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An extension to the noisy-OR function to 
resolve the ‘explaining away’ deficiency for 

practical Bayesian network problems 
Norman E. Fenton, Takao Noguchi, and Martin Neil 

Abstract—The “leaky noisy-OR” function is a common and popular method used to simplify the elicitation of complex 

conditional probability tables in Bayesian networks involving Boolean variables. It has proven to be useful for approximating the 

required relationship in many real-world situations where there is a set of two or more variables that are potential causes of a 

single effect variable. However, one of the properties of leaky noisy-OR is Conditional Inter-causal Independence (CII). This 

property means that the ‘explaining away’ behaviour – one of the most powerful benefits of BN inference – is not present when 

the effect variable is observed as false. Yet, for many real-world problems where the leaky noisy-OR has been considered, this 

behaviour would be expected, meaning that leaky noisy-OR is deficient as an approximation of the required relationship in such 

cases. There have been previous attempts to adapt the noisy-OR to resolve this problem. However, they require too many 

additional parameters to be elicited. We describe a simple but powerful extension to leaky noisy-OR that requires only a single 

additional parameter. While it does not solve the CII problem in all cases, it does resolve most of the explaining away 

deficiencies that occur in practice. The problem and solution is illustrated using an example from intelligence analysis. 

Index Terms— Knowledge Representation Formalisms and Methods, Probabilistic algorithms, Decision support  

——————————      —————————— 

1 INTRODUCTION

Causal probabilistic networks, also known as Bayesian 
networks (BNs), are a well-established graphical formal-
ism for encoding conditional probabilistic relationships 
between uncertain variables. The nodes of a BN represent 
variables and the arcs represent causal or influential rela-
tionships between them. Probabilistic inference in BNs is 
based on belief propagation [1]. 

One of the most formidable practical challenges in 
building BN models for decision support and risk as-
sessment is to define the necessary conditional probability 
tables (CPTs).  When data is sparse we must rely on 
judgment from domain experts for this. However, even 
when a node 𝑦 and all its 𝑛 parents are Boolean, the size 
of the CPT grows exponentially with 𝑛; experts must pro-
vide 2𝑛 probability value parameters – one for each of the 
parent state combinations.  This is known to be practically 
intractable and highly error-prone even for 𝑛 as small as 3 
[2]–[4].  To partly address this challenge modellers have 
identified generic BN structures [5] in which fewer pa-
rameters are necessary to capture the required set of con-
ditional dependencies.  A particularly common example 
is the noisy-OR function and its extension the leaky 
noisy-OR, which, as the name suggests, are like the Bool-
ean OR operator but with noise added (all formal defini-
tions are provided in Section 3). 

The leaky noisy-OR requires only 𝑛 + 1 parameters for 
the full CPT specification, and is a good approximation of a 

wide range of BN model fragments. Hence, it has proven 
extremely popular and useful in practice [6]–[12], especial-
ly as it is implemented in commercial BN tools [13], [14].  
The assumptions underlying the leaky noisy-OR generally 
work well for forward inference (predicting the effect of 
any combination of parent observations on 𝑦). However, 
for backward inference the results may not be what model-
lers expected. In particular, when 𝑦 is observed to be false 
the normal ‘explaining away’ behaviour – one of the most 
powerful benefits of BN inference – fails: after observing 
the state of any parent the remaining parents become inde-
pendent. Formally, this is because leaky noisy-OR has an 
inherent property called conditional inter-causal inde-
pendence (CII)  which blocks the normal explaining away 
behaviour in cases where 𝑦 is false. The ramifications of 
this property are not widely known among practitioners, 
which is in itself a problem that hopefully is addressed by 
this paper. 

In Section 2 we review the history of noisy-OR and re-
lated work.  In Section 3 we formally define noisy-OR and 
discuss its benefits and limitations, using an example 
drawn from intelligence analysis. In Section 4 we discuss 
the ramifications of the CII property and explain how to 
‘break it’. However, previous proposed solutions require, 
in the worst case, the elicitation of an exponential number 
of additional parameters, and so these solutions are not 
practically useful. Our novel and important contribution, 
described in Section 5, is a very simple but powerful exten-
sion to the leaky noisy-OR that requires only a single addi-
tional parameter. While this single parameter solution does 
not solve the CII problem in all cases, it does resolve most 
of the explaining away deficiencies that occur in practice. 
The additional parameter 𝛼 (which we call the ‘explaining 
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away parameter’) is used to make just a single adjustment 
to the CPT of the standard leaky noisy-OR – namely an 
adjustment to the probability of 𝑦 being true when all par-
ents are true. Finally, in Section 6 we conclude by describ-
ing the important and immediate practical benefits of the 
proposed extended leaky noisy-OR. 

2 RELATED WORK 

Before providing the necessary formal definition of 
noisy-OR and its extensions we briefly review its history 
and related work. The origins of noisy-OR are somewhat 
unclear. Pearl was the first to use the term [5], but he did 
so in a way that suggested it was already well-known. In 
a personal communication with the first author (while 
our paper was being prepared) Pearl said: 

For me, as an engineer, there was no question that this func-
tion deserves the name "noisy-or", so I used it without 
checking if someone else used it before. If you find an earlier 
use, I will not be offended. 
In fact, we were unable to find any previous use of the 

term, although something essentially equivalent to noisy-
OR can be found (with difficulty) in the papers of Good 
[18], [19]. There is less doubt that the leaky noisy-OR was 
first proposed by Henrion [20]. 

The CII property of noisy-OR was identified in [15], 
and also in [16] where it is termed reverse independence. 
Researchers have sought – as we do here – to ‘break’ the 
property by extending noisy-OR. The solution in [17] - 
called recursive noisy-OR  works but requires, in the worst 
case, all of the CPT parameters to be redefined. This is 
discussed fully in Section 4. 

The noisy-OR has also been generalized to consider 
nonbinary (multistate) causes and effects [21]–[23]. These 
generalizations subsume the original noisy-OR function 
and do not resolve the CII issue More generally, multi-
state causes and effects can be modeled with the ranked 
node [3], [24]  and the softmax function (one of the most 
widely used functions when parameter values need to be 
learned from data). 

To learn parameters for the noisy-OR function, the ex-
pectation maximization algorithm is typically applied. 
When the network has high treewidth, the required ex-
pectations might be approximated using Monte Carlo or 
variational methods [25]. The extensions to these learning 
approaches have been proposed to avoid computation of 
expectations [11], [26]. 

3 NOISY-OR: DEFINITION, BENEFITS AND 

LIMITATIONS 

In what follows we assume that we have a BN fragment 
in which a Boolean node 𝑦 has 𝑛 Boolean parents 𝑥1, …, 𝑥𝑛. 
In general, the CPT for 𝑦 is a 2 × 2𝑛 table requiring us to 
determine 2𝑛 parameters, corresponding to probabilities 
that each of the parent state combinations is true.  Howev-
er, for some problems the known real-world relationship 
between the variables leads to the possibility of defining 
the CPT more concisely.  

As an extreme example, suppose we are trying to model 
and predict failure in a system that is composed of 𝑛 inde-
pendent components, any one of which will cause the sys-

tem to fail, and that the system cannot fail for any reason 
other than a component failure. If 𝑦 represents the Boolean 
variable “System fails” and 𝑥𝑖 represents Boolean variable 
“ith component fails” then the CPT for 𝑦 is defined simply 
by the logical OR function – we do not need to elicit indi-
vidual probabilities for each parent state combination. 
However, in practice the assumptions required here for the 
OR function may be unrealistic. There may be uncertainty 
about whether a component failure will lead to a system 
failure and there may be other, unspecified, causes of sys-
tem failure. Nevertheless, assuming still that the compo-
nents fail independently, this is an example of a very com-
mon scenario in which the relationship between the child 
and its parents is ‘similar’ to the logical OR function. An-
other common situation of this type is in medical risk 
where, for example, ‘smoking’, ‘lack of exercise’, ‘poor di-
et’, ‘stress’ and ‘family history of heart failure’ are five po-
tentially independent causes of a person suffering a heart 
attack before the age of 65, but none is certain to cause it. 
Also, even if all factors are false, it is still possible that a 
person may suffer a heart attack before the age of 65.  

For such situations a noisy form of the OR function, 
called the noisy-OR function - and its extension the leaky 
noisy-OR - have been widely used as an approximation of 
the required real-world problem. Since the leaky noisy-OR 
is a more general and useful form we will focus on that 
only. This function requires only 𝑛 + 1 parameters to be 
elicited, namely 𝑛 weight parameters (one corresponding 
to each parent) and a leak factor. Formally: 

Formal definition of the leaky noisy-OR function. Let 
𝑥1, …, 𝑥𝑛 be 𝑛 Boolean variables. For each 𝑖 = 1,… , 𝑛 let 
𝜈𝑖  be a number between 0 and 1 (we call 𝜈𝑖  the weight 
associated with 𝑥𝑖) and let 𝜆 be a number between 0 
and 1, which we call the leak factor. Let 𝑦 be a Boolean 
variable with parents, 𝑥1, …, 𝑥𝑛. Writing 1 and 0 to 
represent Boolean states True and False respectively, 
we define the leaky noisy-OR function as: 

𝑃𝑛𝑜(𝑦 = 1|𝑥1, … , 𝑥𝑛) = 1 − (1 − 𝜆)∏(1 − 𝜈𝑖)
𝑥𝑖

𝑛

𝑖=1

 

The original (standard) noisy-OR function is the leaky 
noisy-OR function when the leak factor 𝜆 = 0. If all the 
weight values are equal to 1 and the leak factor is 0, 
then the leaky noisy-OR function is equivalent to the 
Boolean OR function.  
Since most of the literature – and all BN tools that im-

plement it – refer to the leaky noisy-OR as simply the 
noisy-OR, for simplicity in what follows we do the same. 

Just as if we were using the Boolean OR function, the 
noisy-OR requires us to assume that we can consider each 
of the 𝑥1, …, 𝑥𝑛 as ‘causes’ independently of the others in 
terms of their effect on 𝑦. However, this assumption makes 
sense for a large class of real world problems [6]–[10], and 
the properties of noisy-OR also make it easy to elicit the 
parameters from domain experts in practice in a way 
which makes them meaningful. For example, if 𝑥𝑖 = 0 for 
all i then the probability 𝑦 = 1 is simply equal to the leak 
factor (so to elicit the leak factor, we could ask the domain 
expert: “what is the probability that a patient who has none 
of the risk factors will still get the disease?”). Instead, if the 
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leak factor is 0 and 𝑥𝑖 = 1 for exactly one i (with 𝑥𝑗 = 0 for 
all 𝑗 ≠ 𝑖) then the probability that 𝑦 = 1 is simply equal to 
the weight 𝜈𝑖  associated with 𝑥𝑖 (so we could elicit the 
weight values by asking the domain expert for each of the 
risk factors: “what is the probability that a person will have 
the disease if this risk factor is present and none of the oth-
ers are?” 

So, the noisy-OR is a very good approximation for the 
expected behaviour in these kinds of problems when it 
comes to forward inference (observations of causes on ef-
fect). It is also fine for backward inference when 𝑦 = 1, 
since in this case the usual expected ‘explaining away’ be-
haviour is preserved. Specifically, for all 𝑖 ≠ 𝑗, 

𝑃𝑛𝑜(𝑥𝑖 = 1|𝑦 = 1, 𝑥𝑗 = 1) < 𝑃𝑛𝑜(𝑥𝑖 = 1|𝑦 = 1). 

In other words, if we observe that 𝑦 is true and then also 
observe one parent 𝑥𝑗  is true; then the fact that 𝑦 is true is 
already explained by 𝑥𝑗 being true – so the probability that 
each of the other 𝑥𝑖’s is true decreases. 

In addition, for all 𝑖 ≠ 𝑗,  

𝑃𝑛𝑜(𝑥𝑖 = 1|𝑦 = 1, 𝑥𝑗 = 0) > 𝑃𝑛𝑜(𝑥𝑖 = 1|𝑦 = 1). 

 In other words, if we observe that 𝑦 is true and then al-
so observe one parent 𝑥𝑗  is false; then the fact that 𝑦 is true 
must have been caused by something else – so the proba-
bility that each of the other 𝑥𝑖’s is true increases. 

Henceforth we use the following which is archetypal 
of the kind of problem encountered in security and terror-
ism analysis [27].  

Example 1. In any given week a terrorist organisation 
may or may not carry out an attack (𝑦). There are sev-
eral independent cells (𝑥1, …, 𝑥𝑛) in this organisation 
for which it may be possible in any week to determine 
heightened activity. If it is known that there is no 
heightened activity in any of the cells, then an attack is 
unlikely. However, for any cell if it is known there is 
heightened activity then there is a chance an attack 
will take place. The more cells known to have height-
ened activity the more likely an attack is. 

 An example formulation of this problem with noisy-
OR is illustrated in Figure 1. The middle panel in Fig-
ure 1 shows the probability conditioned on 𝑦 = 1. 
When conditioned on one of the cells having a height-
ened activity (i.e., 𝑥2 = 1), the probability of the other 
cells having heightened activity decreases.   

However, as we explain in the next section, the explain-
ing away behaviour is not preserved when 𝑦 = 0. 

4 CAUSAL INDEPENDENCE IN THE NOISY-OR 

FUNCTION AND HOW TO BREAK IT 

In Example 1, we saw that the noisy-OR model works 
well when an attack is observed (i.e., 𝑦 = 1). Now we 
consider the case when we observe no attack (i.e., 𝑦 = 0). 
In such situations, if it is known that there is heightened 
activity in one cell (e.g., 𝑥𝑗 = 1), we expect the lack of at-
tack to be explained away by a decrease in the probability 
that the remaining cells have heightened activity. In other 
words, in general we expect the following conditional 
dependence property to hold: for all 𝑖 ≠ 𝑗, 

𝑃(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑗 = 1) < 𝑃(𝑥𝑖 = 1|𝑦 = 0). 

This also extends to subsequent observations: letting 𝒦 
be a set of m integers between 1 and n (0 ≤ 𝑚 ≤ 𝑛 − 2), 
for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∉ 𝒦, 
𝑃(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑘 = 1 ∀ 𝑘 ∈  𝒦)

> 𝑃(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈  𝒦)       (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 1) 

We will refer to this desired behaviour as conditional 
dependence property 1. 

Less critical, but still important is what was expected 
if, having observed no attack (i.e. 𝑦 = 0) we then discover 
that one of the cells had no heightened activity (say 𝑥𝑗 =
0). In this case the absence of activity in this cell already 
partly explains why no attack happened and, hence, a 
small increase is expected (compared to before observing 
𝑥𝑗 = 0) in the probability that the remaining cells are ac-
tive. In other words, in general we may expect the follow-
ing conditional dependence property to hold: for all 𝑖 ≠ 𝑗, 
𝑃(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑗 = 0) > 𝑃(𝑥𝑖 = 1|𝑦 = 0).       (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 2) 
We will refer to this desired behaviour as conditional 
dependence property 2.  

Example 1 above is one of many real-world problems 
where experts and modellers had assumed the noisy-OR 
to be a good approximation and where it was assumed 
that (1) would hold as a matter a course and that (2) was 
desirable. 

Unfortunately, as proved in [15], noisy-OR has the the 
CII property. What this means is that given 𝑦 = 0, 𝑥𝑖 and 
𝑥𝑗 are independent for all 𝑖 ≠ 𝑗 (see the right panel in Fig-
ure 1). Thus, neither (1) nor (2) holds for the noisy-OR. 
This CII stems from the causal independence assumption 
that defines the noisy-OR: the causal influence of a cause 
on an effect is independent of the other causes. Under this 
assumption, the absence of the effect indicates that each 
cause independently failed to cause the effect. 

 

Fig. 1. The noisy-OR function of Example 1 (where 𝜈1 = 0.4, 𝜈2 = 0.2, 𝜈3 = 0.3, and 𝜆 = 0.1). (a) Network struc-
ture (b) Shows that, given 𝑦 = 1, 𝑃(𝑥1) depends on the value of 𝑥2. (c) Given 𝑦 = 0, 𝑃(𝑥1) is independent of  𝑥2. 
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We can therefore break the CII by breaking the causal 
independence assumption.  The causal dependence takes 
one of the three forms: synergy, interference, or inhibition 
[17]. To satisfy (1), however, only synergy is required. 
Synergy occurs where the combination of causes has a 
greater influence than the combined independent prod-
uct. This synergy also partly satisfies (2). 

To model synergy, the recursive noisy-OR function 
has been proposed [17]. This requires experts’ inputs on 
joint causal influences as well as on singleton causal in-
fluences. For example when two causes, x1 and x2, are 
considered,  the expert provides three values: the proba-
bility of y equalling 1 when both x1 and x2 equal 1; the 
probability of y equalling 1 when only x1 equals 1; and the 
probability of y equalling 1 when only x2 equals 1. 

Unfortunately, the number of required inputs for the 
recursive noisy-OR increases exponentially with the 
number of causes (although missing inputs can be esti-
mated when they are not provided). Hence, while the 
recursive noisy-OR is complete in the sense of allowing 
the synergy and the interference of causes, it is not a prac-
tically useful solution because it introduces elicitation 
complexities that essentially defeat the objective of using 
a noisy-OR. What we do in the next section is define a 
new special case of the recursive noisy-OR that requires 
only a single additional parameter to the noisy-OR. We 
prove it is sufficient to satisfy property (1) and partially 
satisfy property (2). 

5 AN EXTENSION TO THE NOISY-OR 

Here we provide an extension to the noisy-OR and 
prove that it satisfies conditional dependence property 
(1), as illustrated in Figure 2. In addition, the extension 
satisfies conditional dependence property (2) in the case 
where exactly one (but no more) of the xi is observed. 

The extension involves introducing a new ‘explaining-
away’ parameter, 𝛼 (0 < 𝛼 < 1). Formally, 𝛼 = 1 −
𝑃(𝑦 = 0|𝑥1 = ⋯ = 𝑥𝑛 = 1), where the conditional proba-
bility  𝑃(𝑦 = 0|𝑥1 = ⋯ = 𝑥𝑛 = 1) is predefined and: 
𝑃𝑒𝑥𝑡(𝑦 = 1|𝑥1, … , 𝑥𝑛)

=

{
 
 

 
 1 − (1 − 𝛼)(1 − 𝜆)∏(1 − 𝜈𝑖)

𝑥𝑖

𝑛

𝑖=1

𝑖𝑓 𝑥1 = ⋯ = 𝑥𝑛 = 1

1 − (1 − 𝜆)∏(1 − 𝜈𝑖)
𝑥𝑖

𝑛

𝑖=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Therefore, this extension differs from the noisy-OR func-
tion only when 𝑥1 = ⋯ = 𝑥𝑛 = 1. An example application 

is illustrated in Fig.2. Section 6 explains how the proposed 
extension is trivially implemented when using standard 
BN software tools. 
5.1 Proof that the extension satisfies property (1) 

In this section, we show that the extension satisfies 
property (1). Letting 𝒦 be a set of m integers between 1 
and n (0 ≤ 𝑚 ≤ 𝑛 − 2), for all 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∉ 𝒦, we show that 

𝑃𝑒𝑥𝑡(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑘 = 1 ∀ 𝑘 ∈  𝒦)

> 𝑃𝑒𝑥𝑡(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈  𝒦). 

To begin, we simplify the notations by denoting 
𝑝𝑖 = 𝑃(𝑥𝑖 = 1), 𝜓 = 𝑃

𝑛𝑜(𝑦 = 0|𝑥𝑖 = 1, 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈
 𝒦), and 𝜙 = 𝑃𝑛𝑜(𝑦 = 0|𝑥1 = ⋯ = 𝑥𝑛 = 1), and 𝛾 =
∏ 𝑝𝑙𝑙∉𝒦,𝑙≠𝑖,𝑙≠𝑗 . 

 Then, by the definition of the extension, 
𝑃ext(𝑦 = 0 | 𝑥𝑖 = 1, 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)

= 𝜓 − 𝛾𝜙 + 𝛾(1 − 𝛼)𝜙 = 𝜓 − 𝛼𝛾𝜙,

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 1, 𝑥𝑗 = 0, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)

= 𝜓/(1 − 𝜈𝑗), and

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)

= 𝜓/[(1 − 𝜈𝑖)(1 − 𝜈𝑗)].

 

To evaluate the left hand-side of (1), we marginalize 
out 𝑥𝑗 from the conditioning: 
𝑃𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈  𝒦)

= 𝑝𝑗𝑃
𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 1, 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈  𝒦)

+ (1 − 𝑝𝑗)𝑃
𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 1, 𝑥𝑗 = 0, 𝑥𝑘 = 1 ∀ 𝑘 ∈  𝒦)

= [𝑝𝑗(1 − 𝜈𝑗)(𝜓 − 𝛾𝜙𝛼) + 𝜓(1 − 𝑝𝑗)]/(1 − 𝜈𝑗) 

A similar calculation gives us Pext(y = 0 | xj = 1, xk =
1 ∀ k ∈ 𝒦) and Pext(y = 0 | xk = 1 ∀ k ∈ 𝒦). Then, it is 
straightforward to derive 

𝑃ext(𝑦 = 0 | 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖
+ 𝜉1

=
𝑃ext(𝑦 = 0 | 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 1, 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖

 

where 

𝜉1 =
𝛼𝛾𝜙𝜓(1 − 𝑝𝑖)(1 − 𝑝𝑗)

(1 − 𝜈𝑖)(𝜓 − 𝛼𝛾𝜙)[𝛼𝛾𝜙(𝜈𝑗𝑝𝑗 − 𝑝𝑗) + 𝜓(1 − 𝜈𝑗𝑝𝑗)]
 

Here ξ1 is a nonnegative term, because all the terms in 
its numerator and denominator are nonnegative. Below, 
we prove the second and third terms in the denominator, 
as the other terms are all nonnegative by their definitions. 
The second term in the denominator is 
𝜓 − 𝛼𝛾𝜙 = 𝑃ext(𝑦 = 0 | 𝑥𝑖 = 1, 𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦) ≥ 0 

Given the immediate above, 𝜓 ≥ 𝛼𝛾𝜙, and thus, the 
third term in the denominator is 

 

Fig. 2. Extension of noisy-OR applied to Example 1 (Fig. 1), where parameter 𝛼 = 1 − 𝑃(𝑦 = 0|𝑥1 = 𝑥2 = 𝑥3 = 1) = 0.9, replaces the 
value 1 − 𝑃(𝑦 = 0|𝑥1 = 𝑥2 = 𝑥3 = 1) = 0.6976. In contrast to Fig 1, 𝑃(𝑥1) depends on the value of 𝑥2 regardless of the value of 𝑦. 
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𝛼𝛾𝜙(𝜈𝑗𝑝𝑗 − 𝑝𝑗) + (1 − 𝜈𝑗𝑝𝑗)𝜓

≥ 𝛼𝛾𝜙(𝜈𝑗𝑝𝑗 − 𝑝𝑗) + 𝛼𝛾𝜙(1 − 𝜈𝑗𝑝𝑗)

= 𝛼𝛾𝜙(1 − 𝑝𝑗) ≥ 0.

 

Therefore, 
𝜉1 ≥ 0

⇔ 𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)−1

 ≤ 𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)
−1

⇔ 𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦)

 ≥ 𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑗 = 1, 𝑥𝑘 = 1 ∀ 𝑘 ∈ 𝒦).

 

5.2 Proof that the extension satisfies property (2) 

Now we show (2) holds only when m = 0 and 𝒦 is an 
empty set: for all i ≠ j and i, j ∉ 𝒦, we show 

{
 
 

 
 

𝑃𝑒𝑥𝑡(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦)

= 𝑃𝑒𝑥𝑡(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦)
𝑖𝑓 𝑚 > 0

𝑃𝑒𝑥𝑡(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦)

< 𝑃𝑒𝑥𝑡(𝑥𝑖 = 1|𝑦 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦)
𝑖𝑓 𝑚 = 0

 

We introduce a new notation: 
𝜔 = 𝑃no(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦). 

Then, 

𝑃𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 1, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦) = ω(1 − 𝜐𝑖), 

and 

𝑃𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 0, 𝑥𝑗 = 1, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦) = ω(1 − 𝜐𝑗). 

Marginalizing out 𝑥𝑗 from the conditioning, we obtain 
𝑃𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦)

= 𝑝𝑗𝑃
𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 0, 𝑥𝑗 = 1, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦)

+ (1 − 𝑝𝑗)𝑃
𝑒𝑥𝑡(𝑦 = 0|𝑥𝑖 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈  𝒦)

= 𝜔(1 − 𝑝𝑗) + 𝜔(1 − 𝑣𝑗)𝑝𝑗 = ω(1 − 𝑝𝑗𝜐𝑗), 

and hence, 
𝑃ext(𝑦 = 0 | 𝑥𝑖 = 1, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

=

{
 
 

 
 
𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)(1 − 𝜈𝑖) if 𝑚 > 0

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)(1 − 𝜈𝑖)

+𝑃ext(𝑦 = 0 | 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 1)∏𝑝𝑙
𝑙≠𝑖

if 𝑚 = 0

= {
𝜔(1 − 𝑝𝑗𝜈𝑗)(1 − 𝜈𝑖) if 𝑚 > 0

𝜔(1 − 𝑝𝑗𝜈𝑗)(1 − 𝜈𝑖) − 𝛼𝛾𝜙 if 𝑚 = 0.

 

Then, 
𝑃ext(𝑦 = 0 | 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

= 𝑝𝑖𝑃
ext(𝑦 = 0 | 𝑥𝑖 = 1, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

 +(1 − 𝑝𝑖)𝑃
ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

= {
𝜔(1 − 𝑝𝑖𝜈𝑖)(1 − 𝑝𝑗𝜈𝑗) if 𝑚 > 0

𝜔(1 − 𝑝𝑖𝜈𝑖)(1 − 𝑝𝑗𝜈𝑗) − 𝛼𝛾𝜙𝑝𝑖 if 𝑚 = 0

 

A straightforward arithmetic shows that 
𝑃ext(𝑦 = 0 | 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖
+ 𝜉2

=
𝑃ext(𝑦 = 0 | 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖

 

where ξ2 ≥ 0. Specifically, 

𝜉2 = {
0 if 𝑚 > 0
𝛼𝛾𝜙𝑝𝑖/[𝜔(1 − 𝜈𝑗𝑝𝑗)] if 𝑚 = 0

 

Therefore, when m > 0, 𝜉2 = 0 

⇔
𝑃ext(𝑦 = 0 | 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖
 

=
𝑃ext(𝑦 = 0 | 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖
 

⇔𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦) 
= 𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦). 

Instead, if m = 0, 𝜉2 > 0 

⇔
𝑃ext(𝑦 = 0 | 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0,  𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖

<
𝑃ext(𝑦 = 0 | 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

𝑃ext(𝑦 = 0 | 𝑥𝑖 = 0, 𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦) 𝑝𝑖

⇔ 𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦)

< 𝑃ext(𝑥𝑖 = 1 | 𝑦 = 0,  𝑥𝑗 = 0, 𝑥𝑘 = 0 ∀ 𝑘 ∈ 𝒦).

 

5.3 Suppressing undesired behavior 

Our extension implements the synergy of all the caus-
es: their combination has a greater influence on the effect 
than the combined independent product (the Noisy-OR). 
The strength of this synergy is determined by the parame-
ter α. As we discussed above, this synergy enables the 
explaining-away behaviour when y = 0. When the syner-
gy is very strong, however, the synergy may produce 
undesired behaviour when y = 1. In particular, when 
y = 1, conditioning on x1 = 1 can increase the probability 
that x2 = 1: once we know one cause was present/true, 
probability that another cause was present/true increases. 
This behaviour is undesired, because it is inconsistent 
with the explaining-away behaviour we expect. To sup-
press this undesired behaviour, α needs to be less than a 
certain value to satisfy the following: 

𝑃(𝑥𝑖 = 1|𝑦 = 1, 𝑥𝑗 = 1, 𝑥𝑘 = 1∀𝑘 ∈ 𝒦)

< 𝑃(𝑥𝑖 = 1|𝑦 = 1, 𝑥𝑘 = 1∀𝑘 ∈ 𝒦)

⇔
𝑃(𝑦 = 1|𝑥𝑖 = 1, 𝑥𝑗 = 1, 𝑥𝑘 = 1∀𝑘 ∈ 𝒦) 𝑝𝑖

𝑃(𝑦 = 1|𝑥𝑗 = 1, 𝑥𝑘 = 1∀𝑘 ∈ 𝒦)

 <
𝑃(𝑦 = 1|𝑥𝑖 = 1, 𝑥𝑘 = 1∀𝑘 ∈ 𝒦) 𝑝𝑖

𝑃(𝑦 = 1|𝑥𝑘 = 1∀𝑘 ∈ 𝒦)
.

 

This inequality is satisfied when 

𝛼 <
𝜈𝑖𝜈𝑗𝜓

𝛾𝜙[(1 − 𝜈𝑖)(1 − 𝜈𝑗) − 𝜓]
 

for any i and j. This upper bound is larger when 
p(xl = 1) is smaller for an unobserved cause xl or when νi 
is larger for an observed cause xi. 

6 CONCLUSIONS 

The leaky noisy-OR is an efficient method in practice 
to approximate the required CPT of an effect node with 
multiple ‘independent causal’ parents. However, because 
of the CII property, the approximation fails to capture all 
‘explaining away’ behaviour in situations where it is 
commonly used (such as in our example of security and 
intelligence analysis). In other words, it may be providing 
results that do not properly match known empirical ob-
servations for the problem being modelled. We have de-
scribed a simple extension to leaky noisy-OR that requires 
domain experts to provide only one extra parameter in 
order to capture most of the conditional dependence 
properties that are required in such practical situations. 
Our solution contrasts with previous solutions that, in the 
worst case, require an exponential number of extra pa-
rameters to be elicited. Since software tools already au-
tomatically generate a full CPT from a leaky noisy-OR 
expression, it is trivial to use the extension proposed in 
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this paper: as a result of our proof, all that is needed is to 
adjust (by the ‘explaining away’ parameter) the CPT entry 
corresponding to the case where all parent nodes are true. 
This solution is now being used in a number of onging 
projects aimed at improving decision-making. 
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