts are known to be reliable
(a knowledge that is usually missing for predictions of rare events), means for
checking and validating their reasoning, and aiding them in revising their
judgements in the light of experience, are absolutely necessary.

It would be rash to view assessment of systems involving new and emerging
technologies as simply the accumulation of facts and incontrovertible proofs - but
such a view is commonly held amongst many practicing engineers. The limit of
scientific and engineering knowledge is a complex issue but we may be able to
identify a number of reasons for the misconception that assessments are wholly
objective and absolute. Firstly, the traditional perceptions of science and
engineering are based on the search for objective truth rather than ascertaining the
accuracy of scientific and engineering models. Requirements for strictly objective
judgement clearly conflict with the problem of expert fallibility inevitable in
dependability assessments. Engineers cannot and do not deal with truth or falsity,
the best they can do is to aspire to higher accuracy of predictions. Secondly,
because the public is supposedly unable to understand risk issues, responsibility for

assessment has inevitably been placed in authorised expertise resident in private
companies, institutions and government departments. Institutional expertise of this
kind can confer a degree of legitimacy for dependability decisions quite separate
from any evidence. In many minds such paternalistic authority can be confused
with objectivity and, more worryingly, at its worst can help provide a kind of
scientific legitimacy for what may be political decisions [Smith and Lloyd 93].

When we scrutinise the claims made about a system’ s properties we uncover a set
of models and assumptions employed by the expert. Unfortunately these can
become out-of-date and dangerously inaccurate if they are not continually
questioned and tested against the reality they purport to model. At a personal level,
each of us rarely observes and test our own thinking to improve and update the
models we base our decisions upon. The degree of uncertainty we will have about
the dependability decision will be directly related to how far we trust these models
to reflect reality accurately enough for the situation at hand.

These uncertain reasoning mechanisms are implicit in assessment and are
uncovered when expert assessors employ particular phrases, such as: belief,
judgement, inference, evidence and degree of conformance. Despite their ubiquity
the role of these words in dependability assessment remains obscure. How assessors
reason with these words and how they develop assessment conclusions deserves
attention.

What do we mean when we say we believe something? There are generally two
common uses of the word. Firstly we often believe that something is true in an
absolute sense. This is most often the case when we have the benefit of hindsight or
physical proof. Statements like "a customer requirements elicitation exercise took
place" and "a requirements specification document exists" are taken as
uncontroversial statements of fact. The second and more common use of the word
belief are when we are unsure or are making an uncertain inference. The richness
of the natural language reflects the ubiquity of uncertainty. We use words like
likely, probable, credible, plausible, possible, chance and odds. Assessors may make
statements like "the clients claim that a customer requirements elicitation exercise
has taken place but I am not too sure" and "I doubt we can be certain that knowing
they have used method X is sufficient to accept that the system is reliable".

Of course, as unavoidable as uncertainty may be, it is natural and beneficial to
search for facts. For example it is better to observe first hand what actually went on
during a software development process than to receive a third-hand report of what
happened from the developer, who may of course be prejudiced. That is why the
goal for assessment is to approximate objective judgement about a system's
dependability.

When we consider assessment reasoning we are really addressing two aspects of
inference: diagnosis and prediction. Diagnosis involves saying what something is.
Stating that "the system software is riddled with GOTO statements "is a diagnosis.
On the other hand prediction involves saying something about the future, such as
“ the MTTF (Mean Time To Failure) of this system is 10-6 per hour” . Such a
prediction would be accurate if it was confirmed by future events.

We have already said that assessors form beliefs on the basis of evidence
interpreted through the application of models. We can think of these models
containing criteria with which the evidence is compared. The extent to which
evidence satisfies the criteria is typically taken to be the degree of conformance.
We can usefully think of an assessor’ s degree of conformance as representing one
of two things. Firstly it can mean the evidence defines the extent to which some
attribute is present - thus being similar to the action of measurement. For example
an assessor might measure the size of a module and compare it to some desired
limit. The second, and more important, interpretation is that the degree of
conformance may mean degree of belief. This second interpretation deserves closer
scrutiny. Assessors might process a point of evidence and ask what it tells them
about some related but uncertain proposition or event. He uses the evidence from
one entity, not to tell him about that entity, but to infer or predict the state of some
other entity. So knowing that a program had low McCabe metric values [McCabe
76], according to some criterion, may prompt assessors to believe the system has
high maintainability.

Expert judgement is a central component of any dependability assessment exercise,
especially given the dearth of empirically tested models in software engineering.
Such expert judgement pervades all aspects of reasoning in dependability
assessment yet its ubiquity stirs little debate. At worst such judgement may wrongly
be assumed to be scientific and hence trustworthy, so few demands are made to
make assessment more accountable and visible. Nevertheless, some judgements
have been shown after the event to be “ good” ones - the problem is to know before
the event that they will be.

3 Challenges in Dependability Assessment
From the preceding analysis it should be clear that a number of serious challenges
can be levelled at the ways we currently assess complex computer-based systems.
We list them here with the claim that the activity of systems dependability
assessment will only become accurate, meaningful and accountable when the
research community has accepted and resolved them.

1. Representing Judgement: The community needs to find a way of
representing human judgement and facts from diverse sources of evidence
in a predictive framework. A safety case or dependability case should be
presented as an argument rather than as a statement of incontrovertible
truth, with means for checking and validating judgement. Use of an
uncertainty calculus is essential if judgement is to be made visible and
accountable.

2. Empirical Foundations: Most ad-hoc dependability approaches have no
method for determining whether or not the resulting risk forecast is a
successful predictor of system behaviour. The use of imprecise terminology
makes confirmation or falsification of such forecasts impossible. A
forecast that "the system is on the whole fairly risk-free with respect to the
majority of usage situations" leaves the terms "on the whole" "majority"

and "risk free" undecided. We need a way to determine from an observed
set of accidents or incidents whether this prediction was indeed accurate.
A crucial prerequisite of a risk management system is that it can learn
from mistakes and use this feedback to improve performance over time.
Information from failures and incidents provides an index of success for
risk management. Without numerical counts of such things we cannot
learn from mistakes and specify process improvements.

3. Economic Justification: Systems development and use is a careful
balancing act between safety and productive performance. Central to this
task is cost/benefit analysis. Because of their very imprecision, qualitative
safety and risk forecasts cannot be manipulated in costs/benefit analysis
leaving the quantitatively expressed production figures to predominate.
This one-sidedness could lead to a dangerous erosion in the capability of
decision making mechanisms to adequately address safety matters.

4. Evidence Integration: There is a need to develop an integrating framework
where each of the above challenges can be met. We should aim to link
dependability claims, engineering models, expert judgement and uncertain
evidence in a rigorous framework that promotes accountability.

4 Bayesian Probability and Belief Networks

4.1 Background
We contend that Bayesian Belief Networks (BBNs) offer the most promising
technical solution to many of the above challenges. Existing BBN technology,
based on probability and decision theory, can potentially improve assessment
reasoning under uncertainty. BBNs enable us to analyse and formalise, rather than
just mimic, expert judgement and engineering models.

BBNs are known under various synonyms as Graphical Probability Networks,
Belief Networks, Causal Probabilistic Networks, Causal Nets and Probabilistic
Influence Diagrams. They have been used in a wide variety of applications [Pearl
88] as an appropriate representation of probabilistic knowledge. They have been
applied in medicine, oil price forecasting and diagnosis of copier machine faults. In
software engineering they have been used to diagnose and find faults during
debugging of the Sabre airline reservation system [Burnell and Horovitz 95].
Probably the most famous application is the Answer wizard in Microsoft’ s Office
95 products, where they are used for automated learning for custom-tailoring help
software to a user’ s work patterns and preferences.

The world-wide interest in BBNs has produced many implementations, most
notable amongst these is the HUGIN tool [HUGIN 94] based on the award winning
theoretical work of Lauritzen and Spiegelhalter [Lauritzen and Spiegelhalter 88].

A BBN is a directed graph used to represent probabilistic relationships amongst
events or propositions. Each node represents a set of alternative events of interest,
the arcs represent the probabilistic conditioning of a node’ s value on that of other

nodes. Associated with each node is a conditional probability table that shows the
probability of that node state being true given the events represented by the parent
nodes. When a node has no parents the conditional probability table is simply the
prior distribution. The BBN directed graph with its conditional probability tables
specifies a joint marginal distribution of all the events. When the actual state of a
node is observed the probabilities of event states are calculated by propagating the
“ new” knowledge along the arcs in the graph. In this way the probabilities change
as our uncertainty and knowledge changes.

4.2 Probability Theory
We need some, preferably formal, way of representing expert judgements about
uncertain events. There is a formal theory of probability called Bayesian, or
subjective, probability that allows us to do so [de Finetti 74]. In Bayesian
probability theory a probability number, lying in the range zero to one, is used to
represent an individual’ s degree of belief in the truth of an event or proposition.
Expressed mathematically as p(A | H) it is interpreted as the degree of belief in the
truth of A given that H is known to be true.

This definition might surprise some readers, but it is objective and scientific
because it accurately represents an individual’ s belief. More specifically, it can be
shown to be a necessary consequence of adhering to certain intuitively plausible
prescriptive notions of “ rationality” - for example that a rational individual should
not have circular pair-wise preferences. Of course, the validity of a belief can be
questioned, but as a representation of an individual’ s stated belief a probability
number cannot be disputed. It has been claimed this definition is the only way to
describe uncertainty and all alternative descriptions are unnecessary, even the
frequentist interpretation [Lindley 87]. We would not wish to go so far, but think it
attractive that the frequentist interpretations, so popular in risk and safety analysis,
can be expressed more conveniently and meaningfully as part of a Bayesian
framework. In those circumstances where there is a believable argument based
upon frequentist principles - such as the probability of Heads for tossing a fair coin
- it would be rational for ones subjective probability to coincide with the frequentist
one. Even apparently simple cases like this pose problems, however: how are we to
know the coin is fair? We cannot easily execute a number of repetitive trials of
coins drawn at random from the local bank in order to determine the proportion of
fair ones. Bayesianism offers a more practical resolution, that allows us to express
our belief that the coin is fair as a “ subjective” probability.

Using probability we can compare beliefs, we can share them and reuse them, and
we can build consensus. The narrow frequentist interpretation denies the
subjectivity of probability and would restrict decision making to repetitive,
statistical events - despite the fact that a perfectly repeatable event is an idealisation
rather than a representation of reality [Watson 94].

The key to utilising the above probability concepts to process uncertain evidence is
given by Bayes' theorem:

 p A B
p B A p A

p B
(/)

(/) ()
()

=

This states that the probability of A, given we know B, is equal to the probability of
B, given we know A, multiplied by the ratio of probabilities of A and B.

The importance of the theorem is that it connects two entirely different probabilities
concerning the same two events, namely P(A | B) and P(B | A). In the former B is
part of the evidence and A is uncertain. In the latter the roles of A and B are
reversed allowing Bayes’ theorem to propagate the effects of added evidence,
through a network of variables in any direction. Unfortunately natural language is
often capable of hiding the differences between these two notions.

4.3 Example of a Bayesian Belief Network
Consider the following simple everyday reasoning problem that we can solve using
a BBN. A colleague is late for work and you suspect that he has either slept-in or
there has been a failure in the London underground system. From experience you
know that the probability of failure on the London underground system is high, p(T
= true) = 0.3. You also believe that because your colleague is a fastidious
timekeeper he is unlikely to sleep in, p(Slept-in = true) = 0.05. You have an
important business appointment and had planned to travel there by Tube. Knowing
that your colleague is late may make you more likely to believe that the London
Underground system has failed, but by how much?

Using this information we can construct a Bayesian network, portrayed in Figure 2,
with three nodes, L =Late, T = Tube system failure and S = Slept-in, each with two
states: true and false.

Figure 2: Example BBN

Expressed mathematically the marginal distribution for the example network is:

p L p S p T p L S T() () () (/ ,)=

This states that the probability of L is calculated from knowledge about the states of
variables S and T and the likelihood of L given these states. This of course assumes
that it is reasonable to suppose that S and T are independent.

For each of the nodes in the BBN a conditional probability table is needed. For each
of the combinations of the node states we would estimate a probability of that
combination being true. Conditional probability values for nodes T and S are given
in Table 2 and conditional probability values for node L are given in Table 3:

 true false

p(T) 0.30 0.70

p(S) 0.05 0.95

Table 2: Conditional probability for T and S

p(L / T, S) T = true T = false

S = true (0.9, 0.1) (0.7, 0.3)

S = false (0.6, 0.4) (0.1, 0.9)

Table 3: Conditional probability table for L

We can calculate the probability that T is true given L is true using Bayes’ theorem.

p T t L t
p L t T t p T t

p L t
(/)

(/) ()
()

= = =
= = =

=

From Table 2 p(T = true) = 0.3. We can calculate p(L = true) over all possible
values of S and T from the marginal distribution and the conditional probability
tables, as follows:

p L t p S t p T t p L t S t T t

p S t p T f p L t S t T f
p S f p T t p L t S f T t

p S f p T f p L t S f T f

() () () (/ ,)

() () (/ ,)
() () (/ ,)

() () (/ ,)
. (.)(.) . (.)(.) . (.)(.) . (.)(.)

.

= = = = = = = +
= = = = = +
= = = = = +
= = = = = +

= + + +
=

0 05 0 3 0 9 0 05 0 7 0 7 0 95 0 3 0 6 0 95 0 7 01

0 2755

Next we need to calculate the likelihood p(L = true | T = true) using the fact that:

p L t T t

p L t T t S t p S t p L t T t S f p S f

(/)

(/ ,) () (/ ,) ()
. (.) . (.)

.

= =
= = = = = + = = = =
= +
=

0 9 0 05 0 6 0 95

0 615

Finally we can calculate p(T=t | L = t) as:

p T t L t(/)
.
.

(.) .= = = =0 615
0 2755

0 3 0 6697

Knowledge about your colleague’ s lateness has caused the revision, from an initial
0.3 degree of belief that the London Underground system has failed, to 0.67 degree
of belief. Travel to the business appointment using London Underground would be
ill-advised.

From this very simple example we can see that the BBN formalism offers a number
of benefits. Firstly, its graphical nature makes for a powerful, intuitively appealing,
knowledge acquisition device. Secondly, the quick and easy propagation of “ facts”
through the graphs makes it easy to check for coherence and perform “ what if”
analyses. The greatest benefit is that automatic methods are now available that can
be used to propagate the evidence without recourse to tedious manual methods,
even for large graphs.

5 Moving from Dependability Assessments to
 Arguments

5.1 Bayesian Approach to Argumentation

BBNs provide an uncertainty calculus and graphical framework by which
dependability arguments can be expressed. The nodes in a BBN can be used to
represent the types of evidence required in a dependability argument and the
probabilities can model expert opinion or statistical data. Furthermore the maturity
of Bayesian probability gives the added benefit of being able to update the BBN to
accommodate the accumulation of statistical evidence, for example from repeated
test runs. Of great benefit is the capability to develop arguments in two stages:
identifying sources of evidence and their interrelationships can be separated from
the quantification.

Moving from current ad-hoc approaches towards BBN-based argumentation places
expert judgement and the uncertainty of knowledge at the centre of dependability
decisions rather than on the fringe. In doing so the opinion of the expert is placed
at the centre of scrutiny and frequency data is perceived as playing a supporting
role. Such an approach does not imply that there is a single “ correct” argument for

dependability, rather its use should facilitate an open dialogue and encourage all
parties in a dependability decision to develop their own BBNs. Of course such a
process would not guarantee safer systems but it would lead to greater
accountability and the open exchange of experience.

In Figure 3 we present a model of the structure of dependability arguments. This
structure is intended to act as a guide to linking attributes of interest, the relations
between them (causes and consequences) and, at the centre, the dependability
properties of a system (reliability, safety, etc.). Application of the model would
require the use of argumentation templates, for each of the dependability properties,
that could be tailored to the particularities of the system in question.

Figure 3: Structuring Dependability Arguments

When assessors are predicting systems dependability they are interested in those
factors, under the developers control, which cause the developed process to produce
a good system. In Figure 3 these are called the developer causes. Effort is
concentrated on the quality of the intermediate products, the people and resources
used in their production and the processes and methods applied. These in turn are
known to be influenced by business constraints, such as budget restrictions,
company culture and general engineering capability. Similarly assessors need to
investigate the influence the system user will have on system dependability. In
Figure 3 these are termed the user causes. Domain complexity, the accuracy of
requirements and business constraints may have a tangible and immediate effect on
dependability. Also the culture, operational history and capability have underlying
causal effects on both requirements and operation. For instance a lack of a safety
culture could lead to system misuse and accidents. The consequences of system use
are the most interesting from the end-users point of view. A dependable system
should operate well in its immediate environment. However operators, resources
and business processes can be negatively affected by poor system performance.
These factors can be classified as user consequences. Assessors have to consider
the consequences of the system's operation. For example on a fly-by-wire aircraft
the user consequences of system failure may have a knock-on effect on other

systems and the decisions made by the pilot. Disruption of business may result from
undependable operation. Such disruption would most clearly manifest itself as lost
profits, higher costs and lower profitability. We can also identify developer
consequences. The most obvious impact of a poor system dependability will be in
maintenance. More serious problems might result in litigation and a loss of
reputation. The ultimate consequences would be a decrease in staff morale and poor
performance in business operations.

5.2 Dependability Argument Templates
System dependability arguments can now be composed of inter-connected argument
templates. Such a template would consist of a BBN developed to predict a single
dependability property of the system. Here we present two BBN templates for
reliability and correctness.

The templates themselves are simply expositions of the arguments that would be
employed to predict or infer dependability and should not be seen as definitive or
correct models. For example an alternative to the correctness template has been
developed to concentrate on fault density prediction.

5.2.1 Correctness

Users of computer systems want obviously them to be functionally correct.
Assessors must therefore attempt to answer two questions when trying to predict
correctness before the system has been developed:

• How likely is it that faults have been introduced into the software?

• If there were faults what is the chance that they were removed?

Figure 4: Correctness BBN Template

In order to find some way of predicting the correct design node we would first look
at the design and review activities in the software development process. Thus the

nodes review activities and design activities enter the BBN given in Figure 4. These
two nodes are believed to influence the chance of obtaining a correct design. If a
design activity is performed well we would expect that due care would have been
taken not to introduce design faults into the system. Good review activities would
help find any design faults that slipped through the design process.

The ability to design fault-free systems will be largely influenced by the complexity
and size of the problem. So the size and complexity of the application domain form
another node predicting correctness.

Now we can take a deeper look at a project and ask what causes good design and
review activities? Good review activities are caused by customer involvement, good
supporting technology and capable staff. If customer representatives carry out
reviews during development, or take part in development review meetings, we
would be more likely to expect that faults would be detected. Appropriate
supporting technology, such as proof checkers and formal review procedures, would
also positively influence our belief about the effectiveness of reviews. Capable staff
play a strong role because they influence review and design activities. Any pressure
on resources may have a negative effect on the quality of the design and review
activities. A consequence of good review activities would be that faults were picked
up early in the life-cycle.

If a system specification is functionally correct we could expect a number of
consequences. Firstly any implementation made from the specification would be
less likely to contain faults. Secondly, because there are fewer faults to be triggered
during operation, high operational reliability should result. An assessor might want
to predict these consequences for reliability from a diagnosis or prediction of
correctness. These consequences are relevant to the next template.

5.2.2 Reliability

An unreliable system can lead to frequent maintenance, the production of work-
around procedures to ensure that business processes can operate in some way, and
of course failures in other systems. Figure 5 shows a BBN with these factors as
consequences of low system reliability. Some of these factors have a knock on
effect. Frequent maintenance can cause high downtime that is likely to make for
dissatisfied users. Of course there may be other explanations for some of these
consequences. Firstly there may be other sources of failure that are causing high
downtime and work-around procedures. For example the successful execution of
application software is dependent on operating systems software. If this is
unreliable then downtime of application and operating systems will result. Poor
user training can result in dissatisfaction, high downtime and the production and
use of work-around procedures. After all, a system may be very reliable but if it is
not being used correctly problems are bound to occur.

Figure 5: Reliability BBN Template

We can predict system reliability during testing using formal techniques, by the use
of reliability models, or by informal judgement. We concentrate on a judgemental
approach here. Figure 5 shows the causal and influential factors for system
reliability from the testing processes, past reliability of duplicates, MTTF during
testing and realistic usage scenario. There is one factor deserves particular attention
- the reliability data available from use of duplicates copies the software. For
instance if a developer has a historical system that achieved 10-7 per hour then we
might be willing to consider the argument that the new system will achieve 10-7 per
hour. Of course such reasoning would be very weak when making claims about a
novel system, changed version, or use in a new operational environment. However
we could consider making trade-offs along the following lines. If a system has
demonstrated high reliability in its original operating environment and is being
reused in a new working environment then full testing may not need to be
performed. We must however be careful: such reasoning would be valid only if the
new working environment was sufficiently similar to the old one and the software
was indeed a duplicate. With some provisos we can use historical reliability
knowledge to compensate for full testing information.

6 Conclusion
We have argued that, despite the considerable success in the use of current
assessment methods, dependability assessment of computer systems is still a very
uncertain and often ad-hoc procedure. We have provided an overview of current
assessment approaches, including standards, quality models and software safety
analysis. Examining each of these has led to the conclusion that these methods do
not allow quantitative expressions of dependability in the rigorous way we desire.
Where quantification is done, it relies on either a frequentist interpretation that
disallows expression of expert judgement or is expressed as imprecise rankings.
The frequentist requirement contrasts with the predominant role of expertise in
systems assessments.

From an analysis of current practice a number of challenges are evident. We have
highlighted the need to express expert opinion, employ proper empirical methods,
apply costs/benefit analysis and develop an integrating framework as major
challenges to the research community.

In an attempt to meet these challenges a move from ad-hoc assessment to
argumentation is advocated. Such a move would exploit the more robust Bayesian
interpretation of probability, thus reconciling judgements about single events with
statistical data. Finally, Bayesian Belief Networks (BBNs) are proposed as the most
promising technology to support this kind of dependability argumentation.

We need to solve a number of outstanding issues to apply in practice dependability
argumentation, through the use of BBNs. Firstly, the development of a template-
based toolset is needed to support large scale assessments. Secondly, the number of
probabilities needed for BBNs, even in small scale argumentation exercises, can be
extremely large. Work is currently underway to resolve this problem by
automatically generating conditional probability tables using Beta distributions.

Acknowledgements
This work was supported by the DATUM (Dependability Assessment Through the
Unification of Measurable evidence) and PROMISE (PROduct Measurement for
Integrity and Safety Enhancement) projects. DATUM and PROMISE are funded by
the Safety-Critical Research Programme, supported by the DTI and EPSRC
(DATUM grant number: GR/H89944, PROMISE grant number: J18880). The
DATUM consortium is composed of the Centre for Software Reliability and the
Centre for Human Computer Interface Design at City University, the Department of
Computer Science at Royal Holloway and Bedford New College, and Lloyd’ s
Register as an industrial “ uncle” . The PROMISE consortium consists of the Centre
for Systems and Software Engineering, South Bank University, and Philips Medical
Systems - Radiotherapy as an industrial “ uncle” .

The authors thank Bob Malcolm for his encouragement and Jennie Rogers for
reviewing the paper.

References
[Apostolakis 90] Apostolakis G. The Concept of Probability in Safety Assessments
of Technological Systems. Science, vol. 250, December 1990.

[Ayton 94] Ayton P. On the Competence and Incompetence of Experts. In
Expertise and Decision Support (Ed. G. Wright and F. Bolger), pp. 77-105, Plenum
Press, 1994.

[Basili and Rombach 88] Basili V. and Rombach D. The TAME project: Towards
Improvement-Orientated Software Environments. IEEE Transactions in Software
Engineering, Vol. 14, No 6 January, pp. 758-773, 1988.

[Blockley 80] Blockley D. I. The Nature of Structural Design and Safety. Ellis
Horwood Ltd, 1980.

[Boehm 78] Boehm B.W. Characteristics of Software Quality. TRW Series of
Software Technology 1. North-Holland Publishing Company, 1978.

[Burnell and Horovitz 95] Burnell L. and Horvitz E. Structure and Chance:
Melding Logic and Probability for Software Debugging. Communications of the
ACM, vol. 38, no.3, 1995.

[de Finetti 74] de Finetti B. Theory of Probability, Volume 1. John Wiley & Sons,
1974.

[DEF00-55 91] The Procurement of Safety Critical Software in Defence Equipment
Part 1: Requirements Part 2: Guidance Interim Defence Standard, no 00-55 Issue
1. Ministry of Defence, Directorate of Standardisation, Kentigern House, 65 Brown
Street, Glasgow, G2 8EX, UK, 1991.

[DEF00-56 91] Hazard Analysis and Safety Classification of the Computer and
Programmable Electronic System Elements of Defence Equipment. Interim Defence
Standard no 00-56 Issue 1. Ministry of Defence, Directorate of Standardisation
Kentigern House, 65 Brown Street, Glasgow, G2 8EX, UK, 1991.

[DEF00-58 95] A Guideline for HAZOP Studies on Systems Which Include A
Programmable Electronic System. Interim Defence Standard no 00-58 Issue 1. Ministry
of Defence, Directorate of Standardisation, Kentigern House, 65 Brown Street, Glasgow,
G2 8EX, UK, 1995.

[Devine et al. 93] Devine C. Fenton N and Page S. Deficiencies in existing software
engineering standards as exposed by SMARTIE. In Safety Critical Systems. (Ed.
Redmill F and Anderson T.) Chapman and Hall, pp 255-272, 1993.

[DIN-0801 89] Preliminary Standard, DIN0801 DIN-V/VDE 0801. Principles for
Computers in Safety-Related Systems, 1989.

[Fenton et al. 94] Fenton N.E. Pfleeger L and Glass R. Science and Substance: A
Challenge to Software Engineers. IEEE Software, pp. 86-95, July 1994.

[Frimtzis et al. 78] Frimtzis A. Lipow M. and Reifer D.J. Software Failure Modes
and Effects Analysis. Proceedings of Industry/Space and Missile Systems
Organisation Conference and Workshop on Mission Assurance. Los Angeles,
California, April 1978.

[HUGIN 94] HUGIN Expert A/S. P.O. Box 8201 DK-9220 Aalborg, Denmark.

[IEC65 92] Functional Safety of Programmable Electronic Systems: Generic Aspects.
International Electrotechnical Commission. Technical Committee no. 65, Working
Group 10 (WG10), type IEC no 65A (Secretariat), February, 1992.

[IEC65A 91] Software for Computers in the Application of Industrial Safety Related
Systems. International Electrotechnical Commission Technical Committee no. 65
Working Group 9 (WG9) IEC no 65A (Secretariat), Version 1.0 August 1991.

[IEEE-1061 91] IEEE Standard 1061: Software Quality Metrics Methodology, 1991.

[ISO9126 91] ISO (International Organisation for Standardisation). Information
Technology - Software Product Evaluation - Quality characteristics and guidelines
for their use - ISO9126. 1991.

[Laprie 92] Laprie, J.C. (Ed.) Dependability: Basic Concepts and Terminology.
IFIP WG 10.4 Dependable Computing and Fault Tolerance. Springer-Verlag,
Vienna, 1992.

[Lauritzen and Spiegelhalter 88] Lauritzen S. L. and Spiegelhalter D.J. Local
Computations with Probabilities on Graphical Structures and their Application to
Expert Systems (with discussion). J. R. Statis. Soc. B, 50, No 2, pp 157-224, 1988.

[Leveson 95] Leveson N.G. Safeware: System Safety and Computers, a guide to
preventing accidents and losses caused by technology. Addison-Wesley Publishing
company, 1995.

[Lindley 87] Lindley D.V. The Probability Approach to the Treatment of
Uncertainty in Artificial Intelligence and Expert Systems. Statistical Science, Vol
2, No 1, pp17-24, 1987.

[Littlewood 93] Littlewood B. The need for evidence from disparate sources to evaluate
safety. In directions in safety critical systems - proceedings of the first safety-critical
systems symposium (eds. F. Redmill and T. Anderson). Springer-Verlag, London, 1993.

[Littlewood and Strigini 1993] Validation of Ultra-High Dependability for software-
based Systems. Communications of the ACM, 36, 11, pp.69-80, 1993.

[Littlewood et al. 95a] Littlewood B. Neil M. and Ostrolenk G. Uncertainty in
Software-Intensive Systems. Accepted for publication in High-Integrity Systems
Journal, 1995.

[Littlewood et al. 95b] Littlewood B. Neil M. and Ostrolenk G. The Role of Models
in Managing Uncertainty of Software-Intensive Systems. Accepted for publication
by Reliability Engineering and System Safety Journal, 1995.

[McCabe 76] McCabe T.J. A Complexity Measure, IEEE Transactions In Software
Engineering, vol. 2, no 4, p 308 - 320, 1976.

[Mellor 94] Mellor, P. CAD: Computer Aided Disasters. High Integrity Systems.
Volume 1, number 2, pp. 101 -156. 1994.

[Pearl 88] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufman, 1988.

[Perrow 84] Perrow C. Normal Accidents: Living with High-Risk Technologies, Basic
Books, 1984.

[Rae et al. 95] Rae A. Robert P. and Hausen H. (Eds.) Software Evaluation for
Certification: Principles, Practice and Legal Liability. McGraw Hill, International
Software Quality Assurance Series, London, 1995.

[Smith and Lloyd 93] Smith D. and Lloyd. D. Wither Objectivity: Technocracy and
the Social Construction of Risk. In proceedings of the safety and reliability society
symposium on engineers and risk issues (Ed. Cox R.F. and Watson I.A.),
Altrincham, October 1993.

[TickIT 92] Guide to Software Quality Management, System Construction and
Certification using ISO 9001/EN 29001/BS 5750, Issue 2.0. DTI, available from
TickIT Project Office, 68 Newman Street, London W1A 4SE, 1992.

[Walters and McCall 78] Walters G.F. and McCall J.A. Development of Metrics
for Reliability and Maintainability. Proceedings Annual Reliability and
Maintainability Symposium, IEEE, 1978.

[Watson 94] Watson S. R. The meaning of Probability in Probabilistic Safety
Analysis. Reliability Engineering and System Safety, 45, pp.261-269, Elsevier
Science Ltd, 1994.

