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Abstract
This paper describes the use of Bayesian networks (BNs) to 

model the operational risk to information technology (IT) 

infrastructure in financial and other institutions. We describe 

a methodology for modeling financial losses that might result 

from operational risk scenarios involving data centers and 

operational locations, applications and systems, processes, 

and ultimately IT supported customer-facing services. We 

focus on modeling the causes and effects of unexpected loss 

events using a Bayesian network model of the IT infrastruc-

ture combined with assessments of the severity of impact 

of these events in terms of the Value at Risk (VaR) for the 

organization. We use a state-of-the-art Bayesian network 

tool to simulate an example analysis of the model. The work 

also illustrates how ideas commonly used to measure risk in 

other industries, especially the Aviation and Nuclear sectors, 

readily translate to operational risk in finance. 
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The Basel Committee on Banking Supervision, in reaction to 

a number of well-publicized financial disasters, has mandated 

a system of regulation addressing the issue of operational 

risk (OpRisk) and its assessment [Basel (2006)]. Key to the 

regulatory process is the need for businesses to model their 

operational risks, in terms of a variety of loss event types, 

including IT and systems failures, in order to arrive at an 

appropriate regulatory capital charge.

Of course, the OpRisk problem is not peculiar to the financial 

sector and operational risk is not a new topic. In his book, 

James Reason argues that operational risk is faced by all 

organizations and he uses examples from the financial, rail 

transport, civil aviation, and nuclear power sectors to sup-

port his case [Reason (1997)]. Reason identifies a host of 

reasons why catastrophic failures occur in these safety criti-

cal industries, including (but not restricted to): a failure to 

enforce lessons learnt from previous failures, slow degrada-

tion or collapse of safety procedures, changes in culture and 

management, lack of visibility and support for risk reporting, 

and lack of attention to detail. The key conclusion from this 

is that accidents are not solely the result of human fallibil-

ity but are supported by organizational features that fail 

to defend against all-too-human mistakes, slips, and (in the 

case of fraud) malicious acts. From this we can conclude 

that OpRisk prediction is inextricably entwined with good 

management practice and that its measurement can only 

meaningfully be done if the effectiveness of risk and controls 

processes is regularly assessed. This contrasts sharply with 

the view that modeling OpRisk simply involves the investiga-

tion of statistical phenomena.

By the same arguments, financial catastrophes are not a 

‘bolt out of the blue,’ nor are they inexplicable. Financial 

scandals, such as Société Générale [The Times (2008)], 

Barings [Rawnsley (1995)], and the Allied Irish Bank [Wachtell 

et al. (2002)] were all the result of fraudulent activities build-

ing up over lengthy periods of time during which active man-

agement could have discovered and prevented them. Indeed, 

if caught early the events would not have been catastrophes 

at all. There is a tendency to see financial disasters as single 

‘ultra high loss’ events rather than aggregations of smaller 

losses accrued over a period of time. This is understand-

able given the fact that the losses have to be realized upon 

discovery, all at once. But this does not change the fact that 

such losses are accumulated daily and could be detected by 

good diligence, applied routinely. It is precisely this routine 

attention to good practice that, just as in safety critical 

industries, prevents disasters occurring. Any OpRisk scheme 

should, therefore, focus on detecting near misses and small 

losses on a monthly or quarterly basis before they become 

large losses and disasters (Jérôme Kerviel’s alleged fraud at 

Société Générale in 2008 was said to have heavily contrib-

uted to the global financial instability in January 2008).

In this paper we argue that Bayesian networks (BNs) provide 

an attractive solution to the problems identified above and 

show how we can apply them to the problem of modeling 

IT failures and their implications on business services. BNs 

have the advantage that they enable us to combine any 

statistical data that is available with qualitative data and in a 

way that mirrors the causal structure underlying the process 

itself, thus making it easy to understand and communicate 

to business users. Using BNs we can: combine proactive loss 

indicators, related to the business process, with reactive out-

come measures such as near miss and loss data; incorporate 

expert judgments about the contribution that qualitative 

estimates can make to the overall risk assessment; enter 

incomplete evidence and still obtain meaningful predictions; 

perform powerful ‘what-if?’ analyses to test the sensitivity of 

conclusions; obtain a visual reasoning tool and a major docu-

mentation aid; perform back-to-back comparison of alterna-

tive scenarios and sensitivity analyses for the purposes of 

assessing the impact of design changes to the infrastructure; 

provide a VaR assessment for each service and in aggregate 

in order to determine insurance premiums (or indeed decide 

to self insure) as well as determine levels of and areas for 

investment in improvements; and obtain outputs in the form 

of verifiable predictions against actual performance mea-

sures and loss event rates.
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Estimating expected and unexpected losses
The Basel report [Basel (2006)] classifies financial losses 

due to operational factors into two ‘types’: expected losses, 

which are considered the ‘normal’ losses that occur fre-

quently, as part of everyday business, with a low severity  

(examples include losses due to accidentally miscalculated 

foreign exchange transactions); and unexpected losses, 

which are the unusual losses that occur rarely and have a 

high severity (examples include losses resulting from a major 

fraud activity). 

Figure 1 shows the distinction between expected and unex-

pected losses. The demarcation line is purely arbitrary 

(in Figure 1 this separation is shown at total losses of 

U.S.$700,000). It, therefore, makes little sense to use fun-

damentally different methods for predicting expected and 

unexpected losses; it is better to think in terms of finding a 

distribution whose tail represents the unexpected losses.

The traditional statistical approach to these kinds of prob-

lems is to rely purely on historical data to find the inherent 

distribution of losses. However, in the case of operational 

loss data, even when a large loss dataset is available, it is 

unlikely that there will be enough data on the large unex-

pected losses for us to be able to estimate the tail of the 

distribution properly — usually we end up with tails that are 

too thin or indeed too fat if the loss data are not relevant for 

the domain in question. Even when modeling the expected 

losses (the bulk of the distribution), the data-oriented 

approach suffers from the following limitations: (1) loss data 

will be gathered over a period of time that may represent 

varying levels of operational effectiveness and risk/threat 

(we cannot expect that losses are generated from one single 

distribution with a small number of known parameters); (2) 

losses experienced are simply a sample of possible events 

(they may not be representative of changing operational 

processes. As the underlying operational process degrades 

or improves the value of such historical data wanes); and (3) 

the reported loss data might be wrong (under-reporting and 

data ambiguity can lead to significant errors in estimation).
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Figure 1 – Expected versus unexpected total losses

Figure 2 – Bayesian IT operational risk asset model 
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Any attempt to bolster loss data with data gathered from 

other organizations is subject to the same problems and 

more because very often the provenance of the data is 

unknown or in doubt.

Bayesian networks
A Bayesian network (BN) is a directed acyclic graph, such as 

the one shown in Figure 2, whose nodes represent the uncer-

tain variables of interest and whose edges are the causal or 

influential links between the variables. Associated with each 

node is a node probability table (NPT), a statistical distribu-

tion, or parameterized function. In the case of an NPT the 

relationship is governed by a set of conditional probability 

values that model the uncertain relationship between the 

node and its parents together with any uncertainty that is 

present in that relationship. 

The underlying theory of BNs combines Bayesian prob-

ability theory and the notion of conditional independence 

to represent dependencies between variables [Pearl (1986), 

Speigelhalter and Cowell (1992)]. To date BNs have proven 

useful in many areas of application, such as medical expert 

systems, diagnosis of failures, pattern matching, speech rec-

ognition, and, more relevantly for the OpRisk community, risk 

assessment of complex systems in high stakes environments 

[Neil et al. (2001), Neil et al. (2003), Fenton et al. (2004)], 

including financial institutions [Neil et al. (2005)].

BNs enable reasoning under uncertainty and combine the 

advantages of an intuitive visual representation with a sound 

mathematical basis in Bayesian probability. With BNs, it is 

possible to articulate dependencies between different vari-

ables and to propagate consistently the impact of evidence 

on the probabilities of uncertain outcomes. 

The key to the successful design of a BN model is the mean-

ingful decomposition of a problem domain into a set of causal 

or conditional propositions about the domain. Rather than 

ask an expert for the full joint probability distribution of all 

the variables of interest, which is obviously a very difficult 

task, we can apply a ‘divide and conquer’ approach and ask 

for partial specifications of the model that are themselves 

meaningful in the experts’ domain. In our case, for IT opera-

tional risks the structure is an obvious artifact derivable from 

the model, as will become evident in later discussion. 

Next, we need to model the NPT for each variable (node): 

this can either be done using historical data (including, 

for example, using standard Bayesian parameter learning 

approaches or Monte Carlo simulations) or by simply asking 

the expert to provide a series of subjective estimates. Ideally 

we would expect these estimates to be based on experience 

and knowledge rather than blind guesswork.

We can embed continuous and discrete statistical distribu-

tions within the BN model, as NPTs, and generate values for 

these NPTs by approximation methods, including Monte Carlo 

simulation. Until very recently, BN tools were unable to handle 

non-Gaussian continuous variables, and so such variables had 

to be discretized manually, with inevitable loss of accuracy. 

However, a breakthrough dynamic discretization algorithm 

[presented in Neil et al. (2007)] has now been implemented 

in a software tool [AgenaRisk (2008)], which provides an 

approximate solution for classical Bayesian statistical prob-

lems, involving continuous variables, as well as hybrid prob-

lems involving both discrete and continuous variables.

Figure 2 shows an example Bayesian IT operational risk 

model that we will discuss in more detail in the next sec-

tion. Here it suffices to point out that the nodes represent 

processes/events/risks and the arcs represent causal/func-

tional/physical dependencies between them.

Once a BN is built, it can be executed using an appropriate 

propagation algorithm, such as the Junction Tree algo-

rithm [Jensen (1996)]. This involves calculating the joint 

probability table for the model from the BN’s conditional 

probability structure in a computationally efficient man-

ner. This is achieved by automatically deriving from the BN 

an intermediate graph theoretic representation of the BN, 
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called the Junction Tree (JT). The JT allows localized, modu-

lar computations to be executed using a message-passing 

algorithm. This is, in essence, an elaborate form of Bayes’ 

theorem [Jensen (1996), Lauritzen and Speigelhalter (1988), 

Pearl 1986), Speigelhalter and Cowell (1992)]. This process 

is entirely automatic and, in a tool like AgenaRisk, is hidden 

from the domain expert. When the BN is executed the effects 

of data entered into one or more nodes can be propagated 

throughout the BN, in any direction, and the marginal distri-

butions of all nodes updated. This makes it ideal for ‘what if?’ 

and scenario analysis.

Using Bns to model operational risk of IT 
infrastructures

Motivation

When modeling operational risk of IT infrastructures we 

must first identify what we want to model. The subjects of 

the model will be the interacting and interrelated IT oriented 

tasks and processes that together support the financial 

service functions of the organization. A good place to start 

is to use IT management processes as defined by ITIL [ITIL 

(2004)]. These tasks and processes are often pursued as 

disparate activities by different stakeholders with overlap-

ping responsibilities and in many organizations are seen as 

different separate tasks. These include:

n IT infrastructure management — what is the reliability 

provided by applications, processes, and technologies that 

together provide the business service?

n IT architecture planning and design — how do we design 

an optimized and robust IT architecture that delivers a 

reliable service?

n Business risk analysis — can we mitigate, control, or 

inhibit the likelihood of risky events or ensure that their 

economic or reputational impact on service provision is 

minimized?

n Business continuity management — how do we recover 

from large-scale incidents and ensure continuity of ser-

vice?

Given that IT operational risk assessment covers all of these 

areas, it makes sense to take a holistic view of the problem 

and consider the ways in which these different activities 

interact and how the various service quality, risk, and eco-

nomic impact metrics can be usefully combined together to 

forecast operational risk in a meaningful way. The aim here 

is to provide a model that unifies each of these perspectives 

and can be used by each of these activities to deal with risk 

and uncertainty.

Asset model

To help achieve these aims we model the various asset 

classes in the IT architecture and the business processes that 

rely on that architecture to deliver business services. This 

involves making clear the dependencies between services, 

their constituent business processes, and the IT applications 

that help support or deliver those processes. It is helpful to 

think of these entities as being organized in layers, with the 

base layer being formed by physical buildings etc., the next 

would include hardware and network systems, and then an 

application layer, followed by processes, and then finally the 

services. Of course, such a layered division is not unique. We 

will call this the asset model and Figure 2 is the example we 

will use here.

Figure 2 comprises a number of asset layers: location, sys-

tems, processes, and services. There are two locations: data 

centre alpha and data centre beta. Data centre alpha hosts 

system A, system B, and primary system C. So, if the data 

centre fails, perhaps due to flood or terrorist attack (not 

shown but easily added to the model), the systems based in 

the data centre might also fail. If data centre beta is opera-

tional then the backup for system C will be operational and 

system C will be operational and able to support process Y. 

Unfortunately, because process Y depends on system B and 

system C working together, it will fail because system B has 

failed. And so on.

Of course we could replace each of the layers with different 

asset classes (such as applications rather than systems) or 
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indeed add other layers (such as those needed to cover phys-

ical and security hazards). The final layer in Figure 2 adds 

the VaR models in order to quantify the effects of failure on 

operational losses. When armed with this asset model we can 

clearly and visually determine chokepoints, single points of 

failure and overloads and, perhaps more importantly, make 

explicit the link between the economic VaR and the possible 

sources of risk.

Asset reliability prediction

Once we have built the asset model we can predict the reli-

ability of the service from its constituent inputs and answer 

questions like “if application X and application Y fails, does 

the service fail?” To help answer these questions we aim to 

identify: common causes of reliability problems (for example, 

co-location of applications in building subject to flood risk); 

the dependency logic dictating how they interact, which can 

be expressed as Boolean logic using and, or, not functions; 

and responses, repairs, and adaptations (controls, mitigants, 

inhibitors, etc.) that are considered in response to events 

to put them right and whether those responses are timely 

enough to prevent loss. 

We can illustrate the above by zooming in on the asset 

model example in Figure 2 to concentrate on process X. The 

marginal probability distribution for process X and its sur-

rounding nodes is shown in Figure 3. We can see that process 

X fails if either of systems A, B, and primary system C fails. 

Based on this the probability of process X failing is 11.546%. 

Note that this calculation takes into account the fact that 

systems A and B could fail because they both belong to the 

same data centre which could fail and take both of them 

down. Assuming independence between the parent systems, 

the probability of process X failing would be higher at 13.3%. 

The AgenaRisk software automatically and exactly calculates 

all of the possible combinations of failure and success events 

throughout the model from the probability values supplied in 

the node probability tables and the Boolean logic relation-

ships declared by the user.

Estimating Var

Armed with the asset model we can make decisions on the 

basis of clear financial criteria, such as VaR. VaR is simply a 

measure of risk appetite and provides answers to questions 

like: “what is the risk of ruin in the next year?”, “what is the 

expected (average) loss this month?” or “I want to be 80% 

confident that the losses will not exceed U.S.$10m, what 

do I need to improve?” We, therefore, propose that impact 

assessment be carried out using VaR concepts based on a 

valuation of each business service’s current or future poten-

tial revenue streams. Only when armed with a keen apprecia-

tion of what is at stake can we make investment decisions 

about business continuity plans or design decisions about a 

more robust IT architecture.

Once we have estimated the probabilities of failure at the 

service level, we can now estimate the economic losses for 

each service and, in total, for the business. In our example 

asset model we use simple loss metrics for each of services 

A or B with the distribution of the losses assumed lognormal 

under the condition of a service failure (this seems a good 

choice because of the potential long tail nature of opera-

tional losses). In practice the distributions can, of course, 

take any functional form. However we also need to model 

the situation where a service does not fail, which then incurs 

zero losses.
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Figure 3 – Reliability quantification of the asset model
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From a statistical modeling perspective severity of service 

failure, L, is simply calculated as a mixture under a discrete 

condition of failure or no failure, S = {true, false}. This can 

be done analytically [Venkataraman (1997)], but here we will 

calculate the results approximately using the dynamic discre-

tization approach mentioned earlier. Thus, formally we have: 

ƒ(L | S = true) = lognormal (μ,σ2), ƒ(L | S = false) = 0.

For this example we assume two services, service A and serv-

ice B, whose conditional loss distributions under failure are 

both lognormally distributed with parameters Lognormal (μA 

= 3, σA
2 = 3), lognormal (μB = 12, σB

2 = 658), respectively.

running a scenario

Here we run a hypothetical scenario on the model under a 

number of assumptions about the probability of failure of 

each of the different assets in the Bayesian IT operational 

risk model. Firstly we look at a status-quo scenario involving 

the currently estimated probabilities of failure and then com-

pare this with two ‘what if?’ scenarios: one where data centre  

alpha fails and the second where data centre beta fails. In each  

scenario we estimate the mean loss and the VaR at 99.9%.

Figure 4 shows the summary statistics for total losses for 

each scenario. Notice that VaR for data centre alpha has by 

far the biggest impact on both service A and service B than 

data centre beta, with a VaR of U.S.$92.826m as opposed 

to U.S.$79.271m. If this uplift in VaR is intolerable we could 

then make a decision. We could decide to implement more 

resilient business continuity and recovery processes into the 

IT architecture or make the delivery services more robust to 

failure. Or we could decide to self insure by setting capital 

aside or seek insurance. The effects of either of these mitiga-

ting actions on the predicted losses can be evaluated through 

comparison of their respective effect on the VaR. Comparing 

the predicted reduction in VaR with the investment cost of 

each mitigating action is useful information when deciding 

which course of action to take.

In addition to the summary statistics contained in Figure 4 

the BN model also produces full marginal probability distri-

bution results for all discrete and continuous variables in the 

model. An example of this is shown in Figure 5.

Clearly, this example model is by necessity relatively simple. 

However, it is still powerful and in practice, by using a tool 

such as AgenaRisk, the approach scales up and offers a real-

istic level of resolution in two ways:

n The user can specify a level of desired accuracy, con-

strained only by the computational resources available, 

and thus calculate very accurate percentile values for 

VaR and aggregated loss distributions over many pro-

cesses. 

n Use modular notation to compose large models from 

smaller fragments and use this to automatically generate 

models from databases containing loss data and process 

descriptions.
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scenario Mean loss Var (99.9%)

Status-quo $1,269,500 $76,225,000

Data center alpha failure $2,359,600 $92,826,000

Data center beta failure $1,405,900 $79,271,000

Figure 4 – Summary VaR and mean losses for each scenario Figure 5 – Loss distributions for each of the services, including the total loss
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conclusion
Bayesian Networks can successfully model dependencies 

between events and processes in complex systems, inclu-

ding IT infrastructures. We have shown that they do so in 

a graphical way that naturally supports robust statistical 

and probabilistic specification of the risks and subsequent 

calculation of consequential risk measures, such as VaR. As 

such they meet the requirements of the Basel Accord [Basel 

(2006)], for an advanced measurement approach (AMA). 

Adopting a BN-based approach should, therefore, lead to 

better operational risk governance and a reduced regulatory 

capital charge. The BN approach presented here strongly 

contrasts with a purely statistical approach based on histo-

rical loss data alone. We believe that traditional statistical 

analysis techniques will neither provide good predictions of 

future operational risk losses, nor provide a mechanism for 

controlling and monitoring such losses. This second goal is 

obviously of utmost importance in practice.

This paper has provided an introductory flavor of BN tech-

nology and its contribution to operational risk modeling. The 

latest BN tools enable more sophisticated modeling and ana-

lysis than can be covered here. For example, such tools now 

support learning from loss data in a way that competes with 

techniques that have hitherto been recognized as state of 

the art, such as MCMC [Gelman et al. (2004)]. The new tools 

also make it relatively easy to model more complex depen-

dencies between assets and losses than those covered here 

including, time-based losses, time to respond, time to failure 

modeling, and complex mixture and classification modeling 

to exploit consortia sourced loss data. 
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