
Making Resource Decisions for Software Projects

Norman Fenton, William Marsh, Martin Neil, Patrick Cates, Simon Forey,
and Manesh Tailor

Department of Computer Science, Queen Mary, University of London
and Agena Ltd

{norman, william, martin, patrick, sf, manesh}
@dcs.qmul.ac.uk

Abstract

Software metrics should support managerial decision

making in software projects. We explain how traditional
metrics approaches, such as regression-based models for
cost estimation fall short of this goal. Instead, we
describe a causal model (using a Bayesian network)
which incorporates empirical data, but allows it to be
interpreted and supplemented using expert judgement.
We show how this causal model is used in a practical
decision-support tool, allowing a project manager to
trade-off the resources used against the outputs
(delivered functionality, quality achieved) in a software
project. The model and toolset have evolved in a number
of collaborative projects and hence capture significant
commercial input. Extensive validation trials are taking
place among partners on the EC funded project
MODIST (this includes Philips, Israel Aircraft Industries
and QinetiQ) and the feedback so far has been very
good. The estimates are sensible and the causal
modelling approach enables decision-makers to reason
in a way that is not possible with other project
management and resource estimation tools. To ensure
wide dissemination and validation a version of the
toolset with the full underlying model is being made
available for free to researchers.

1. Introduction

Among the many claimed benefits of software
metrics, the most significant is that they are supposed to
provide information to support managerial decision-
making during the software lifecycle. Central to this
decision-making is the trade-off between cost, quality
(including functionality implemented) and project
duration. The relative priority given to each of these
attributes varies from project to project. On one project,
the manager can chose to increase quality despite the
cost; another project must achieve what is possible

within a fixed budget. Effective decision-support to a
project manager must support analysis of this trade-off.

In Section 2 we summarise existing approaches and
explain why they are not sufficient for effective decision-
support. In Section 3 we discuss the need for a causal
approach to software prediction and introduce the notion
of Bayesian nets, which we have used successfully in
related commercial applications. In Sections 4 we
provide a causal model (using Bayesian nets) for
resource prediction and describe how it has been
developed. In Section 5, we compare the model with
published data and the predictions of popular resource-
estimation models, showing the advantage of
incorporating existing data into a causal model. A
decision-support toolset allowing an end-user to interact
with the model and to tailor it is described in Section 6.

2. The classic approach to resource
estimation

The early resource prediction models (such as those
of Putnam [29] and Boehm [5]) used size as the key
variable for determining the effort required for a
software development project. At first, Lines of Code
(LOC or KLOC for thousands of lines of code) or related
type metrics were used to measure size. However, the
obvious drawbacks of this led to an explosion of interest
in measures of software size (such as function points
pioneered by Albrecht [1] and later investigated by
Symons [31]) which were intended to be independent of
programming language and to characterise the size of the
problem rather than the solution. Other factors
recognised as influencing the effort needed, including
process and people attributes, are treated as cost drivers,
adjusting the relationship between size and effort.

Despite these advances the overall approach to
resource prediction has remained fundamentally
unchanged since the early 1980’s and has not been
adopted widely. To provide better decision-support for
managers we need to provide the following kinds of
predictions:

• For a problem of this size, and given these limited
resources, how likely am I to achieve a product of
suitable quality?

• The model predicts that I need 4 people over 2
years to build a system of this kind of size. But I
only have funding for 3 people over one year. If I
cannot sacrifice quality, how good do the staff
have to be to build the systems with the limited
resources?

In the remainder of this paper we show how causal
models, using Bayesian nets, can provide relevant
predictions. Bayesian nets enable us to explicitly handle
and measure the inevitable uncertainty that is pervasive
in software engineering. Bayesian nets also enable us to
obtain predictions with incomplete information, and
hence provide a solution in cases where there is scarce
data.

3. Causal Modelling with Bayesian Nets

A Bayesian net (BN) is a graph (such as that shown in
Figure 1) together with an associated set of probability
tables. The nodes represent uncertain variables and the
arcs represent the causal/relevance relationships between
the variables. There is a probability table for each node,
providing the probabilities of each state of the variable.
For variables without parents the table just contains the
marginal probabilities while for variables with parents it
has conditional probabilities for each combination of
parent states.

Total effort adjusted
by Brooks factor

Total effective effort

Process and people
quality

Project duration Av # people
full time

Functionality
delivered

Effort FD
differential

Quality
delivered

Figure 1. Project Resource BN (Simplified)

Although the underlying theory (Bayesian
probability) has been around for a long time, executing

realistic BN models was only first made possible in the
late 1980s as a result of breakthrough algorithms and
software tools that implement them [19]. Methods for
building large-scale BNs is even more recent ([4, 28,
25]) but it is only such work that has made it possible to
apply BNs to the problems of software engineering.

Drawing on this work in various commercial projects
with Agena, Fenton and Neil have built BN-based
applications that have proved the technology is both
viable and effective. Several of these applications have
been related to systems or software assessment.
Especially significant was the TRACS tool [25] to assess
vehicle reliability for QinetiQ (on behalf of the MOD)
and the AID tool [7, 14] to predict software defects in
consumer electronic products for Philips. Much of the
modelling work described here has been done as part of
the MODIST project [30], which extends the kind of
ideas in AID. The toolset implementation has been based
on Agena’s Minerva technology that was extended to
incorporate recent further research developments in
building large-scale BNs that was undertaken in the
SCULLY, SIMP and SCORE projects [15].

The BN in Figure 1 is a simplified version of the net
we have developed for software project management. An
early prototype of this BN was described in [8]. Like all
BNs it was built using a mixture of data and expert
judgements. Understanding cause and effect is a basic
form of human knowledge, underlying the actions we
take. For example, a project manager knows that
increasing the number of people in the team may (there is
some uncertainty) increase the delivered functionality. It
is obvious that the relationship is not the other way
round. The expert’s understanding of cause and effect is
used to connect the variables of the net with arcs drawn
from cause to effect. Many of the relationships between
variables have been prompted by empirical results
described in a range of sources. These include [1, 2, 5,
12, 13, 17, 18, 20, 21, 22, 23, 24, 32].

To ensure that our model is consistent with these
empirical findings, the probability tables in the net are
constructed using data, whenever it is available.
However, when there is missing data, or the data does
not take account of all the causal influences, expert
judgement must be used as well. In the next section, we
explain how a model consistent with the empirical data is
built. Later sections of the paper show we get improved
decision support when we incorporate the empirical
research results into a causal model.

4. A causal model for resource estimation

A causal model for resource estimation, in the form of
a BN, has been constructed as part of the collaborative
research project MODIST [30], involving five systems
and software based organisations. Project management

experts from these organisations have helped construct
the model.

The full net extends the simplified net shown in
Figure 1 in two ways. Firstly, the scope of the model has
been expanded to address the concerns of organisations
participating in the MODIST project. For example,
MODIST specifically addresses risk management for
‘distributed’ software development (i.e. development at
multiple locations in a large organisation) so the model
includes the management of communications in such
projects.

The complete model is too complex to show as a
single BN (the full model and tool to execute and analyse
it is available for download to researchers [16]). Its
overall scope is shown in Figure 2, which shows six sub-
nets. Each subnet contains variables relating to a
particular aspect of the overall model.

Requirements &
Specification

Distributed
Communications
& Management

Process
Quality

Quality
Delivered

Functionality
Delivered

People
Quality

Figure 2. Schematic for the project BN

The subnets are:
• Distributed communications and management.

Contains variables that capture the nature and
scale of the distributed aspects of the project and
the extent to which these are well managed.

• Requirements and specification. Contains
variables relating to the extent to which the
project is likely to produce accurate and clear
requirements and specifications.

• Process quality. Contains variables relating to the
quality of the development processes used in the
project.

• People quality. Contains variables relating to the
quality of people working on the project.

• Functionality delivered. Contains all relevant
variables relating to the amount of new
functionality delivered on the project, including
the effort assigned to the project.

• Quality delivered. Contains all relevant variables
relating to both the final quality of the system

delivered and the extent to which it provides user
satisfaction (note the clear distinction between the
two).

The second reason for extending the simplified model
of Figure 1 is to cope with variables that cannot be
observed directly. Instead of making direct observations
of the process and people quality, the functionality
delivered and the quality delivered, the states of these
variables are inferred from their causes and
consequences. For example, the process quality is a
synthesis of the quality of the different software
development processes – requirements analysis, design
and testing. The quality of these processes can be
inferred from indicators, like the results of project audits
and of process assessments, such as the CMM. Of
course, only some organisations have been assessed to a
CMM level, but this need not be a stumbling block since
there are many alternative indicators. An important and
novel aspect of our approach is to allow the model to be
adapted to use whichever indicators are available. Some
examples of this are given in the following sections,
which describe two of the subnets in more detail.

4.1. People Quality
Figure 3 shows the variables and causal connections

in this subnet, with connections to other subnets shown
dashed.

Indicator: staff
training

Overall people
quality

Overall staff
quality

Overall management
quality

Indicator: staff
turnover

Indicator: staff
experience

Indicator:
programming language

experience

Indicator: staff
motivation

Figure 3. Subnet for people quality

A description of the main variables, including the
model’s rationale is given in Table 1. Variables, such as
those described in Table 1, representing quality attributes
have a 5-point measurement scale, ranging from very
low to very high.

Observations are not normally entered directly on the
variables described in Table 1. Instead we enter
observation at primary causes (variables with no parents

in the net) and ‘indicators’ (variables with a single parent
and no children). Indicators can have either an ordinal or
a numerical scale. Entering evidence at primary causes
implies the use of deductive reasoning whereas
observing an indicator leads to abductive reasoning, from
effect to cause. Evidence propagation in a Bayesian net
integrates deductive and abductive reasoning – the user
does not have to distinguish between them.

Table 1. Details of subnet for people quality

Variable
Name

Description

Overall
management
quality

This is a synthetic node that combines
‘communications management
adequacy’, ‘subcontract management
adequacy’ and ‘interaction
management adequacy’. If any of these
three is poor then generally the value
of ‘overall management quality’ will
be poor.

Overall staff
quality

This is the quality of non-management
staff working on the project.

Overall
people
quality

This is a synthetic node that combines
‘overall management quality’ and
‘overall staff quality’.

In the ‘people quality’ subnet (Figure 3), indicator

nodes are used to infer the staff quality. The default
variables in our model for this are: staff turnover, staff
experience, staff motivation, staff training and
programming language experience. In Section 6 we
describe how a user can change these defaults to make
use of the information available within a particular
organisation.

4.2. Functionality Delivered
The ‘functionality delivered’ subnet is shown in

Figure 4; each variable is described in Table 2. The
values of variables such as ‘project duration’ are
numbers – in this case any number 0≥ . Since BNs
require variables to have discrete states, this range is
divided into intervals. To reduce discretisation errors it
is desirable to have large numbers of intervals – up to
200 for some variables – and we are able to do this using
the techniques described in [28].

This subnet incorporates the results of empirical
research into software projects. For example, the so-
called Brooks effect [6] suggests that effective effort is
not a simple multiple of people and time because adding
people to a project creates communication problems etc.
This effect is factored into models like COCOMO and
SLIM; it is represented in the net by a Rayleigh curve
relationship whereby the overall effective effort
increases at a lower rate as more people are added to a
project.

Strong indicator:
class count

KLOC

New functionality
delivered

Process and people
quality

Weak indicator: use
cases count

Total effective
effort

Total effort adjusted
by Brooks factor

Project duration

Av # people
full time

Language

Figure 4. Subnet for functionality delivered

The amount of new functionality delivered is
measured in function points [1, 31]. This is an attractive
measure, since it is determined directly from the
requirements and is independent of language and project
phase. The relationship between the ‘effective effort’
and the functionality delivered (the number of function
points implemented) is based on published data and
models in [5, 17, 18, 20, 22, 24, 31, 32].

However, the data available does not cover the
influence of people and processes factors although it is
known that when these factors vary from best to worst,
productivity (measured by functionality delivered for a
given total actual effort) can vary by a factor of 20. This
is represented in the net by an adjustment of effort to
give ‘total effective effort’. Experts were asked to judge
the size of this adjustment influence, checking that the
‘average’ quality case is consistent with the empirical
data.

In most cases users of the model would be expected to
input an observation on the new functionality delivered
variable and it might appear that this restricts our model
to those organisations – regrettably few – using function
points. But this is not the case, since the model allows
you to enter observations via a number of indicators, the
most obvious of which is Lines of Code (KLOC). The
relationship between KLOC and function points is
strongly dependent on the programming language used
but we can use the extensive published empirical studies

relating lines of code to function points in various
languages (for example, [20]).

Table 2. Details of subnet for functionality delivered

Variable
Name

Description

Process and
people quality

Combination of ‘overall process
quality’ and ‘overall people quality'
from the subnet concerned with people
quality.

Project
duration

Total elapsed time for software
development work in the project in
calendar months.

Av # people
full time

Average number of people working
full time on software development
during the project.

Total effort
adjusted by
Brooks factor

The total effort in person-months,
determined from the durations and the
average number of people.

Total effective
effort

An adjusted effort in person-months,
taking account of the effect of process
and people factors.

New
functionality
delivered

The amount of NEW functionality
delivered, measured in function points

KLOC The classic ‘thousands of lines of
delivered source code’.

Language The programming language used in
the system implementation.

However, there are apparent pitfalls of using KLOC

as an indicator for the amount of delivered functionality
in function points, since it is not a perfect indicator and
this uncertainty is built into the model. If you believe
you are delivering a ‘big system’ and enter a high KLOC
value then the BN will, as you would expect, normally
infer a high probability that FP is also high. However,
this is not certain if you enter other conflicting evidence
– a belief that the project will be completed to high

quality, with a small team in a short time. In this case
the BN may decide – quite rationally – that, irrespective
of the high KLOC, the FP count is probably low.

The model also allows other indicators of the problem
size to be used. There are many possible indicators,
some specific to particular specification and
development techniques (for example, the number of
user scenarios specified using use cases or sequence
diagrams) and other specific to particular project types
(such as the number of database tables or the number of
dynamically generated web pages).

5. Using the Bayesian net for Decision
Support

What makes the Bayesian resource model so
powerful, when compared with traditional software cost
models, is that we can enter observations anywhere to
perform not just predictions but also many types of
trade-off analysis and risk assessment. So we can enter
requirements for quality and functionality and let the
model show us the distributions for effort and time.
Alternatively we can specify the effort and time we have
available and let the model predict the distributions for
quality and functionality delivered (measured in function
points). We show two examples of the model in use.

5.1. Resource Prediction
In this example we consider a 1000 FP (function

point) project and compare the predictions made using
our model with published data and other resource
prediction models. We show that our model, in its
‘dumbest sense’ is consistent with published data and
models, but also that it provides greater insight.

Entering a value of 1000 for the number of function
points delivered results in the distributions for project
duration and number of people shown in Figure 5 (this
figure shows how probability distributions are displayed
in the toolset we describe in Section 6).

Process &
people qu

high

high
average
average
low
average
average
low

Table 3. Predicted effort under various process and quality scenarios

ality

Quality
delivered

Predicted project
duration months
(median)

Predicted number
of people
(median)

Predicted total
effort person
months (median)

poor 10 3 30
average 11 4 44
average 16 8 128
good 20 11 220
good 22 18 396
very good 25 24 600
perfect 29 29 841
perfect 40 42 1680

Thus, the model predicts that the project should
involve an average of about 8 people full time for 16
months. This is around 128 person months. However,
because none of the other many model variables have
values entered the distributions are, not very surprisingly
wide. At this stage, for example, we know nothing about
the quality of the product or of the people and processes.
When we enter such observations, as in Table 3, we see a
clearer picture of why the range is so large. For example,
at one extreme if the process and people are consistently
high quality and the delivered quality is poor then the
model produces predictions whereby the median of the
total effort is around 30 person months. At the other
extreme, if the process and people quality is consistently
low and the quality delivered must be perfect, then the
total effort jumps to 1680 person months.

According to productivity rate ranges [21] based on
data gathered from a number of completed projects, the
total person months of effort for a 1000 FP project
should satisfy the distribution shown in Table 4.

Table 4. Jones's productivity data for projects of
1000FP

% Projects Effort
.01 < 10
.1 10-13

1 13-20
5 20-40

10 40-67
50 67-200
30 200-1000

4 >1000

So 50% of all such projects require between 67 and

200 person months of effort and 30% require between
200 and 1000 person months effort. It is difficult from

this to interpolate the ‘average’ amount of effort but
something like 150 person months seems likely. This is
similar to our predictions in the ‘average case’.

To compare the results in Table 3 with the most well
known software cost model COCOMO we have to
provide a KLOC estimate first. Let us assume the
language is Ada. In this case other published data (for
example Jones [21]) suggests a distribution of around
50KLOC for a 1000FP project (our own model produces
a distribution with mean 51 KLOC). Using Boehm’s
basic model in organic mode the effort prediction is 146
person months – again this is comparable with Jones’
data and our ‘average case’.

It is also interesting to compare the people and
schedule predictions using Boehm’s schedule model.
With this model a 138 person-month project should be
completed in 17 months. Hence, in this case our model
is an exact match with his. For a 396 person-month
project (row 5 of Table 3), Boehm’s model suggests a
duration of 24 months, which is close to our prediction
of 22.

5.2. Budget and Time Constraints
As a second example, we consider a fixed price

contract in which we must deliver 2000 function points
to perfect quality. Before entering resource constraints
the median effort prediction in our model is 480 person-
months (20 people for 24 months). However, we suppose
now that the fixed price enables us to use just 6 people
for 18 months. With these assumptions, Figure 6 shows
the results for the distribution of process and people
quality (the figure also shows the result when we relax
the ‘perfect quality’ requirement). If we insist on perfect
quality then the figure shows clearly that the quality of
process and people almost certainly has to be ‘very
high’.

 Probability Probability
Project duration (months) Number of people

Figure 5. Probability distributions for project duration and number of people when FP=1000

Figure 6. Process and people quality needed for an
under-resourced project

Suppose, however, that we know that process and
people quality is only ‘average’. If we enter this as an
observation then we can look at possible trade-offs we
can make between functionality and quality. If we keep
the ‘perfect’ quality requirement but remove the
functionality delivered requirement, the model predicts a
vastly reduced number of delivered function points (a
median of 302 compared with the original requirement of
2000). If, on the other hand, we insist on the 2000
function points and remove the quality requirement the
model predicts the quality as shown in Figure 7 (i.e.
quality likely to be very poor to average, with only a
very tiny probability that it will be above average).

Figure 7. Quality delivered for fixed functionality in

an under-resourced project

6. Validating the resource model in Agena’s
MODIST toolset

The Bayesian resource model described in Section 4
is used in the toolset being developed by Agena as part
of the MODIST project [30] together with BN models
for defect tracking and prediction. In this section we
describe how a usable decision-support tool is built
round the BN model and give initial results of trials of
the tool and model.

6.1. Project Managers’ Toolset
Our experience from earlier commercial projects such

as [14, 25] is that project managers and other users who
are not BN experts do not wish to use a BN directly via a
general purpose BN editor. Instead, the BN needs to be
hidden behind a more specialised user interface. The
toolset provided by MODIST is actually an application
generator that enables toolset users to tailor both the
underlying BN models and the user interface that is
provided to the end-users when the application is
generated.

The main functions provided to the end-user are:
1. Observations can be entered using a questionnaire

interface, where questions correspond to BN
variables. Each question includes an explanation
and the user can select a state (if the number of
states is small) or enter a number (if the states of
the variable are intervals in a numeric range).
Answers given are collected into ‘scenarios’ that
can be named and saved. At least one scenario is
created for each software development project but
it is possible to create and compare multiple
scenarios for a project.

2. Predictions are displayed as probability
distributions and as summary statistics (mean,
median, variance). Distributions are displayed
either as bar charts (see Figure 7) or as line graphs
(see Figure 5) depending on the type of variable
and the number of states. The predictions for
several scenarios can be superimposed for ease of
comparison (as shown in Figure 6). Summary
statistics can be exported to a spreadsheet.

The application generator functions include the
following:

1. The questionnaires shown to the end user can be
configured widely. For example, questions can be
grouped and ordered arbitrarily and the question
text is fully editable. Not all variables need have a
question, allowing any BN variable to be hidden
from the end user.

2. Indicator variables used in the BN can be
customised to match the indicators used within
the organisation. As well as editing names given
to an indicator in the questionnaire, its probability
table can be adjusted. To make this feasible, the
toolset provides a formula language with
appropriate statistical distributions. We have
found the truncated normal distribution useful for
creating a probability expressing an expert’s
assessment of the ‘strength’ of an indicator. This
approach, which is also used to adjust the
probability tables of consequence variables
synthesised from a number of causes, is described
in detail in [25].

 probability

6.2. User Trial Results
The toolset is being trialled by various partners and

user group members in the MODIST project. The main
partner trials are taking place within Philips, Israel
Aircraft Industries (Tel Aviv) and QinetiQ (Malvern).
Philips is running trials at numerous locations including
Bruges and Bangalore. Partners have validated earlier
versions of the toolset and model, and provided feedback
that has resulted in both model and toolset refinements.
For example, at Philips projects are normally large and
distributed but actually tend to be shorter compared to
the ‘heavyweight’ projects that dominate much of the
empirical software engineering data. Commercial
pressures mean that projects that last longer than two
years are not usually viable. Hence, there is a need for
bigger teams working to shorter timescales. This kind of
bias is now built in to the model and explains in part the
slightly shorter and fatter predictions compared with the
scheduling model in COCOMO. Perhaps more
importantly than the numerical predictions themselves,
the partners have found that the toolset enables them to
reason in ways that was not possible before. This has
helped them, for example, in rationalising ‘go/no go’
decisions about projects.

7. Conclusion

We have described a causal model for reasoning
about the resources required for a software development
project, using a Bayesian net. The results of empirical
research into some key relationships present in our
model, notably between the effort put into a project and
the quantity and quality of software developed, has been
used to build the net’s probability tables. In this way, our
approach builds on the results of existing research and
could make use of future empirical research results in the
same way. We have shown, however, that there are a
number of advantages of incorporating the empirical
relationships into a causal framework using a Bayesian
network. Firstly, this allows the expert judgement to be
used to supplement the data available. We believe that
the lack of data is not just a temporary problem: software
projects are too complex to allow relationships involving
more than a few of the key variables to be investigated
empirically. A complete statistical validation of the joint
probability distribution of all the relevant variables can
never be achieved.

Secondly, the causal framework provides flexibility to
match the empirical data – using specific metrics such as
function points – to the metrics used in each
organisation. Thirdly, it provides much more flexibility
in the way the data can be used to support decisions:
predicting what can be achieved, what is needed to meet
a target or how to trade-off the different outcomes in an
under resourced project.

Although our approach is very flexible and does not
insist on an organisation using specific metrics it does
depend on some regularity in the way that development
projects are estimated. This ensures that there are usable
indicators for key attributes of quality and size, which
our model can be adapted to use. It also makes it likely
that the organisation’s project managers will have
accumulated the experience to be able to make stable
judgments about the strength of these indicators. Some
organisations may also accumulate data from past
projects; there is no difficulty in principle in using such
data in adapting the model and we hope to provide this
capability in future versions of the toolset.

The trials underway in the MODIST project and with
other partners provide the opportunity of further
validation of the effectiveness of the decision-support
available using the toolset we have described. We are
also making available to the wider research community a
version of the toolset [16] that incorporates the full
underlying model described in this paper. This will
enable researchers to investigate and validate the full
model.

8. Acknowledgements

This report is based in part on work undertaken on the
following funded research projects: MODIST (EC
Framework 5 Project IST-2000-28749), .SCULLY
(EPSRC Project GR/N00258), SIMP (EPSRC Systems
Integration Initiative Programme Project GR/N39234),
and SCORE (EPSRC Project Critical Systems
Programme GR/R24197/01). We also acknowledge the
contributions of individuals from Philips, Israel Aircraft
Industries, QinetiQ and BAE Systems.

9. References

[1] Abdel-Hamid T and Madnick SE, Software Project
Dynamics: An Integrated Approach, Prentice Hall, NJ, 1991.

[2] Abdel-Hamid TK, The slippery path to productivity
improvement, IEEE Software, 13(4), 43-52, 1996.

[3] Albrecht AJ and Gaffney J, “Software function, source
lines of code and development effort prediction”, IEEE Trans
on Software Engineering, SE-9 (6), 1983, pp. 639-648.

[4] Bangsø O and Wuillemin. PH, “ Top-down construction
and repetitive structures representation in Bayesian networks”,
In Proceedings of The Thirteenth International Florida
Artificial Intelligence Research Symposium Conference,
Florida, USA., 2000. AAAI Press.

[5] Boehm B, Clark B, Horowitz E, Westland C, Madachy R,
Selby R, “Cost models for future software life cycle process:
COCOMO 2.0”, Annals of Software Engineering, 1995.

[6] Brooks FP, The Mythical Man-Month: essays on software
engineering, 2nd edition, Addison Wesley, 1995.

[7] Fenton N, Krause P, Neil M, “Probabilistic Modelling for
Software Quality Control”, Journal of Applied Non-Classical
Logics 12(2), 2002, pp. 173-188.

[8] Fenton NE and Neil M, “Software Metrics and Risk”,
Proc 2nd European Software Measurement Conference
(FESMA'99). TI-KVIV, Amsterdam, ISBN 90-76019-07-X,
1999, pp. 39-55.

[9] Fenton NE and Neil M, “Software Metrics: Roadmap”, in
The Future of Software Engineering (Editor: Anthony
Finkelstein) 22nd International Conference on Software
Engineering, ACM Press ISBN 1-58113-253-0, 2000, pp.357-
370.

[10] Fenton NE and Neil M, “Making Decisions: Using
Bayesian Nets and MCDA”, Knowledge-Based Systems 14,
2001, pp. 307-325.

[11] Fenton NE and Neil M, "Modelling risk in complex
software projects using Bayesian Networks", RADAR
Research Report TR104, 2003,

[12] Fenton NE and Ohlsson N, “Quantitative Analysis of
Faults and Failures in a Complex Software System”, IEEE
Transactions on Software Engineering, 26(8), 2000, pp. 797-
814.

[13] Fenton NE and Pfleeger SL, Software Metrics: A
Rigorous and Practical Approach (2nd Edition), PWS, ISBN:
0534-95429-1, 1998.

[14] Fenton NE, Krause P, Neil M, “Software Measurement:
Uncertainty and Causal Modelling”, IEEE Software 10(4),
2002, pp. 116-122.

[15] Fenton NE and Neil M, “SCULLY: Scaling up Bayesian
Nets for Software Risk Assessment”, EPSRC Project
GR/N00258 Final Report, Queen Mary University of London,
www.dcs.qmul.ac.uk/research/radar/Projects, 2003.

[16] Forey S, Fenton NE, Neil M, Marsh W, “SCULLY
toolset”, Queen Mary University of London,
www.dcs.qmul.ac.uk/research/radar/Projects, 2003.

[17] Jeffery DR, The relationship between team size,
experience, and attitude and software development
productivity, Proc COMPSAC, IEEE Computer Society Press,
1987.

[18] Jeffery R and Stathis J, Function point sizing: structure,
validity and applicability, Empirical Software Engineering,
1(1), 11-30, 1996.

[19] Jensen FV, An Introduction to Bayesian Networks, UCL
Press, 1996.
[20] Jones C, Programmer Productivity, McGraw Hill, 1986.

[21] Jones C, Applied Software Measurement, McGraw-Hill,
New York, 1991.

[22] Jones C, “Software sizing”, IEE Review 45(4), 1999, pp.
165-167.

[23] Kitchenham B, Pickard LM, Linkman S, Jones PW,
Modelling software bidding risks, IEEE Transactions on
Software Engineering, 29(6), 542-554, 2003.

[24] Kitchenham BA, Empirical studies of assumptions that
underlie software cost-estimation models, Information and
Software Technology, 34 (4), 211-21*, 1992.

[25] Koller, D and Pfeffer, A. “Object-Oriented Bayesian
Networks”, Proceedings of the 13th Annual Conference on
Uncertainty in AI (UAI), Providence, Rhode Island, August
1997, pp.302-313.

[26] Neil M, Fenton N, Cates P, Forey S, Marsh W and Tailor
M. “Modelling Subjective Causes and Objective Consequences
in Bayesian Networks”, RADAR Technical Report 101, Queen
Mary University of London, 2003.

[27] Neil M, Fenton N, Forey S and Harris R, “Using
Bayesian Belief Networks to Predict the Reliability of Military
Vehicles”, IEE Computing and Control Engineering, 12(1),
2001, pp. 11-20.

[28] Neil M, Fenton NE, Nielsen L, “Building large-scale
Bayesian Networks”, The Knowledge Engineering Review,
15(3), 2000, pp. 257-284.

[29] Putnam LH, “A general empirical solution to the
macrosoftware sizing and estimating problem”, IEEE Trans
Soft EngSE-4(4), 1978, pp. 345-361.

[30] QinetiQ, “MODIST Modelling Uncertainty in Distributed
Software projects”, EC Framework 5 Project IST-2000-28749
www.modist.org

[31] Symons, CR, Software Sizing & Estimating: Mark II
Function point Analysis, John Wiley, 1991.

[32] Stensrud E and Myrtveit I, Identifying high performance
ERP projects, IEEE Transactions on Software Engineering,
2003.

	Introduction
	The classic approach to resource estimation
	Causal Modelling with Bayesian Nets
	A causal model for resource estimation
	People Quality
	Functionality Delivered

	Using the Bayesian net for Decision Support
	Resource Prediction
	Budget and Time Constraints

	Validating the resource model in Agena’s MODIST toolset
	Project Managers’ Toolset
	User Trial Results

	Conclusion
	Acknowledgements
	References

