
Improved Decision-Making for Software Managers
Using Bayesian Networks

Łukasz Radliński†‡ Norman Fenton‡ Martin Neil‡ David Marquez‡
†Institute of Information Technology in Management

University of Szczecin
ul. Mickiewicza 64

71-101 Szczecin, Poland

‡Department of Computer Science
Queen Mary, University of London

Mile End Road
London E1 4NS, UK

+48 91 444 1911 +44 20 7882 7860 +44 20 7882 5221 +44 20 7882 8027

{lukrad, norman, martin, marquezd}@dcs.qmul.ac.uk

ABSTRACT
Although there have been many models for predicting resources
in software development they provide little in the way of decision-
support for software managers. It has been argued that models
based on Bayesian Nets give more benefits, in terms of decision-
support, than traditional models. The model described here is an
improvement on one such widely used model that evolved from
the EC project MODIST. Unlike the MODIST model the new
model gives users the ability to adjust the model either by their
subjective beliefs or by feeding the model with empirical data
from past projects. Also, the new model gives freedom of choice
of units of measurement for expressing model variables.
Consequently, the new model is significantly more flexible.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Management – productivity,
software quality assurance (SQA), time estimation.

General Terms
Your general terms must be any of the following 16 designated
terms: Management, Measurement, Experimentation, Human
Factors.

Keywords
software project modelling, project risk factors, Bayesian Nets.

1. INTRODUCTION
In the software engineering domain much effort has been spent on
building models for predicting:

1. resources necessary to accomplish a software project.

2. quality of a developed software product.

Indeed, it has been argued that almost all research under the
classification of ‘software metrics’ is traceable to these two
objectives [9]. Yet, few models have addressed the ultimate

objective of software metrics, which is to provide software
managers support for improved decision-making and risk
assessment based on quantification. Such an objective requires a
combination of both the resource and quality perspective of a
project. One approach that has shown considerable promise in
addressing this requirement is Bayesian Nets [8]. A Bayesian Net
(BN) is an acyclic graph in which the nodes indicate variables
expressed as probability distributions. Nodes are connected
according to the causal/relevance relationships between them.
Thus, they enable us to analyze the impact of one variable on
others in many useful combinations.

A widely used BN model, called the project-level model [9] that
was developed as a part of EC Project MODIST [13], attempted
to address the requirements for decision making and risk
assessment in software projects, while taking account of the best
empirical results that had informed earlier resource prediction and
defect prediction models. In particular, the model attempted to
reflect the trade-offs that we can normally observe in software
projects between:

• the size of delivered software,

• the quality of delivered software,

• the effort required for developing the software (in terms of
both project duration and number of people).

While the model has been widely used and quite successful
(including use by organizations such as Siemens [23] who were
not involved in the MODIST project), it is limited in the sense
that the prior probability distributions in the model are heavily
dependent on previous empirical data that may not always be
relevant. Hence this paper focuses on a new model that adopts the
basic philosophy of the MODIST model, but which can be much
more easily adjusted for company-specific needs.

In Section 2 we briefly present the original MODIST project-level
model and we point out its limitations. We present our revised
model in Section 3 that addresses the key weaknesses of the
MODIST model. In Section 4 we demonstrate how the new model
provides better predictions than the MOIST model and how
software managers can use it for better decision support and risk
assessment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. EXISTING BAYESIAN NETS FOR
SOFTWARE MANAGERS
There have been many different software engineering models
incorporating resource prediction [2, 4, 6, 12, 18]. Some of them
were also Bayesian Nets [3, 10, 14, 17, 21, 22].

We decided to base our improved model on the MODIST project-
level model because it explicitly contains the trade-off
component, has been validated in several trials [9, 23], provides
the greatest potential for decision support and is the easiest for
adoption to our purposes. Figure 3 illustrates the structure of the
main part of this model. Based on project duration (expressed in
person-months) and average number of people full time, the
model calculates effort, which is adjusted by the Brooks factor
[5]. Then effort is adjusted by process and people quality.
Functionality delivered (in function points) is calculated based on
the adjusted effort. Knowing the functionality and the real effort
for the project the model calculates the software quality, which is
also adjusted by process and people quality. Because propagation
in BNs enables both forward and backward inference, it is
possible to enter ‘observations’ into any node of the model and let
the model produce revised probability distributions for all the (as
yet) unknown nodes. For example, if there is a known quality
requirement then the model will produce predicted distributions
for resources and functionality. If, in addition, there are certain
fixed resources then the model will again produce a revised
distribution for functionality.

Figure 1. Project resource model (simplified), adapted from [7]

The whole model takes into account other factors such as:
process, people and requirements specification quality as well as
distributed communications and management factors. It is too

complex to show them in detail on a single diagram. More on its
structure and usage can be found in [9].

Figure 2. Schematic view of MODIST defect prediction model

In addition to the project level model a second MODIST model is
concerned with prediction of number of defects [10]. A schematic
view of this model is illustrated on Figure 2. The model predicts
number of defects at several stages of software development: total,
found in testing, fixed in rework, residual, etc. These numbers are
affected by causal factors describing overall management quality
level and process and people quality at different stages of software
development: specification, design and development, testing and
rework. These subnets also contain a reference to effort spent on
each activity. However, effort is not expressed in absolute
numerical value but on a ranked scale from “very low” to “very
high”. In this context it means: how appropriate is effort spent on
a specific activity compared with the need.

Both MODIST models have been validated by various
partners in the MODIST project and beyond and have also been
incorporated into the AgenaRisk tool [1] that has several thousand
users worldwide.

The main weaknesses of the MODIST models are:

1. These models are not integrated, i.e. end users are not able to
perform full trade-off analysis between functionality, effort
and quality using numerical values. The main assumption in
estimating trade-offs between them is that knowing the values
of two of them we can estimate the value of the third one. In
the project-level model ‘quality delivered’ was primarily
estimated on a 7-point ranked scale. The value for the
numerical variable ‘defects per KLOC’ was then estimated
depending purely on ‘quality delivered’. Such a model
structure could not give precise predictions for number of

Process
and people

quality

Total
effective

effort

Quality
delivered

Effort FD
differential

Functionality
delivered

Total effort
adjusted by

Brooks factor

Project
duration

Av # people
full time

Specification
and

documentation

Scale of new
functionality
implemented

Management
quality

Design
and

development

Testing
and

rework

Defect insertion
and

discovery

defects. MODIST’s second model was developed for precise
defect prediction. But this one lacked the ability to express
development effort explicitly on a numerical scale. In this
model effort was expressed on a ranked scale.

2. The models use fixed units of measurement for some factors.
Functionality is expressed in function points and, partially,
KLOC (thousands lines of code). If users decide to use
KLOC, they need to provide the programming language name
and the model still calculates the value expressed in function
points for the further calculations. Effort (in project level
model) is measured in person-months. Companies may wish
to use other units of measurement (in particular many
organizations involved in the MODIST trials were
uncomfortable using function points). In such cases they have
to calculate their values/estimations outside the model to be
expressed in the units acceptable by the model.

3. Although the models contain several variables describing the
(current) process and product of software development, they
lack of ease of incorporating new empirical data by end users.
Many of the prior distributions at the heart of the ‘trade-off’
part in the project-level model are based on empirical data that
may not be relevant. As is typical in any Bayesian model,
while such priors are extremely useful for organizations that
have no previous relevant data of their own, they can
significantly bias the predictions even once project-specific
variables are observed. Since software companies increasingly
gather their own data about past projects, it is important to
allow the model to be adjusted to more easily to reflect such
data. For example, among the easiest metrics for calculation
from such databases are productivity and error rates for past
projects. Unfortunately, it is not possible to “feed” the model
with such data.

3. IMPROVED BAYESIAN NET FOR
SOFTWARE MANAGERS
By considering the weaknesses of the existing models we have
developed an improved BN model that provides support for:

1. Trade-off analysis between functionality, effort and quality
where relationships between them are adjusted by additional
factors missing in original MODIST models.

2. Different units of measurement for model variables, where (if
they have some appropriate prior data) users can use any unit
of measurement that they wish to. For example, the units for
delivered software could be: lines of code, thousands of lines
of code, function points, GUI screens, requirements, etc.

3. Easy incorporation of new (more relevant) empirical data into
the model.

We have retained the crucial trade-off component between various
software development factors, but have simplified it by including
only the most important variables which are:

• easy to understand and interpret by users,

• easy to estimate based on the past data.

Figure 3 illustrates the schematic view of the improved Bayesian
Net for predicting resources in software development. Because it
explicitly captures productivity we called this new model the

“productivity model”. All ellipses on this figure reflect nodes in
the net, rectangles with light-grey background reflect model
constants and rectangles with gradient background reflect subnets
containing more detailed nodes.

Figure 3. Schematic view of productivity model

The model consists of the following parts:

1. Factors influencing prior rates (Figure 3– gradient-filled
rectangle).

This subnet contains nodes which are general factors influencing
prior error and productivity rates. This subnet is used only if the
end user does not enter observations or distributions for the prior

Factors
influencing
prior rates

Constant

% difference
of project

complexity

Constant

% difference
of project

scale

Prior error
rate

Prior
productivity

rate

Adjusted
error rate

Adjusted
productivity

rate

Project
duration

of people
full-time

Effort adjusted by
Brooks factor

Delivered number
of units

Number of
defects

% diff. in
effort devoted

to quality

Requirements
quality

Management
quality

Process
quality

People
quality

Constant

% difference
of project
novelty

error and productivity rates. In such cases these rates are
estimated by the model based on the values of descriptive
environmental factors in this subnet, e.g. organization or
application type, programming language type and other.

This part of the model incorporates results of analysis [20] which
we performed using mainly the publicly available ISBSG database
of software projects [11], and also compared these results with
analyses available in the literature .

2. Prior error and productivity rates (Figure 3– grey ellipses).

These rates are the values for the past projects. The user enters the
values as calculated mean values from the past data. If they are
unable to calculate them the model will estimate them based on
the factors influencing them in the subnet described above.

3. Constants describing process and project attributes which
adjust prior error and productivity rates (Figure 3– light-grey-
filled rectangles).

In each case the idea is to capture any key differences between the
current project and the typical past projects for which we entered
the prior error and productivity rates. This difference (which is
expressed simply as a percentage) can be estimated using
complexity metrics or expert judgment. The constants are:

• Percentage difference of software complexity.

• Percentage difference of software project scale (by which we
mean scale factors affecting infrastructure rather than pure
development).

• Percentage difference of software novelty (by which we mean
what part of the project will be built from scratch as opposed
to reuse of existing documentation, design, code, etc.).

4. Process and people factors that adjust error and productivity
rates (Figure 3– gradient-filled rectangles).

These factors are incorporated in the model as the following
subnets: requirements quality, management quality, process
quality and people quality. Formulating them as subnets
containing more detailed nodes enables end users to either use
those detailed nodes (e.g. staff motivation and/or staff experience)
for expressing the quality of people or to directly use an
aggregated people quality node.

These factors are expressed on a ranked scale (“very low”, “low”,
“normal”, “high”, “very high”) as opposed to the previously
discussed constants, which are expressed on a continuous scale
(real numbers). Their values are not absolute. Because of the
difficulty users had in entering ‘absolute’ values for qualitative
factors, in the productivity model we changed our approach. They
reflect relative values compared to the typical past projects for
which the prior productivity and error rate data is used. For
example, setting the value of ‘staff quality’ to be “normal” means
that in this project the staff quality is the same as it was on
average for the past projects. In this case it would not affect either
error or productivity rate. If it is set to “high” it means that the
staff quality is higher than on typical past projects. It does not
mean that it is “high” in any absolute sense. Users of the model
are always judging these qualitative factors relative to their own
previous projects. If, on previous projects, the staff quality was
always considered to be “very high” then setting it to “high” on a

new project means that the new project is even higher than the
“very high” previous average. In this model the values higher then
“normal”, namely “high” and “very high”, increase productivity
rate and decrease the error rate. The values below “normal”,
namely “low” and “very low” decrease productivity rate and
increase error rate.

5. Adjusted error and productivity rates (Figure 3– grey ellipses).

These two nodes reflect error and productivity rates which have
been adjusted by all constants and factors. Therefore, they are the
estimated rates for the current project. They influence the most
important part of the model: the trade-off component.

6. Trade-off component between the quality, functionality and
effort (Figure 3– dark grey ellipses).

This is the main part of the model. Knowing the productivity rate
and effort the model calculates the functionality – how much
software can be written. Knowing the functionality and error rate
the model calculates how many units of software we should
expect to be defective (the quality).

Effort in this model is expressed as a combination of project
duration and number of people working full-time at the project.
This effort is adjusted by a Brooks factor [5], like it was in the
project-level MODIST model [9, 13]. This adjustment means that,
for example, the total productive effort of 2 people working for 10
months is not the same as 20 people working for one month, even
though the total effort in both cases is 20 person-months. We
introduced this adjustment.

The node “percentage difference in effort devoted to quality”
plays a key role in the analysis of trade-offs. The assumption here
is a simple one: The greater the proportion of total project effort
devoted to purely quality assurance activities, the smaller the
proportion can be spent on writing new software . This node
describes how much the effort spent on improving software
quality differs in the current project compared to this effort in the
past projects (for which the prior error and productivity rates have
been estimated). The higher positive difference we have, the lower
error rate (better quality) and the lower productivity rate (less
functionality) we should expect.

One other key improvement in the revised model compared to the
MODIST model is that we have applied the dynamic
discretisation algorithm [15, 16] by marking making all numeric
nodes ‘simulation’ nodes. This means that we did not need to
define the fixed node states when the model was created. This
resulted in more accurate predictions. We have previously tested
this algorithm for the defect prediction model from the MODIST
project [7]. The model has been implemented using the
AgenaRisk software [1].

4. DECISION SUPPORT IN IMPROVED
BAYESIAN NET
Using the productivity model we can perform estimations for the
size and quality of delivered software and the effort required for
developing the software. But it is not only that. The key feature of
the model is the ability to perform a trade-off analysis between
these variables: how the change in one of them affects the
remaining ones.

Because our model is a Bayesian Net when users wish to estimate
the predictive variable they do not need to provide observations
for all of the predictor variables. That is because predictor
variables always have the probability distributions assigned
(priors) even if they are not passed directly by users. This is a
useful feature because usually it is not possible or is too costly to
estimate the values for all predictor variables during a software
project.

From such a model we expect to get answers to the following
types of questions:

• Given specific prior productivity and error rates, and total
effort for the project but leaving default values for the
remaining variables (which means that both project and
process factors and constants are the same as for the past
projects) how much functionality, and of what quality, can we
produce?

• How good do process and people need to be if we actually
need better quality software than the model predicts?

• How much more effort do we have to put to deliver better
software?

• How much effort do we need to deliver software of specified
functionality and quality?

Although the MODIST model can answer such questions, the
correct predictions will only be given for “typical” project
situations, where project constraints (such as complexity or
novelty) and environmental factors (such as application type or
programming language type used in project) are at the same level
as in the past projects.

The improved model also gives answers to questions stated above.
Furthermore, it strongly extents this list of questions it can
answer. These additional questions are very important from the
software managers’ point of view for a better decision support,
especially with changing project and process factors, and include
the following:

• What are numerical relationships between functionality, effort
and number of defects?

• How does the change in the process and people quality affect
the functionality delivered and the quality of software.

• What impact on functionality and quality will have a
proportional change of effort devoted to quality?

• How will our predictions for functionality, quality or effort
look like if we want to use our own units of measurement for
them?

• What software functionality and quality should we expect if
actually our project is more complex than the previous ones?

• How does a change in inherent project factors effect
predictions?

• What predictions should we expect if we feed the model with
non-default values productivity and error rate?

The general task for software manager using the improved model
is to assess how this project differs compared with typical past
projects and enter these estimates into the model as observations.

Not all of the factors need to be entered into the model because
Bayesian Net will also be able to perform calculations even in the
case of missing values. In such cases default probability
distributions for the missing variables will be used.

4.1 Trade-offs Using Numerical Scale
As discussed in Section 2, the MODIST project–level model
contains variables for predicting functionality, effort and quality.
However, one of them, ‘quality delivered’ is expressed on a
ranked scale only (Figure 4). That reduces potential of performing
detailed trade-off analysis.

Figure 4. Comparison of prediction of quality in MODIST
project-level and productivity model

The new productivity model fills the gap in MODIST model and
contains variables describing project trade-offs between
functionality, effort and quality on a numerical scale (Figure 4).

4.2 Entering Non-Default Productivity and
Error Rates
MODIST project-level model incorporates trade-off relationships
without the ability for users to specify their own prior productivity
and error rates. Productivity model enables users to enter their
own productivity and error rates which they can estimate outside
the model.

For example, a software company delivers specific types of
software which requires spending more development effort than
for other software of similar size. There may also be a case where
the nature of software and the development process may lead to
situations where they achieve “non-standard” quality in terms if

number of defects per unit of size. In such cases, which are not
that rare, it may be inappropriate for them to use a model that
does not enable them to use such information.

Figure 5. Effort predictions for different scenarios in
MODIST project-level and productivity model

Figure 5 illustrates two examples of different predictions for
development effort. In the first example we assume to have lower
productivity. In the second one we assume to have higher
productivity. As presented on the figure, if we want to develop
software for a given size containing specific number of defects, in
the second scenario we need less effort to reach these aims.
MODIST model does not allow us to enter our own values for
productivity or error rates and with the same constraints for
functionality and size predicts a single probability distribution for
quality (Figure 4).

4.3 Using Custom Units of Measurement
As described in Section 3, the productivity model does not have
constraints in using custom units of measurement for entering
observations and obtaining predictions. If users wish to use units
of measurement of their choice they simply enter prior values as
observations for variables expressed in their units of
measurement.

For example, users want the model to predict the functionality
which they could deliver when spending specific amount of effort
and meet a constraint about the quality. Furthermore, suppose
they want this functionality expressed in a non-standard unit of
measurement: “number of requirements”. The MODIST model
cannot be used in this case at all because functionality is
expressed in number of function points there. In the productivity
model users need to do the following:

• enter an observation for effort expressed in any unit of
measurement, such as “person-month”, “person-week” or
even “programming-group-week” if such non-standard unit of
measurement is used in a company,

• enter an observation for their prior productivity rate (meaning
productivity rate for a typical past project) in appropriate unit
of measurement, such as “number of requirements per person-
month” or “number of requirements per programming-group-
week” or other – depending on unit of measurement used for
effort,

• enter an observation for the “number of defects” node, which
in this case would mean “number of defective requirements”.

Figure 6. Using custom units of measurements

Figure 6 illustrates prediction for functionality in this example.
The figure does not display units of measurement itself. Users
have to infer them depending on units of measurement in other
values they entered as observations. In our example we notice
totally different scale of predicted values for functionality (X-
axis) compared with other examples in this paper (Figure 7 and
10).

4.4 Change in Process and People Quality
As discussed in previous sections, both MODIST models and
productivity model contain variables describing process and
people quality. In both of them process and people quality
influences on key variables, such as functionality, effort and
quality delivered.

Figure 7 illustrates example in which our aim is to predict how
much software we are able to develop for given effort in scenarios
of having worse and better process and people quality. In
MODIST we enter our estimates for process and people quality
for the current project. In productivity model we define how
process and people quality changed compared with the past.

As we could expect both models predict that having better
development process and people increases the size of software
which we could develop using limited effort. The key difference
between the models here is that in productivity model we only
need to define how process and people quality changed, while in
MODIST we need to define the real process and people quality.

Figure 7. Predicted functionality for different process and
people quality values in MODIST project-level and

productivity model

4.5 Impact of Changed Project Constraints

Figure 8. Predicted quality for complex and novel project in
MODIST project-level model

The MODIST project-level model contains ranked node variables
such as “requirements complexity”, “requirements novelty”, and
“scale of distributed communications” that impact on overall
process and people quality and thus on trade-off relationships.
However, because of the structure of the model (high number of
nodes with small number of states between project factors and
quality nodes) the different values of project factors have almost
no impact on predicted ‘quality delivered’ and ‘error rate’ (Figure
8).

Number of defects

Baseline Complex project Complex and

novel project

Mean: 277.89

Median: 171.93

SD: 307.35

Mean: 295.56

Median: 187.30

SD: 319.90

Mean: 312.50

Median: 200.51

SD: 334.99

Figure 9. Predicted quality for complex and novel project in
productivity model

In productivity model we can analyze the impact of project
constraints on numeric quality variables. Figure 9 illustrates that,
with this higher project complexity and the same resources, for a
project of specific size, we should expect to deliver this software
with lower quality compared to the scenario which assumes no
change in project complexity.

In addition to the higher project complexity, suppose we also
estimate higher novelty in a sense that we will be able to reuse a
smaller part of software compared to past projects. Figure 9
illustrates that now we should expect even more defects compared
with two previous scenarios.

We can also observe different number of states for ‘error rate’
node in MODIST project-level model (Figure 8) compared with
productivity model (Figure 9). Because central tendency statistics
are calculated using more shorter intervals in productivity model,
we are automatically obtaining more precise predictions. The
increased accuracy is even better because of applying dynamic-
discretisation algorithm.

4.6 Impact of Environmental Factors
As we described it Section 3, prior productivity and error rates
can be estimated by our model using descriptive factors if users
cannot estimate them outside the model.

For example, a company has recently changed its profile and
started to deliver different type of software than in the past. It

means that they do not have enough volume of data about projects
of similar type developed in the past. We enter observations for
these descriptive nodes and as a result get different values
(probability distributions) for prior error and productivity rates
(Figure 10).

Figure 10. Predicting prior error and productivity rates for
given environmental factors

MODIST model does not capture any descriptive factors about the
company or project. From this point of view it may give incorrect
predictions for functionality, effort, quality or other variables for
companies and projects being outside the original MODIST
scope. Productivity model incorporates several descriptive factors
which adjusts relationship between functionality, effort and
quality.

4.7 Change of Effort Devoted to Quality
In the MODIST project-level model we cannot enter directly
information that we plan to spend more effort on testing than
usually. However the model believes that if we used more effort
than necessary for software of given size, then it must have been
to balance worse process and people in achieving similar level of
software quality. Actually, increased total effort may be due to
increased project complexity or other factors describing project
which are not under control of project managers but causing the
need of additional effort on quality assurance. MODIST model
predicts only very small (not significant) difference in
‘requirements difficulty’ (Figure 11).

Figure 11. Predictions in MODIST project-level model when
spending more effort than necessary

In the productivity model we can define the difference in effort
spent on quality assurance in the current project compared with a
“typical” past project.

For example, our aim is to predict the functionality and the quality
of the developed software for a given effort (Figure 12). In the
first scenario we are assuming that we spend the same proportion
of effort on quality assurance as in the past. In the second scenario
we spend 25% more effort on improving software quality
compared to the “typical” project in the past. We are not assuming
the change in the total effort for the project.

Because we are spending proportionally more effort on quality
rather than on extending functionality the results show that in the
second scenario we should expect to produce less software but
with the better quality.

Figure 12. Predicted functionality and quality of delivered
software when more effort is spent on quality

5. SUMMARY AND FUTURE WORK
We have described a new model that can produce resource and
quality predictions for software projects, but which more
importantly can perform powerful what-if analysis and trade-off
analysis to support project managers confronted with changing
project realities.. Although this type of analysis was partially
possible in a previous model (the MODIST project-level model)
the model presented in this paper overcomes some significant
weaknesses of the MODIST model:

• It fully captures trade-off relationships between functionality,
effort and quality which are adjusted by several factors
describing project and development process.

• It is independent on the units of measurement for effort and
functionality.

• It is much easier to use basic metrics, such as error and
productivity rates, extracted from past project databases to
adjust the model for the specific software company’s needs.

In addition the model is also more accurate by virtue of the use of
dynamic discretisation of numeric nodes.

This new ‘productivity’ model can be of immediate practical use
since it directly addresses the improvements requested by the
many users of the MODIST project level model. However, there
are opportunities for still further improvements and refinements.
For example, many of the variables, such as effort, process and
people quality, are aggregations. This means that they describe
project and process by a single value (distribution). It is useful to
have an opportunity to split such variables into smaller parts, for

example according to the development activities: requirements
and specification, design, implementation, testing and rework. We
would than be able, for example, to differentiate process quality
by these phases or estimate/assign effort for these specific
activities instead of only for the whole project. We are now
developing such an extended productivity model that will provide
even better decision support for project managers.

6. REFERENCES
[1] AgenaRisk, www.agenarisk.com, 2007.

[2] Bajaj, N., Tyagi, A., and Agarwal, R. Software Estimation –
A Fuzzy Approach, ACM SIGSOFT Software Engineering
Notes, Vol. 31 No. 3 (2006)

[3] Bibi, S., and Stamelos, I. Software Process Modeling with
Bayesian Belief Networks, Proc. of 10th International
Software Metrics Symposium (Metrics 2004), Chicago, 2004.

[4] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy,
R., and Selby, R. Cost models for future software life cycle
process: COCOMO 2.0, Annals of Software Engineering,
1995.

[5] Brooks, F.P. The Mythical Man-Month: essays on software
engineering, 2nd edition, Addison Wesley, 1995.

[6] Chulani, S., Boehm, B., and Steece, B. Bayesian Analysis of
Empirical Software Engineering Cost Models, IEEE
Transactions on Software Engineering, Vol. 25, No. 4.
(1999).

[7] Fenton, N., Radliński, Ł., and Neil, M. Improved Bayesian
Networks for Software Project Risk Assessment Using
Dynamic Discretisation, Software Engineering Techniques:
Design for Quality (Ed. K. Sacha), IFIP International
Federation for Information Processing, Vol. 227, Springer,
Boston, 2006.

[8] Fenton, N.E., and Neil, M. A Critique of Software Defect
Prediction Models, IEEE Transactions on Software
Engineering, Vol. 25, No. 3 (1999).

[9] Fenton, N.E., Marsh, W., Neil, M., Cates, P., Forey, S., and
Tailor, M. Making Resource Decisions for Software Projects,
26th International Conference on Software Engineering
(ICSE 2004), May 2004, Edinburgh, United Kingdom. IEEE
Computer Society, 2004, 397-406.

[10] Fenton, N.E., Neil, M., Marquez, D., Hearty, P., Marsh, W.,
Krause, P., and Mishra R. Predicting Software Defects in
Varying Development Lifecycles using Bayesian Nets,
Information & Software Technology, Vol. 49, (2007) 32-43.

[11] ISBSG. Estimating, Benchmarking & Research Suite
Release 9, International Software Benchmarking Standards
Group, 2005.

[12] Mockus, A., Weiss, D.M., and Zhang, P. Understanding and
Predicting Effort in Software Projects, Proc. 25th
International Conference on Software Engineering (ICSE)
(2003).

[13] MODIST. MODIST Bayesian Network models,
www.modist.org.uk/docs/modist_bn_models.pdf, 2003.

[14] Moses, J., and Clifford, J. Improving Effort Estimation in
Small Software Companies, Proc. of EuroSPI 2000,
Copenhagen, Denmark, 2000.

[15] Neil, M., Tailor, M., and Marquez, D., Bayesian statistical
inference using dynamic discretisation, RADAR Technical
Report, Queen Mary College, University of London, 2005.

[16] Neil, M., Tailor, M., and Marquez, D., Inference in Hybrid
Bayesian Networks using dynamic discretisation, RADAR
Technical Report, Queen Mary College, University of
London, 2005.

[17] Pendharkar, P.C., Subramanian, G.H., and Roger, J.A. A
Probabilistic Model for Predicting Software Development
Effort, IEEE Transactions on Software Engineering, Vol. 31,
No. 7 (2005).

[18] Putnam, L.H. A general empirical solution to the
macrosoftware sizing and estimating problem, IEEE Trans.
on Software Engineering, Vol. 4, 4 (1978).

[19] Radliński Ł. Modelling Complex Nodes in Bayesian Nets for
Software Project Risk Assessment, Polish Journal of
Environmental Studies, Vol. 15, No. 4C, Hard, Olsztyn,
Poland (2006).

[20] Radliński, Ł., Fenton, N., Neil, M., and Marquez, D.
Modelling Prior Productivity and Defect Rates in a Causal
Model For Software Project Risk Assessment, submitted to:
Congress of Young IT Scientists, Świnoujście, Poland, Sept.
2007.

[21] Sentas, P., Angelis, L., Stamelos, I., and Bleris, G.L.
Software Productivity and Effort Prediction with Ordinal
Regression, Journal of Information & Software Technology,
Elsevier, 47, 1 (2005), 17-29.

[22] Stamelos, I., Dimou, P., and Angelis, L. On the Use of
Bayesian Belief Networks for the Prediction of Software
Development Productivity, Information & Software
Technology, Elsevier, 45, (2003) 51-60.

[23] Wang, H., Peng, F., Zhang, C., and Pietschker, A. Software
Project Level Estimation Model Framework based on
Bayesian Belief Networks, Sixth International Conference on
Quality Software (QSIC'06) pp. 209-218, 2006

