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ABSTRACT

Although there have been many models for predictespurces
in software development they provide little in thiay of decision-
support for software managers. It has been arghatl hodels
based on Bayesian Nets give more benefits, in teifndecision-

support, than traditional models. The model describere is an
improvement on one such widely used model thatvedbfrom

the EC project MODIST. Unlike the MODIST model thew

model gives users the ability to adjust the moditlee by their

subjective beliefs or by feeding the model with @mnpl data

from past projects. Also, the new model gives foeadf choice
of units of measurement for expressing model végab
Consequently, the new model is significantly mdeaible.

Categoriesand Subject Descriptors
D.3.3 [Software Engineering]: Management —productivity,
software quality assurance (SQA), time estimation.

General Terms

Your general terms must be any of the followingdesignated
terms: Management, Measurement, Experimentationmatu
Factors.

Keywords

software project modelling, project risk factorgyBsian Nets.

1. INTRODUCTION

In the software engineering domain much effort eesn spent on
building models for predicting:

1. resources necessary to accomplish a software projec
2. quality of a developed software product.

Indeed, it has been argued that almost all reseancter the
classification of ‘software metrics’ is traceable these two
objectives [9]. Yet, few models have addressed uhgnate
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objective of software metrics, which is to provideftware

managers support for improved decision-making atek r
assessment based on quantification. Such an olgequires a
combination of both the resource and quality perspe of a

project. One approach that has shown consideratomige in

addressing this requirement is Bayesian Nets [8Rafesian Net
(BN) is an acyclic graph in which the nodes indicaariables

expressed as probability distributions. Nodes ao&nected

according to the causallrelevance relationshipsvdest them.

Thus, they enable us to analyze the impact of ar@ale on

others in many useful combinations.

A widely used BN model, called thmroject-level mode[9] that

was developed as a part of EC Project MODIST [a8kpmpted
to address the requirements for decision making asH

assessment in software projects, while taking atcofithe best
empirical results that had informed earlier reseyediction and
defect prediction models. In particular, the modtgempted to
reflect the trade-offs that we can normally observesoftware
projects between:

* the size of delivered software,
« the quality of delivered software,

¢ the effort required for developing the softwane ferms of
both project duration and number of people).

While the model has been widely used and quite essfal
(including use by organizations such as Siemen} 2® were
not involved in the MODIST project), it is limiteth the sense
that the prior probability distributions in the neddare heavily
dependent on previous empirical data that may hetys be
relevant. Hence this paper focuses on a new mbdebtiopts the
basic philosophy of the MODIST model, but which cenmuch
more easily adjusted for company-specific needs.

In Section 2 we briefly present the original MODIBiDject-level
model and we point out its limitations. We present revised
model in Section 3 that addresses the key weakmess¢he
MODIST model. In Section 4 we demonstrate how tiv model
provides better predictions than the MOIST modetl dow
software managers can use it for better decisigppai and risk
assessment.



2. EXISTING BAYESIAN NETSFOR
SOFTWARE MANAGERS

There have been many different software engineenmglels
incorporating resource prediction [2, 4, 6, 12,.18)me of them
were also Bayesian Nets [3, 10, 14, 17, 21, 22].

We decided to base our improved model on the MOQi®]ect-
level model because it explicity contains the &adf
component, has been validated in several trial289, provides
the greatest potential for decision support anthés easiest for
adoption to our purposes. Figure 3 illustratesstnacture of the
main part of this model. Based on project durafexpressed in
person-months) and average number of people fulk,tithe
model calculates effort, which is adjusted by thedks factor
[5]. Then effort is adjusted by process and peoplglity.
Functionality delivered (in function points) is calated based on
the adjusted effort. Knowing the functionality ath real effort
for the project the model calculates the softwarality, which is
also adjusted by process and people quality. Becpragpagation
in BNs enables both forward and backward infereriteis
possible to enter ‘observations’ into any nodehef inodel and let
the model produce revised probability distributidosall the (as
yet) unknown nodes. For example, if there is a kmawmality
requirement then the model will produce predictéstrithutions
for resources and functionality. If, in additiomete are certain
fixed resources then the model will again produceeased
distribution for functionality.
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Figure 1. Project resource model (simplified), adapted from [7]

The whole model takes into account other factorshsas:
process, people and requirements specificationitgued well as
distributed communications and management factibrés too

ts

complex to show them in detail on a single diagritore on
structure and usage can be found in [9].
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Figure 2. Schematic view of MODI ST defect prediction model

In addition to the project level model a second M&Dmodel is
concerned with prediction of number of defects [ 0kchematic
view of this model is illustrated on Figure 2. Timedel predicts
number of defects at several stages of softwareldement: total,
found in testing, fixed in rework, residual, ethi€Be numbers are
affected by causal factors describing overall manamnt quality
level and process and people quality at differéades of software
development: specification, design and developntesting and
rework. These subnets also contain a referencédd spent on
each activity. However, effort is not expressed ahsolute
numerical value but on a ranked scale from “very’lto “very
high”. In this context it means: how appropriateffort spent on
a specific activity compared with the need.

Both MODIST models have been validated by various
partners in the MODIST project and beyond and helse been
incorporated into the AgenaRisk tool [1] that hegesal thousand
users worldwide.

The main weaknesses of the MODIST models are:

1. These models are not integrated, i.e. end usenscarable to
perform full trade-off analysis between functiobglieffort
and quality using numerical values. The main assiampn
estimating trade-offs between them is that knowimgvalues
of two of them we can estimate the value of theltbne. In
the project-level model ‘quality delivered’ was rparily
estimated on a 7-point ranked scale. The value tler
numerical variable ‘defects per KLOC’ was then rastied
depending purely on ‘quality delivered’. Such a mlod
structure could not give precise predictions fomber of



defects. MODIST'’s second model was developed fecipe
defect prediction. But this one lacked the abitityexpress
development effort explicitly on a numerical scale. this
model effort was expressed on a ranked scale.

2. The models use fixed units of measurement for stattors.
Functionality is expressed in function points apdrtially,
KLOC (thousands lines of code). If users decideute
KLOC, they need to provide the programming languagme
and the model still calculates the value expregsddnction
points for the further calculations. Effort (in peot level
model) is measured in person-months. Companies wigty

to use other units of measurement (in particulamyma
trials  were

organizations involved in the MODIST
uncomfortable using function points). In such cabey have
to calculate their values/estimations outside tloglehto be
expressed in the units acceptable by the model.

3. Although the models contain several variables deisgr the
(current) process and product of software developntbey
lack of ease of incorporating new empirical dataehg users.
Many of the prior distributions at the heart of thade-off’
part in the project-level model are based on ewgidata that
may not be relevant. As is typical in any Bayesmadel,
while such priors are extremely useful for orgatiimes that
have no previous relevant data of their own, they c
significantly bias the predictions even once proggecific
variables are observed. Since software compandesasingly
gather their own data about past projects, it ipartant to
allow the model to be adjusted to more easily ftecesuch
data. For example, among the easiest metrics foulation
from such databases are productivity and errosrie past
projects. Unfortunately, it is not possible to ‘ée¢he model
with such data.

3. IMPROVED BAYESIAN NET FOR
SOFTWARE MANAGERS

By considering the weaknesses of the existing nsodel have
developed an improved BN model that provides sugfpor

1. Trade-off analysis between functionality, effortdaguality
where relationships between them are adjusted Hitiawial
factors missing in original MODIST models.

2. Different units of measurement for model variablekere (if
they have some appropriate prior data) users caramg unit
of measurement that they wish to. For example uthits for
delivered software could be: lines of code, thodsamf lines
of code, function points, GUI screens, requiremegtts

3. Easy incorporation of new (more relevant) empiritafa into
the model.

We have retained the crucial trade-off componetwéen various
software development factors, but have simplifiebyi including
only the most important variables which are:

« easy to understand and interpret by users,
« easy to estimate based on the past data.

Figure 3 illustrates the schematic view of the iayaed Bayesian
Net for predicting resources in software developmBecause it
explicitly captures productivity we called this newodel the

“productivity model”. All ellipses on this figureeflect nodes in
the net, rectangles with light-grey background eefl model
constants and rectangles with gradient backgroefiect subnets

containing more detailed nodes.
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Figure 3. Schematic view of productivity model

The model consists of the following parts:

1. Factors influencing prior rates (Figure 3- gradidied
rectangle).

This subnet contains nodes which are general fadtdiuencing
prior error and productivity rates. This subnetused only if the
end user does not enter observations or distribsitior the prior



error and productivity rates. In such cases theaesr are
estimated by the model based on the values of igéser
environmental factors in this subnet, e.g. orgdiopa or
application type, programming language type anéroth

This part of the model incorporates results of sial[20] which
we performed using mainly the publicly availabl8&5 database
of software projects [11], and also compared theseailts with
analyses available in the literature .

2. Prior error and productivity rates (Figure 3— gedlipses).

These rates are the values for the past projebtsu$er enters the
values as calculated mean values from the past Hateey are
unable to calculate them the model will estimatenttbased on
the factors influencing them in the subnet descrittgove.

3. Constants describing process and project attributeieh
adjust prior error and productivity rates (Figurel@ht-grey-
filled rectangles).

In each case the idea is to capture any key diftere between the
current project and the typical past projects fhicl we entered
the prior error and productivity rates. This difface (which is
expressed simply as a percentage) can be estimaded)
complexity metrics or expert judgment. The consame:

« Percentage difference of software complexity.

« Percentage difference of software project scalewbich we
mean scale factors affecting infrastructure ratthem pure
development).

« Percentage difference of software novelty (by whighmean
what part of the project will be built from scratak opposed
to reuse of existing documentation, design, cotte).e

4. Process and people factors that adjust error aoduptivity
rates (Figure 3— gradient-filled rectangles).

These factors are incorporated in the model asfalewing
subnets: requirements quality, management qualiisgcess
quality and people quality. Formulating them as raib
containing more detailed nodes enables end useesthier use
those detailed nodes (e.g. staff motivation anskaff experience)
for expressing the quality of people or to directhge an
aggregated people quality node.

These factors are expressed on a ranked scaley (twef, “low”,
“normal”, “high”, “very high”) as opposed to the guiously
discussed constants, which are expressed on angont scale
(real numbers). Their values are not absolute. Bezaf the
difficulty users had in entering ‘absolute’ valules qualitative
factors, in the productivity model we changed gepraach. They
reflect relative values compared to the typical past projects for
which the prior productivity and error rate dataused. For
example, setting the value of ‘staff quality’ to b®rmal” means
that in this project the staff quality is the saae it was on
average for the past projects. In this case it dowlt affect either
error or productivity rate. If it is set to “hight means that the
staff quality is higher than on typical past prdgedt doesnot
mean that it is “high” in any absolute sense. Usdrthe model
are always judging these qualitative factors retato their own
previous projects. If, on previous projects, thaffsquality was
always considered to be “very high” then settingpithigh” on a

new project means that the new project is evenenighan the
“very high” previous average. In this model theues higher then
“normal”, namely “high” and “very high”, increasequuctivity
rate and decrease the error rate. The values b&lownal”,
namely “low” and “very low” decrease productivitate and
increase error rate.

5. Adjusted error and productivity rates (Figure 3eygellipses).

These two nodes reflect error and productivity satdich have
been adjusted by all constants and factors. Thexefoey are the
estimated rates for the current project. They grflze the most
important part of the model: the trade-off compdnen

6. Trade-off component between the quality, functidpahnd
effort (Figure 3— dark grey ellipses).

This is the main part of the model. Knowing theductivity rate
and effort the model calculates the functionalitthew much
software can be written. Knowing the functionakityd error rate
the model calculates how many units of software skeuld
expect to be defective (the quality).

Effort in this model is expressed as a combinatdnproject
duration and number of people working full-timetla¢ project.
This effort is adjusted by a Brooks factor [5],dik was in the
project-level MODIST model [9, 13]. This adjustmen¢ans that,
for example, the total productive effort of 2 peoplorking for 10
months is not the same as 20 people working formoeth, even
though the total effort in both cases is 20 pensmmths. We
introduced this adjustment.

The node “percentage difference in effort devotedqtality”
plays a key role in the analysis of trade-offs. Bssumption here
is a simple one: The greater the proportion ofl tptaject effort
devoted to purely quality assurance activities, smealler the
proportion can be spent on writing new softwarehisTnode
describes how much the effort spent on improvingwsoe
quality differs in the current project comparedhe effort in the
past projects (for which the prior error and prdeuity rates have
been estimated). The higher positive differencénasee, the lower
error rate (better quality) and the lower produttivate (less
functionality) we should expect.

One other key improvement in the revised model aregto the
MODIST model is that we have applied the dynamic
discretisation algorithm [15, 16] by marking makial) numeric
nodes ‘simulation’ nodes. This means that we ditd meed to
define the fixed node states when the model waatede This
resulted in more accurate predictions. We haveipusly tested
this algorithm for the defect prediction model fraéhe MODIST
project [7]. The model has been implemented usihg t
AgenaRisk software [1].

4. DECISION SUPPORT IN IMPROVED
BAYESIAN NET

Using the productivity model we can perform estiota for the
size and quality of delivered software and the reffequired for
developing the software. But it is not only thaleTkey feature of
the model is the ability to perform a trade-off lgses between
these variables: how the change in one of themctaff¢he
remaining ones.



Because our model is a Bayesian Net when userstwisktimate
the predictive variable they do not need to prowthservations
for all of the predictor variables. That is becaysedictor
variables always have the probability distributioassigned
(priors) even if they are not passed directly bgrsis This is a
useful feature because usually it is not possiblis ¢oo costly to
estimate the values for all predictor variablesirdyra software
project.

From such a model we expect to get answers to dhewing
types of questions:

¢ Given specific prior productivity and error ratemd total
effort for the project but leaving default valuesr fthe
remaining variables (which means that both projant
process factors and constants are the same ahdopast
projects) how much functionality, and of what gtyglcan we
produce?

* How good do process and people need to be if weakyt
need better quality software than the model pre@ict

¢ How much more effort do we have to put to delivettér
software?

e How much effort do we need to deliver software péafied
functionality and quality?

Although the MODIST model can answer such questiths

correct predictions will only be given for “typi¢alproject

situations, where project constraints (such as texitg or

novelty) and environmental factors (such as apfitinatype or
programming language type used in project) arbasame level
as in the past projects.

The improved model also gives answers to quesstatsd above.
Furthermore, it strongly extents this list of quess it can
answer. These additional questions are very impbfitam the
software managers’ point of view for a better diecissupport,
especially with changing project and process factand include
the following:

* What are numerical relationships between functipnadffort
and number of defects?

« How does the change in the process and peopletyjaétct
the functionality delivered and the quality of sadte.

e What impact on functionality and quality will have
proportional change of effort devoted to quality?

¢ How will our predictions for functionality, qualitgr effort
look like if we want to use our own units of measuent for
them?

¢« What software functionality and quality should wepect if
actually our project is more complex than the pyasiones?

e How does a change in inherent project factors effec

predictions?

¢ What predictions should we expect if we feed thelehavith
non-default values productivity and error rate?

The general task for software manager using thedwga model
is to assess how this project differs compared wjfiical past
projects and enter these estimates into the madebservations.

Not all of the factors need to be entered into rtialel because
Bayesian Net will also be able to perform calcolasi even in the
case of missing values. In such cases default piliya
distributions for the missing variables will be dse

4.1 Trade-offsUsing Numerical Scale

As discussed in Section 2, the MODIST project—leradel
contains variables for predicting functionalityfoef and quality.
However, one of them, ‘quality delivered’ is exmed on a
ranked scale only (Figure 4). That reduces poteotiperforming
detailed trade-off analysis.
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Figure 4. Comparison of prediction of quality in MODIST
project-level and productivity model

The new productivity model fills the gap in MODISiodel and
contains variables describing project trade-offs twken
functionality, effort and quality on a numericabi (Figure 4).

4.2 Entering Non-Default Productivity and

Error Rates

MODIST project-level model incorporates trade-affationships
without the ability for users to specify their oywrior productivity
and error rates. Productivity model enables userenter their
own productivity and error rates which they canneste outside
the model.

For example, a software company delivers specifiges of
software which requires spending more developméottethan
for other software of similar size. There may digoa case where
the nature of software and the development progesslead to
situations where they achieve “non-standard” guaiitterms if



number of defects per unit of size. In such casésch are not
that rare, it may be inappropriate for them to asmodel that
does not enable them to use such information.
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Figure5. Effort predictionsfor different scenariosin
MODIST project-level and productivity model

Figure 5 illustrates two examples of different peédns for
development effort. In the first example we asstionkave lower
productivity. In the second one we assume to haigheh
productivity. As presented on the figure, if we Wwam develop
software for a given size containing specific numiifedefects, in
the second scenario we need less effort to reaeketkims.
MODIST model does not allow us to enter our owrueal for
productivity or error rates and with the same caists for
functionality and size predicts a single probapititstribution for
quality (Figure 4).

4.3 Using Custom Units of Measurement

As described in Section 3, the productivity modeési not have
constraints in using custom units of measurementefdering

observations and obtaining predictions. If usershwb use units
of measurement of their choice they simply enteiorpralues as
observations for variables expressed in their uni$

measurement.

For example, users want the model to predict thmetfanality

which they could deliver when spending specific ammf effort
and meet a constraint about the quality. Furtheemeuppose
they want this functionality expressed in a nomdgad unit of
measurement: “number of requirements”. The MODISddeh

cannot be used in this case at all because furtitypnis

expressed in number of function points there. & ghoductivity
model users need to do the following:

¢ enter an observation for effort expressed in anjt of
measurement, such as “person-month”, “person-weak”
even “programming-group-week” if such non-standani of
measurement is used in a company,

¢ enter an observation for their prior productiviste (meaning
productivity rate for a typical past project) inpappriate unit
of measurement, such as “number of requirementpgrson-
month” or “number of requirements per programmimngegp-
week” or other — depending on unit of measuremeset for
effort,

* enter an observation for the “number of defectsieyavhich
in this case would mean “number of defective rezpaints”.

HE
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Figure 6. Using custom units of measurements

Figure 6 illustrates prediction for functionality this example.
The figure does not display units of measuremeslfit Users
have to infer them depending on units of measurénmenther
values they entered as observations. In our examplaotice
totally different scale of predicted values for dtionality (X-
axis) compared with other examples in this papégufieé 7 and
10).

4.4 Changein Process and People Quality

As discussed in previous sections, both MODIST rwodad
productivity model contain variables describing qgss and
people quality. In both of them process and peaplality
influences on key variables, such as functionaléffort and
quality delivered.

Figure 7 illustrates example in which our aim ispredict how
much software we are able to develop for givenreffoscenarios
of having worse and better process and people tgudin

MODIST we enter our estimates for process and geqphlity
for the current project. In productivity model wefide how
process and people quality changed compared vatipakst.

As we could expect both models predict that havibeter
development process and people increases the bigeftware
which we could develop using limited effort. Theykdifference
between the models here is that in productivity ehade only
need to define how process and people quality addinghile in
MODIST we need to define the real process and peqpdlity.



Mery functiohality delivered ([ Project Level)

3.2E-4 |
2BE4 |
24E4 ]
2.0E-4 |
16E-4 ]
1.2E-4 |

B.OE5 |

4 0E-5
0.0 ]

Delivered number of units (Productivity)

YT
=]
(=]

0'ooog 4

& Baseline

¥ Better process and people quality

0'ooor
0'ooos
0'ooos
0 o000k

AR B Baseline -
T —& Better process and people quality
4. 0E-4
| ——
3.2E-4 |
ZAE-4 | @
1.6E-4 | d 3"_., " A,
B.OE5 | / Y "
a | - S
oo L o8 o B S
T 1 T T T T T T T P
L T N I T )
A o m B M oo @ @ B M O
e 2 2 9o 9o o o o o o
-0 & &6 &8 &6 & & & &8 o
o b b B B B B o o

Figure 7. Predicted functionality for different process and
people quality valuesin MODI ST project-level and
productivity model

4.5 Impact of Changed Project Constraints
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Figure 8. Predicted quality for complex and novel project in

MODI

ST project-level model

The MODIST project-level model contains ranked nedgables
such as “requirements complexity”, “requirementveity”, and
“scale of distributed communications” that impacat overall
process and people quality and thus on trade-détioaships.
However, because of the structure of the modekh(imgmber of
nodes with small number of states between projeciofs and
quality nodes) the different values of project dasthave almost

no impact on predicted ‘quality delivered’ and terrate’ (Figure
8).
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Figure 9. Predicted quality for complex and novel project in
productivity model

In productivity model we can analyze the impact pbject
constraints on numeric quality variables. Figurélustrates that,
with this higher project complexity and the samsoreces, for a
project of specific size, we should expect to dalithis software
with lower quality compared to the scenario whidswanes no
change in project complexity.

In addition to the higher project complexity, suppowe also
estimate higher novelty in a sense that we wilbke to reuse a
smaller part of software compared to past projeEigure 9
illustrates that now we should expect even morealsfcompared
with two previous scenarios.

We can also observe different number of statesdoor rate’
node in MODIST project-level model (Figure 8) comgzhwith
productivity model (Figure 9). Because central tamzy statistics
are calculated using more shorter intervals in petidity model,
we are automatically obtaining more precise préstist The
increased accuracy is even better because of agptynamic-
discretisation algorithm.

4.6 Impact of Environmental Factors

As we described it Section 3, prior productivitydaerror rates
can be estimated by our model using descriptiveofadf users
cannot estimate them outside the model.

For example, a company has recently changed itfleprand
started to deliver different type of software thanthe past. It



means that they do not have enough volume of detatgrojects
of similar type developed in the past. We entereolztions for
these descriptive nodes and as a result get diffevalues
(probability distributions) for prior error and phactivity rates

(Figure 10).
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Figure 10. Predicting prior error and productivity rates for
given environmental factors

MODIST model does not capture any descriptive facétout the
company or project. From this point of view it mgiye incorrect
predictions for functionality, effort, quality ortheer variables for
companies and projects being outside the origin@ DNBT

scope. Productivity model incorporates several rijgtbee factors
which adjusts relationship between functionalityffoe and

quality.

4.7 Change of Effort Devoted to Quality

In the MODIST project-level model we cannot entérectly

information that we plan to spend more effort ostitey than

usually. However the model believes that if we useste effort

than necessary for software of given size, thenust have been
to balance worse process and people in achievinidgsilevel of

software quality. Actually, increased total effonay be due to
increased project complexity or other factors dbsmy project

which are not under control of project managersdautsing the
need of additional effort on quality assurance. M&D model

predicts only very small (not significant) diffe@n in

‘requirements difficulty’ (Figure 11).
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Figure 11. Predictionsin MODIST proj ect-level model when
spending mor e effort than necessary

In the productivity model we can define the diffece in effort
spent on quality assurance in the current projesipared with a
“typical” past project.

For example, our aim is to predict the functioyadind the quality
of the developed software for a given effort (Fgur2). In the
first scenario we are assuming that we spend tme gaoportion
of effort on quality assurance as in the pasthingecond scenario
we spend 25% more effort on improving software iyal
compared to the “typical” project in the past. We aot assuming
the change in the total effort for the project.

Because we are spending proportionally more effartquality
rather than on extending functionality the resshlisw that in the
second scenario we should expect to produce ldssase but
with the better quality.



Delivered number of units [ Productivity)

£

—&= ;
48E-4 A More effort on quality
T 0" Baseline
4.0E-4 |
| o B=
3.2E4 | | “\‘ g
2.4E-4 ,'I o y
i I"., .
16E-4 | m \
B.0E-5 | 4 \_ ® _
0.0 gy g s ey B o
=1 ' o "ha ' T T
= =] o B [ =3 @
=1 =] =3 =1 =1 =]
= =1 =1 =] =1 =1
o o o o o

Mumber of defects [ Productivity)

2)x]

& ™ More effort on quality
EEE | " o Baseline
0.0020 | B
0.0016 | .
0.0012 |
8.0E-4 .
. B
4.0E-4 TR
. ey
0.0
T T T T T T T T T
o T L Y T m om =
o o @™ = KM O @ [ S
- £ o o o o o o o
o o o o o o o o

Figure 12. Predicted functionality and quality of delivered
softwar e when mor e effort is spent on quality

5. SUMMARY AND FUTURE WORK

We have described a new model that can produceines and
quality predictions for software projects, but whianore
importantly can perform powerful what-if analysisdatrade-off
analysis to support project managers confrontedh witanging
project realities.. Although this type of analysims partially
possible in a previous model (the MODIST projeetlemodel)
the model presented in this paper overcomes sogréfisant
weaknesses of the MODIST model:

e It fully captures trade-off relationships betweemdtionality,
effort and quality which are adjusted by severattdes
describing project and development process.

e It is independent on the units of measurement flmrteand
functionality.

e It is much easier to use basic metrics, such asr emnd
productivity rates, extracted from past projectaBiases to
adjust the model for the specific software compamgeds.

In addition the model is also more accurate byeinf the use of
dynamic discretisation of numeric nodes.

This new ‘productivity’ model can be of immediateagtical use
since it directly addresses the improvements reagqdeby the
many users of the MODIST project level model. Hoarethere
are opportunities for still further improvementsdamefinements.
For example, many of the variables, such as effodcess and
people quality, are aggregations. This means tmey tescribe
project and process by a single value (distribytitinis useful to
have an opportunity to split such variables intalen parts, for

example according to the development activitiesjuir@ments
and specification, design, implementation, teséind rework. We
would than be able, for example, to differentiatecess quality
by these phases or estimate/assign effort for thegsexific

activities instead of only for the whole project.eWare now
developing such an extended productivity model dikitprovide

even better decision support for project managers.
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