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Abstract 

 
Software metrics should support managerial decision 

making in software projects. We explain how traditional 
metrics approaches, such as regression-based models for 
cost estimation fall short of this goal. Instead, we 
describe a causal model (using a Bayesian network) 
which incorporates empirical data, but allows it to be 
interpreted and supplemented using expert judgement.  
We show how this causal model is used in a practical 
decision-support tool, allowing a project manager to 
trade-off the resources used against the outputs 
(delivered functionality, quality achieved) in a software 
project.  The model and toolset have evolved in a number 
of collaborative projects and hence capture significant 
commercial input.  Extensive validation trials are taking 
place among partners on the EC funded project 
MODIST (this includes Philips, Israel Aircraft Industries 
and QinetiQ) and the feedback so far has been very 
good.  The estimates are sensible and the causal 
modelling approach enables decision-makers to reason 
in a way that is not possible with other project 
management and resource estimation tools.  To ensure 
wide dissemination and validation a version of the 
toolset with the full underlying model is being made 
available for free to researchers. 

1. Introduction 

Among the many claimed benefits of software 
metrics, the most significant is that they are supposed to 
provide information to support managerial decision-
making during the software lifecycle. Central to this 
decision-making is the trade-off between cost, quality 
(including functionality implemented) and project 
duration. The relative priority given to each of these 
attributes varies from project to project. On one project, 
the manager can chose to increase quality despite the 
cost; another project must achieve what is possible 

within a fixed budget. Effective decision-support to a 
project manager must support analysis of this trade-off. 

In Section 2 we summarise existing approaches and 
explain why they are not sufficient for effective decision-
support. In Section 3 we discuss the need for a causal 
approach to software prediction and introduce the notion 
of Bayesian nets, which we have used successfully in 
related commercial applications. In Sections 4 we 
provide a causal model (using Bayesian nets) for 
resource prediction and describe how it has been 
developed. In Section 5, we compare the model with 
published data and the predictions of popular resource-
estimation models, showing the advantage of 
incorporating existing data into a causal model. A 
decision-support toolset allowing an end-user to interact 
with the model and to tailor it is described in Section 6.   

2. The classic approach to resource 
estimation 

The early resource prediction models (such as those 
of Putnam [29] and Boehm [5]) used size as the key 
variable for determining the effort required for a 
software development project. At first, Lines of Code 
(LOC or KLOC for thousands of lines of code) or related 
type metrics were used to measure size. However, the 
obvious drawbacks of this led to an explosion of interest 
in measures of software size (such as function points 
pioneered by Albrecht [1] and later investigated by 
Symons [31]) which were intended to be independent of 
programming language and to characterise the size of the 
problem rather than the solution. Other factors 
recognised as influencing the effort needed, including 
process and people attributes, are treated as cost drivers, 
adjusting the relationship between size and effort.   



Despite these advances the overall approach to 
resource prediction has remained fundamentally 
unchanged since the early 1980’s and has not been 
adopted widely. To provide better decision-support for 
managers we need to provide the following kinds of 
predictions: 

• For a problem of this size, and given these limited 
resources, how likely am I to achieve a product of 
suitable quality? 

• The model predicts that I need 4 people over 2 
years to build a system of this kind of size. But I 
only have funding for 3 people over one year.  If I 
cannot sacrifice quality, how good do the staff 
have to be to build the systems with the limited 
resources? 

In the remainder of this paper we show how causal 
models, using Bayesian nets, can provide relevant 
predictions. Bayesian nets enable us to explicitly handle 
and measure the inevitable uncertainty that is pervasive 
in software engineering. Bayesian nets also enable us to 
obtain predictions with incomplete information, and 
hence provide a solution in cases where there is scarce 
data.  

3. Causal Modelling with Bayesian Nets 

A Bayesian net (BN) is a graph (such as that shown in 
Figure 1) together with an associated set of probability 
tables. The nodes represent uncertain variables and the 
arcs represent the causal/relevance relationships between 
the variables. There is a probability table for each node, 
providing the probabilities of each state of the variable. 
For variables without parents the table just contains the 
marginal probabilities while for variables with parents it 
has conditional probabilities for each combination of 
parent states.  
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Figure 1. Project Resource BN (Simplified) 

Although the underlying theory (Bayesian 
probability) has been around for a long time, executing 

realistic BN models was only first made possible in the 
late 1980s as a result of breakthrough algorithms and 
software tools that implement them [19]. Methods for 
building large-scale BNs is even more recent ([4, 28, 
25]) but it is only such work that has made it possible to 
apply BNs to the problems of software engineering. 

Drawing on this work in various commercial projects 
with Agena, Fenton and Neil have built BN-based 
applications that have proved the technology is both 
viable and effective. Several of these applications have 
been related to systems or software assessment. 
Especially significant was the TRACS tool [25] to assess 
vehicle reliability for QinetiQ (on behalf of the MOD) 
and the AID tool [7, 14] to predict software defects in 
consumer electronic products for Philips. Much of the 
modelling work described here has been done as part of 
the MODIST project [30], which extends the kind of 
ideas in AID. The toolset implementation has been based 
on Agena’s Minerva technology that was extended to 
incorporate recent further research developments in 
building large-scale BNs that was undertaken in the 
SCULLY, SIMP and SCORE projects [15]. 

The BN in Figure 1 is a simplified version of the net 
we have developed for software project management. An 
early prototype of this BN was described in [8].  Like all 
BNs it was built using a mixture of data and expert 
judgements. Understanding cause and effect is a basic 
form of human knowledge, underlying the actions we 
take.  For example, a project manager knows that 
increasing the number of people in the team may (there is 
some uncertainty) increase the delivered functionality.  It 
is obvious that the relationship is not the other way 
round.  The expert’s understanding of cause and effect is 
used to connect the variables of the net with arcs drawn 
from cause to effect. Many of the relationships between 
variables have been prompted by empirical results 
described in a range of sources. These include [1, 2, 5, 
12, 13, 17, 18, 20, 21, 22, 23, 24, 32]. 

To ensure that our model is consistent with these 
empirical findings, the probability tables in the net are 
constructed using data, whenever it is available.  
However, when there is missing data, or the data does 
not take account of all the causal influences, expert 
judgement must be used as well.  In the next section, we 
explain how a model consistent with the empirical data is 
built.  Later sections of the paper show we get improved 
decision support when we incorporate the empirical 
research results into a causal model. 

4. A causal model for resource estimation 

A causal model for resource estimation, in the form of 
a BN, has been constructed as part of the collaborative 
research project MODIST [30], involving five systems 
and software based organisations. Project management 



experts from these organisations have helped construct 
the model. 

The full net extends the simplified net shown in 
Figure 1 in two ways. Firstly, the scope of the model has 
been expanded to address the concerns of organisations 
participating in the MODIST project. For example, 
MODIST specifically addresses risk management for 
‘distributed’ software development (i.e. development at 
multiple locations in a large organisation) so the model 
includes the management of communications in such 
projects. 

The complete model is too complex to show as a 
single BN (the full model and tool to execute and analyse 
it is available for download to researchers [16]). Its 
overall scope is shown in Figure 2, which shows six sub-
nets. Each subnet contains variables relating to a 
particular aspect of the overall model.  
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Figure 2. Schematic for the project BN 

The subnets are: 
• Distributed communications and management. 

Contains variables that capture the nature and 
scale of the distributed aspects of the project and 
the extent to which these are well managed. 

• Requirements and specification. Contains 
variables relating to the extent to which the 
project is likely to produce accurate and clear 
requirements and specifications.  

• Process quality. Contains variables relating to the 
quality of the development processes used in the 
project. 

• People quality. Contains variables relating to the 
quality of people working on the project. 

• Functionality delivered. Contains all relevant 
variables relating to the amount of new 
functionality delivered on the project, including 
the effort assigned to the project. 

• Quality delivered. Contains all relevant variables 
relating to both the final quality of the system 

delivered and the extent to which it provides user 
satisfaction (note the clear distinction between the 
two). 

The second reason for extending the simplified model 
of Figure 1 is to cope with variables that cannot be 
observed directly. Instead of making direct observations 
of the process and people quality, the functionality 
delivered and the quality delivered, the states of these 
variables are inferred from their causes and 
consequences. For example, the process quality is a 
synthesis of the quality of the different software 
development processes – requirements analysis, design 
and testing. The quality of these processes can be 
inferred from indicators, like the results of project audits 
and of process assessments, such as the CMM. Of 
course, only some organisations have been assessed to a 
CMM level, but this need not be a stumbling block since 
there are many alternative indicators. An important and 
novel aspect of our approach is to allow the model to be 
adapted to use whichever indicators are available. Some 
examples of this are given in the following sections, 
which describe two of the subnets in more detail.  

4.1. People Quality 
Figure 3 shows the variables and causal connections 

in this subnet, with connections to other subnets shown 
dashed.   
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Figure 3. Subnet for people quality 

A description of the main variables, including the 
model’s rationale is given in Table 1. Variables, such as 
those described in Table 1, representing quality attributes 
have a 5-point measurement scale, ranging from very 
low to very high. 

Observations are not normally entered directly on the 
variables described in Table 1. Instead we enter 
observation at primary causes (variables with no parents 



in the net) and ‘indicators’ (variables with a single parent 
and no children).  Indicators can have either an ordinal or 
a numerical scale.  Entering evidence at primary causes 
implies the use of deductive reasoning whereas 
observing an indicator leads to abductive reasoning, from 
effect to cause.  Evidence propagation in a Bayesian net 
integrates deductive and abductive reasoning – the user 
does not have to distinguish between them.   

Table 1. Details of subnet for people quality 

Variable 
Name 

Description 

Overall 
management 
quality 

This is a synthetic node that combines 
‘communications management 
adequacy’, ‘subcontract management 
adequacy’ and ‘interaction 
management adequacy’. If any of these 
three is poor then generally the value 
of ‘overall management quality’ will 
be poor.  

Overall staff 
quality 

This is the quality of non-management 
staff working on the project.  

Overall 
people 
quality 

This is a synthetic node that combines 
‘overall management quality’ and 
‘overall staff quality’.  

 
In the ‘people quality’ subnet (Figure 3), indicator 

nodes are used to infer the staff quality. The default 
variables in our model for this are: staff turnover, staff 
experience, staff motivation, staff training and 
programming language experience. In Section 6 we 
describe how a user can change these defaults to make 
use of the information available within a particular 
organisation. 

4.2. Functionality Delivered 
The ‘functionality delivered’ subnet is shown in 

Figure 4; each variable is described in Table 2.  The 
values of variables such as ‘project duration’ are 
numbers – in this case any number 0≥ .  Since BNs 
require variables to have discrete states, this range is 
divided into intervals.  To reduce discretisation errors it 
is desirable to have large numbers of intervals – up to 
200 for some variables – and we are able to do this using 
the techniques described in [28]. 

This subnet incorporates the results of empirical 
research into software projects. For example, the so-
called Brooks effect [6] suggests that effective effort is 
not a simple multiple of people and time because adding 
people to a project creates communication problems etc.  
This effect is factored into models like COCOMO and 
SLIM; it is represented in the net by a Rayleigh curve 
relationship whereby the overall effective effort 
increases at a lower rate as more people are added to a 
project.   
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Figure 4. Subnet for functionality delivered 

The amount of new functionality delivered is 
measured in function points [1, 31].  This is an attractive 
measure, since it is determined directly from the 
requirements and is independent of language and project 
phase.  The relationship between the ‘effective effort’ 
and the functionality delivered (the number of function 
points implemented) is based on published data and 
models in [5, 17, 18, 20, 22, 24, 31, 32]. 

However, the data available does not cover the 
influence of people and processes factors although it is 
known that when these factors vary from best to worst, 
productivity (measured by functionality delivered for a 
given total actual effort) can vary by a factor of 20.  This 
is represented in the net by an adjustment of effort to 
give ‘total effective effort’.  Experts were asked to judge 
the size of this adjustment influence, checking that the 
‘average’ quality case is consistent with the empirical 
data. 

In most cases users of the model would be expected to 
input an observation on the new functionality delivered 
variable and it might appear that this restricts our model 
to those organisations – regrettably few – using function 
points.  But this is not the case, since the model allows 
you to enter observations via a number of indicators, the 
most obvious of which is Lines of Code (KLOC).  The 
relationship between KLOC and function points is 
strongly dependent on the programming language used 
but we can use the extensive published empirical studies 



relating lines of code to function points in various 
languages (for example, [20]). 

Table 2. Details of subnet for functionality delivered 

Variable 
Name 

Description 

Process and 
people quality 

Combination of ‘overall process 
quality’ and ‘overall people quality' 
from the subnet concerned with people 
quality. 

Project 
duration 

Total elapsed time for software 
development work in the project in 
calendar months. 

Av # people 
full time 

Average number of people working 
full time on software development 
during the project.  

Total effort 
adjusted by 
Brooks factor 

The total effort in person-months, 
determined from the durations and the 
average number of people.  

Total effective 
effort 

An adjusted effort in person-months, 
taking account of the effect of process 
and people factors.  

New 
functionality 
delivered 

The amount of NEW functionality 
delivered, measured in function points  

KLOC The classic ‘thousands of lines of 
delivered source code’.  

Language The programming language used in 
the system implementation.  

 
However, there are apparent pitfalls of using KLOC 

as an indicator for the amount of delivered functionality 
in function points, since it is not a perfect indicator and 
this uncertainty is built into the model.  If you believe 
you are delivering a ‘big system’ and enter a high KLOC 
value then the BN will, as you would expect, normally 
infer a high probability that FP is also high.  However, 
this is not certain if you enter other conflicting evidence 
– a belief that the project will be completed to high 

quality, with a small team in a short time.  In this case 
the BN may decide – quite rationally – that, irrespective 
of the high KLOC, the FP count is probably low. 

The model also allows other indicators of the problem 
size to be used.  There are many possible indicators, 
some specific to particular specification and 
development techniques (for example, the number of 
user scenarios specified using use cases or sequence 
diagrams) and other specific to particular project types 
(such as the number of database tables or the number of 
dynamically generated web pages).  

5. Using the Bayesian net for Decision 
Support 

What makes the Bayesian resource model so 
powerful, when compared with traditional software cost 
models, is that we can enter observations anywhere to 
perform not just predictions but also many types of 
trade-off analysis and risk assessment.  So we can enter 
requirements for quality and functionality and let the 
model show us the distributions for effort and time.  
Alternatively we can specify the effort and time we have 
available and let the model predict the distributions for 
quality and functionality delivered (measured in function 
points).  We show two examples of the model in use. 

5.1. Resource Prediction 
In this example we consider a 1000 FP (function 

point) project and compare the predictions made using 
our model with published data and other resource 
prediction models.  We show that our model, in its 
‘dumbest sense’ is consistent with published data and 
models, but also that it provides greater insight. 

Entering a value of 1000 for the number of function 
points delivered results in the distributions for project 
duration and number of people shown in Figure 5 (this 
figure shows how probability distributions are displayed 
in the toolset we describe in Section 6).  

Process &
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Table 3. Predicted effort under various process and quality scenarios 

 
ality 

Quality 
delivered 

Predicted project 
duration months 
(median) 

Predicted number 
of people 
(median) 

Predicted total 
effort person 
months (median) 

poor 10 3 30 
average 11 4 44 
average 16 8 128 
good 20 11 220 
good 22 18 396 
very good 25 24 600 
perfect 29 29 841 
perfect 40 42 1680 



Thus, the model predicts that the project should 
involve an average of about 8 people full time for 16 
months. This is around 128 person months. However, 
because none of the other many model variables have 
values entered the distributions are, not very surprisingly 
wide.  At this stage, for example, we know nothing about 
the quality of the product or of the people and processes. 
When we enter such observations, as in Table 3, we see a 
clearer picture of why the range is so large. For example, 
at one extreme if the process and people are consistently 
high quality and the delivered quality is poor then the 
model produces predictions whereby the median of the 
total effort is around 30 person months. At the other 
extreme, if the process and people quality is consistently 
low and the quality delivered must be perfect, then the 
total effort jumps to 1680 person months.   

According to productivity rate ranges [21] based on 
data gathered from a number of completed projects, the 
total person months of effort for a 1000 FP project 
should satisfy the distribution shown in Table 4. 

Table 4. Jones's productivity data for projects of 
1000FP 

% Projects Effort 
.01 < 10 
.1 10-13 

1 13-20 
5 20-40 

10 40-67 
50 67-200 
30 200-1000 

4 >1000 
 
So 50% of all such projects require between 67 and 

200 person months of effort and 30% require between 
200 and 1000 person months effort. It is difficult from 

this to interpolate the ‘average’ amount of effort but 
something like 150 person months seems likely. This is 
similar to our predictions in the ‘average case’. 

To compare the results in Table 3 with the most well 
known software cost model COCOMO we have to 
provide a KLOC estimate first.  Let us assume the 
language is Ada.  In this case other published data (for 
example Jones [21]) suggests a distribution of around 
50KLOC for a 1000FP project (our own model produces 
a distribution with mean 51 KLOC).  Using Boehm’s 
basic model in organic mode the effort prediction is 146 
person months – again this is comparable with Jones’ 
data and our ‘average case’. 

It is also interesting to compare the people and 
schedule predictions using Boehm’s schedule model. 
With this model a 138 person-month project should be 
completed in 17 months.  Hence, in this case our model 
is an exact match with his.  For a 396 person-month 
project (row 5 of Table 3), Boehm’s model suggests a 
duration of 24 months, which is close to our prediction 
of 22.  

5.2. Budget and Time Constraints 
As a second example, we consider a fixed price 

contract in which we must deliver 2000 function points 
to perfect quality. Before entering resource constraints 
the median effort prediction in our model is 480 person-
months (20 people for 24 months). However, we suppose 
now that the fixed price enables us to use just 6 people 
for 18 months.  With these assumptions, Figure 6 shows 
the results for the distribution of process and people 
quality (the figure also shows the result when we relax 
the ‘perfect quality’ requirement).  If we insist on perfect 
quality then the figure shows clearly that the quality of 
process and people almost certainly has to be ‘very 
high’. 

 Probability Probability 
Project duration (months) Number of people 

 
Figure 5. Probability distributions for project duration and number of people when FP=1000 



Figure 6. Process and people quality needed for an 
under-resourced project 

Suppose, however, that we know that process and 
people quality is only ‘average’.  If we enter this as an 
observation then we can look at possible trade-offs we 
can make between functionality and quality.  If we keep 
the ‘perfect’ quality requirement but remove the 
functionality delivered requirement, the model predicts a 
vastly reduced number of delivered function points (a 
median of 302 compared with the original requirement of 
2000).  If, on the other hand, we insist on the 2000 
function points and remove the quality requirement the 
model predicts the quality as shown in Figure 7 (i.e. 
quality likely to be very poor to average, with only a 
very tiny probability that it will be above average).  

 

 
Figure 7. Quality delivered for fixed functionality in 

an under-resourced project 

6. Validating the resource model in Agena’s 
MODIST toolset 

The Bayesian resource model described in Section 4 
is used in the toolset being developed by Agena as part 
of the MODIST project [30] together with BN models 
for defect tracking and prediction.  In this section we 
describe how a usable decision-support tool is built 
round the BN model and give initial results of trials of 
the tool and model.  

6.1. Project Managers’ Toolset 
Our experience from earlier commercial projects such 

as [14, 25] is that project managers and other users who 
are not BN experts do not wish to use a BN directly via a 
general purpose BN editor.  Instead, the BN needs to be 
hidden behind a more specialised user interface. The 
toolset provided by MODIST is actually an application 
generator that enables toolset users to tailor both the 
underlying BN models and the user interface that is 
provided to the end-users when the application is 
generated.  

The main functions provided to the end-user are:  
1. Observations can be entered using a questionnaire 

interface, where questions correspond to BN 
variables.  Each question includes an explanation 
and the user can select a state (if the number of 
states is small) or enter a number (if the states of 
the variable are intervals in a numeric range).  
Answers given are collected into ‘scenarios’ that 
can be named and saved.  At least one scenario is 
created for each software development project but 
it is possible to create and compare multiple 
scenarios for a project. 

2. Predictions are displayed as probability 
distributions and as summary statistics (mean, 
median, variance).  Distributions are displayed 
either as bar charts (see Figure 7) or as line graphs 
(see Figure 5) depending on the type of variable 
and the number of states.  The predictions for 
several scenarios can be superimposed for ease of 
comparison (as shown in Figure 6).  Summary 
statistics can be exported to a spreadsheet. 

The application generator functions include the 
following: 

1. The questionnaires shown to the end user can be 
configured widely. For example, questions can be 
grouped and ordered arbitrarily and the question 
text is fully editable. Not all variables need have a 
question, allowing any BN variable to be hidden 
from the end user. 

2. Indicator variables used in the BN can be 
customised to match the indicators used within 
the organisation.  As well as editing names given 
to an indicator in the questionnaire, its probability 
table can be adjusted.  To make this feasible, the 
toolset provides a formula language with 
appropriate statistical distributions.  We have 
found the truncated normal distribution useful for 
creating a probability expressing an expert’s 
assessment of the ‘strength’ of an indicator.  This 
approach, which is also used to adjust the 
probability tables of consequence variables 
synthesised from a number of causes, is described 
in detail in [25].  

 probability 



6.2. User Trial Results 
The toolset is being trialled by various partners and 

user group members in the MODIST project.  The main 
partner trials are taking place within Philips, Israel 
Aircraft Industries (Tel Aviv) and QinetiQ (Malvern).  
Philips is running trials at numerous locations including 
Bruges and Bangalore.  Partners have validated earlier 
versions of the toolset and model, and provided feedback 
that has resulted in both model and toolset refinements.  
For example, at Philips projects are normally large and 
distributed but actually tend to be shorter compared to 
the ‘heavyweight’ projects that dominate much of the 
empirical software engineering data.  Commercial 
pressures mean that projects that last longer than two 
years are not usually viable.  Hence, there is a need for 
bigger teams working to shorter timescales.  This kind of 
bias is now built in to the model and explains in part the 
slightly shorter and fatter predictions compared with the 
scheduling model in COCOMO.  Perhaps more 
importantly than the numerical predictions themselves, 
the partners have found that the toolset enables them to 
reason in ways that was not possible before.  This has 
helped them, for example, in rationalising ‘go/no go’ 
decisions about projects.  

7. Conclusion 

We have described a causal model for reasoning 
about the resources required for a software development 
project, using a Bayesian net. The results of empirical 
research into some key relationships present in our 
model, notably between the effort put into a project and 
the quantity and quality of software developed, has been 
used to build the net’s probability tables. In this way, our 
approach builds on the results of existing research and 
could make use of future empirical research results in the 
same way. We have shown, however, that there are a 
number of advantages of incorporating the empirical 
relationships into a causal framework using a Bayesian 
network. Firstly, this allows the expert judgement to be 
used to supplement the data available. We believe that 
the lack of data is not just a temporary problem: software 
projects are too complex to allow relationships involving 
more than a few of the key variables to be investigated 
empirically. A complete statistical validation of the joint 
probability distribution of all the relevant variables can 
never be achieved. 

Secondly, the causal framework provides flexibility to 
match the empirical data – using specific metrics such as 
function points – to the metrics used in each 
organisation. Thirdly, it provides much more flexibility 
in the way the data can be used to support decisions: 
predicting what can be achieved, what is needed to meet 
a target or how to trade-off the different outcomes in an 
under resourced project.  

Although our approach is very flexible and does not 
insist on an organisation using specific metrics it does 
depend on some regularity in the way that development 
projects are estimated.  This ensures that there are usable 
indicators for key attributes of quality and size, which 
our model can be adapted to use. It also makes it likely 
that the organisation’s project managers will have 
accumulated the experience to be able to make stable 
judgments about the strength of these indicators.  Some 
organisations may also accumulate data from past 
projects; there is no difficulty in principle in using such 
data in adapting the model and we hope to provide this 
capability in future versions of the toolset. 

The trials underway in the MODIST project and with 
other partners provide the opportunity of further 
validation of the effectiveness of the decision-support 
available using the toolset we have described. We are 
also making available to the wider research community a 
version of the toolset [16] that incorporates the full 
underlying model described in this paper. This will 
enable researchers to investigate and validate the full 
model. 
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