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Abstract
Project planning inevitably involves uncertainty. The basic input parameters
for planning (time, cost and resources for each activity) are not determinigtic
and are affected by various sources of uncertainty. Moreover, there is a causa
relationship between these uncertainty sources and project parameters, this
causdity is ignored in current date-of-the-art project planning techniques
(such as smulation techniques). In this paper we present an gpproach, using
Bayesan network moddling, that addresses both uncertainty and causdity in
project management. Bayesan networks have been widdy used in a range of
decisionsupport gpplications, but the application to project management is
novel. The mode we present empowers the traditiona Critica Path Method
(CPM) to handle uncertainty and also provides explanatory anaysis to dlicit,

represent, and manage different sources of uncertainty in project planning.
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1 Introduction

Project planning is difficult because it inevitably involves uncertanty. Projects are

typicaly characterised by:

uniqueness (no Smilar experience)
variability (trade-off between performance measures like time, cost and

quality)

ambiguity (lack of clarity, lack of data, lack of structure and bias in estimates)

Yet, dthough many different techniques and tools have been developed to support
better project planning (and these tools are used serioudy by a large mgority of
project managers [Fox 1998, Pollack-Johnson 1998]), quantifying uncertainty is rardy

prominent in these gpproaches.

Snce it is 4ill an important open problem, this paper focuses especidly on the
problem of handling uncertainty in project scheduling. In Section 2 we eaborate on
the nature of uncertainty in project scheduling and summarise the current state-of-the-
at. Our gpproach to incorporating uncertainty is to adapt one of the best-used
scheduling techniques, Critical Path Method (CPM) [Kely 1961], and incorporate it
into an explicit uncertainty modd (usng Bayesan Networks). Thus in Section 3 we
summarise the basc CPM methodology and notation, adong with a sandard example
that we will use in subsequent extensons. In section 4 we present a brief introduction
to Bayesan Networks, and describe how the CPM approach can be incorporated. In

Section 5 we demondtrate the results of the modd and show how it can be used to



support project scheduling. Since the research described here represents work in

progress, Section 6 suggests the way forward and possible future modifications.

2 The nature of uncertainty in project scheduling

The project management body of knowledge PMBOK identifies risk management as a

key area

‘It indudes the processes concerned with identifying, andyzing, and
responding to project risk. It includes maximizing the results of podtive events

and minimizing the consequences of adverse events . [Duncan 1996]

Centra to risk management is the issue of handling uncertainty. [Ward and Chapman
2003] argue that current project risk management processes induce a restricted focus
on managing project uncertainty. They beieve it is because the term ‘risk’ has
become associated with ‘events rather than more genera sources of ggnificant

uncertainty.

In different project management processes there are different aspects of uncertainty.
Here we ae especidly interested in uncertainty in project scheduling. The most
obvious area of uncertainty here is in edimating duation for a paticular activity.
Difficulty in this edimation aises from a lack of knowledge of what is involved
rather than from the uncertain consequences of potentid threets or opportunities. This

uncertainty arise from one or more of the following:



Uncertainty about the leve of available and required resource

Trade-off between resources and time

Possible occurrence of uncertain events (i.e. risks)

Causd factors and inter-dependencies between them

Lack of previous experience and use of subjective data instead of objective
data (expert judgement)

Uncertainty about the basis of subjective estimation (i.e. Biasin estimation)

Common casud factors that affect more than one activity (such as

organizationd issues)

The best-known technique to support project scheduling is the Critical Path Method
(CPM) (which we describe in detal in Section 3). This technique, which is
incorporated into the most widdy-used project management software tools, is purely
determinigtic. It makes no atempt to handle or quantify uncertainty. However,
another well-used technique Program Evaluation and Review Technique (PERT)
[Miller 1962, Moder 1988] does incorporate uncertainty in a redricted sense, by
using a probability distribution for each task. Indead of having a single determinigtic
vaue, three different esimates (pessmigdic, optimigic and most likdy) ae
approximated. Then the ‘criticad path’ and the start and finish date are caculated by
use of digributions means and goplying probability rules Results in PERT are more
redigic than CPM but PERT does not address explicitly any of the sources of

uncertainty listed above.

In addition to PERT most recent techniques for handling uncertainty in project

scheduling use Monte Carlo simulation [Cook 2001]. For example, Pertmaster



[Pertmaster 2005] has incorporated Monte Carlo smulation to provide project risk
andyss in time and cost. However, the Monte Carlo approach has attracted some
citicism. For example, [Williams 2004] describes how Monte Carlo smulation
results can midead project managers by ignoring potentid management actions to
bring late running project back on track. [Van Dorp and Duffey 1999] explain another
weskness of Monte Calo dgmulaion, namdy the assumption of daidica
independence of activity duration in a project network. Of more concern to us is the
issue tha Monte Carlo smulation tools like Pertmaster (being event-oriented) do not
identify the source of uncertainty. As argued in [Ward and Chgpman 2003] managing
uncertainty in project planning is not just &bout managing perceived threds,
opportunities and ther implication. A proper uncertainty management provides
identifying various sources of uncertainty, undersanding the origins of them and then
managing them to dedl with dedrable or undesrable implications. Our chalenge is to
address these specific issues, and we do so by incorporating the CPM approach into
the mogt widdy used formadisnm for moddling causdity and uncertainty, Bayesan

Nets. Next we provide an overview of the CPM methodology and notation.

3 CPM methodology and notation

CPM [Moder 1988] is a deerminigtic technique which, by use of a network of
dependencies between tasks and given deterministic vaues for task durations,
cdculates the earliet network (the ‘criticd pah’) which is the ealiesx time for

project completion.



CPM hasthe following steps:

Identify the individua activities (tasks). This usudly is done by work breskdown
dructure. Based on sze and complexity of the project, the project manager
specifiesthelist of dl required activities during the project.
Deermine the dependency between activities This requires liging immediate
predecessors, which must complete before each activity can Sart.
Draw project network (diagram). This shows dl activities and their
dependencies.
Edimate activities durations. This is usudly done by higtoric data or expert
judgement. For each activity a Sngle point duration is estimated.

« ldentify the criticd path. This is the longest path of the network and te earliest
time for project completion.
Update the CPM network. As the project progresses and more information about

activitiesis available, the network structure and calculation are updated.

The criticd path can be identified by determining the following parameters for each

activity:

D - Duration

ES- ealies gart time
EF - ealiex finishtime
LF - lategt finish time

LS- latest gart time



The earlies sat and finish times of each activity are determined by working forward
through the network and determining the earlies time a which an activity can dart

and finish congdering its predecessor activities. For each activity j:

ES =Max [ES; + D; | i one of the predecessor activities]

EFj :ESj+ Dj

The latest gtart and finish times are the latest times that an activity can dart and finish
without delaying the project and are found by working backward through the network.

For each activity i:

LFi = Min[LF; —D; |j one of the successor activities]

LS- LF —D;

The activity's dack (which is the amount that the activity's duration can be incressed
without increesing the overdl project completion time) is the difference in the latest
and ealies finish of each activity. A criticd activity is one with no dack time and
should recelve specia atention (delay in a citicd activity will dday the whole
project). The criticad path then is the pah(s) through the network whose activities

have minima dack.

Example (1): Condder a smdl project with five activities A, B, C, D and E. Activity
A is processor of B and C, and activities C and D are predecessors of E. Fgure 1

shows asmple project network.



Figure 1 project network for example (1)

Table (1) summarizes the results. Activities A, C and E with no dack time are critica

and the overdl the project takes 20 days.

Table 1 Activities' time (days) for example (1

Activity | Duration = EF
A 5 0 5 0 5 0
B 4 5 9 9 13 4
10 5 15 5 15
2 9 11 13 15
5 15 20 15 20

The CPM gpproach is very amplisic and provides very useful information about a
project and its activities schedule. However, because of its dngle point estimate
assumption it is not useful for redigic projects The chdlenge is to incorporate the

inevitable uncertainty.



4 Proposed BN solution

Bayesian Networks (BNSs) are recognised as a mature formaism for handling causdity
and uncertainty [Heckerman et a 1995]. In this section we provide a brief overview of
BNs and describe a new approach for scheduling project activities in which. CPM

parameters (i.e. ES, EF, LS and LF) are determined in a BN.

4.1 Bayesian Networks: An overview

Bayesan Networks (aso known as Belief Networks, Causa Probabilistic Networks,
Causal Nets, Graphica Probability Networks, Probabilistic Cause-Effect Modds, and
Probabiligic Influence Diagrams) provide decisonsupport for a wide range of
problems involving uncertainty and probabiligic ressoning.  Example red-world
goplications can be found in [Heckerman et d 1995, Fenton et a 2002, Neil et a

2001].
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Figure 2 Bayesian Network for Activity Duration

A BN is a directed graph (such as the one shown in Fgure 2), together with an

associated set of probability tables. The graph condsts of nodes and arcs. The nodes



represent uncertain variables, which may or may not be observable. The arcs represent

causd or influentia relationships between variables.

The main use of BNs is in gdtuations that require datistica inference. In addition to
datements about the probabilities of events, the user knows some evidence, that is
some events that have actualy been observed, and wishes to infer the probabilities of
other data, which have not as yet been observed. These observed vaues (evidence)
represent a pogterior probability, and by applying Bayes rule in each affected node,
they can influence other BN nodes via propagation, modifying the probability
digributions. There are numerous commercia tools that enable users to build BN
modds and run the propagation caculaions. With such tools it is possble to perform
fast propagation in large BNs (with hundreds of nodes). In this work we have used

[AgenaRisk 2005], which is especialy well-suited to this kind of application.

In summary, BNs have the following advantages that make them highly suitable for

the project planning domain:

Explicitly quantify uncertainty
Reason from effect to cause aswell as from cause to effect (propageation is
both ‘forward’ and ‘ backward’)
Overturn previous bdiefsin the light of new data (‘ explaining avay’)
«  Make predictions with incomplete data
Combine subjective and objective data

Arrive & decisonsthat are based on visible auditable reasoning
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BNs, as a tool for decison support, have been deployed in domans ranging from
medicine to paolitics. We believe BNs potentidly address many of the ‘uncertainty’
rased in Section 2. In paticular, by incorporating CPM-gyle scheduling into a BN

framework we can properly handle uncertainty in project scheduling.

4.2 BN for Activity Duration

Figure 2 above shows a prototype BN that we have built to modd uncertainty sources
and thelr affects on duration of a particular activity. The modd contains variables that
capture the uncertain nature of activity duration. ‘Expert Judgement’ is the firg
edimation of activity duration; it is estimated based on hidtoric data or previous
experience. ‘Resources is any dffecting factor, which can increase or decrease the
activity duration. It is a ranked node, which for smplicity here we redrict to three
levels. low, average and high. The levd of resources can be inferred from so cdled
‘indicator’ nodes. Hence, the causal link is from the ‘resources to directly observable
indicator vaues like the ‘cost’ and the leve of available ‘people (in terms of quantity
and qudity) and the levd of avaldble ‘technology’. There are many dterndive
indicators. An important and novel aspect of this approach is to adlow the mode to ke

adapted to use whichever indicators are available.

The power of this modd is better understood by showing the results of running it
under various scenarios in the AgenaRisk software (al subsequent figures are outputs
from the tool). We can enter observations anywhere in the modd to perform not just
predictions but aso many types of trade-off and explanatory anadyss. So, for

example, we can enter observations for ‘expert judgement’ and ‘resources and let the

11



model show us the digtributions for ‘duration’. Figure 3 shows how the digtribution of

an activity changes when the leve of its available resources changes.
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Figure 3 Probability distribution for ‘Duration’ (number of days) changeswhen thelevel of ‘Resources’ changes

Another possible andyss in this modd is the trade-off andyss between ‘duration’

and ‘Resources. When there is a time condraint for activity duration and we are

interested © know about the level of required resource. For example, Figure 4, shows

the resulting digribution for the node ‘Resources if the first estimation for an activity

is five days but it needed to be finished in three days, note that the required resource is

mogt likely to be‘high'.
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Figure 4 Level of required ‘Resources’ when thereisconstraint on ‘Duration’
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The modd dso provides additiond andyticd information about the pogerior
probability of ‘risk’ and ‘resources. When actua duration of an activity is known as
the project progresses, by comparing ‘actud’ and ‘predicted’ durations, the modd can
update the didtribution for ‘risk’ and ‘resources. In turn this distribution can be used
for laer anadyss or for other activities with common casud dependencies. Figure 5
shows the didribution of ‘resources for an activity that was origindly estimated at

five days but actudly lasted seven days.

1.0 1.0
0sg
0.8

Lo Meclium High

a) Resource b) Risk

Figure 5 Posterior probability for a) Resource and b)Risk when the actual ‘Duration’ was 7

In the next section we use this moded to reason about more uncertain activities.

4.3 Mapping CPMto BN

As we have seen, the main component of CPM networks is activity. Activities are

linked together to represent dependencies. In order to map a CPM network to a BN
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we fird need to map a sngle activity. We take the activity parameters identified in

Section 3 and represent each as avariable (node) in the BN:

Duration (D): This is the most uncertain varidble and its vaues are inferred from the
risk factors and common causal dependencies. It may have various probability
digributions. For uncertain activities which need more andyss, the duration network

(explained in section 4.2) can be used.

Earliest Start (ES): This gets its vaue from the predecessor activity/activities. For
the firg activity of the project ES = 0 and for other activities ES is the maximum of

the predecessor activity's EF.

Earliest Finish (EF): Thisisaderived node, which addsthe ES and D.

Latest Finish (LF): This gets its vaue from the successor activity/ectivities. For the

lagt activity of the project LF=EF and for other activities LF is the minimum of the

successor activities LS.

Latest Start (L S): Thisisaderived node, which subtracts D from LF.

Figure (6) shows a schematic model of the BN fragment associated with an activity. It

clearly shows the relaion between the activity parameters and aso the relation with

predecessor and successor activities.

14
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Figure 6 Schematic of BN for an activity

The next dep is to define the connecting link between dependent activities. The
forward pass method in CPM is mapped as a link between EF d predecessor activity
to ES of successor activity. The backward pass method in CPM is mapped as a link

between LS of successor activity to LF of predecessor activity.

Figure 7 shows the BN representation of example (1). Every activity has 5 associated
nodes. Forward pass caculation of CPM is done through connection between ES and
EF. Activity ‘A’, the firg activity of the project, has no predecessor, S0 its ES is st to
zero. ‘A’ is predecessor for ‘B’ and ‘C’ so EF of ‘A’ is linked to ES of ‘B’ and ‘C'.
EF of ‘B’is linked to ES of its successor, ‘D’. And findly EF of ‘C and ‘D’ ae
connected to ES of ‘E’. In fact ES of ‘E’ is the maximum of EF of ‘C and ‘D’. EF of

‘E’ isthe earliest time for project completion time.
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Figure 7 Overview of BN for example (1)

The same agpproach is used for backward CPM caculation with connecting LF and
LS. Activity ‘E’ that is the last activity of project has no successor, S0 its LF is st to
EF. ‘E issuccessor of ‘C’ and ‘D’ s0 LS of ‘E’ islinked to LF of ‘C’ and ‘D’. LS of
‘D’ is linked to LF of its predecessor ‘B’. And findly LS of ‘B’ and ‘C’ are linked to

LFof ‘A’. LFof ‘A’ istheminimum of LSof ‘B’ and‘C'.
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For amplicity in this example, we suppose that activities ‘A’ and ‘E' are more risky
and need more detailled analyss. For other activities the uncertainty about ‘duration’

is expressed Smply by anormd distribution.

4.4 Object Oriented approach

It is clear from Figure 7 that even smple CPM networks lead to fairly large BNs. In
fact this complexity can be handled using the Object Oriented Bayesan Network
(OOBN) approach [Koller and Pfeffer 1997]. This approach supports a naturd
framework for abdraction and refinement, which dlows complex domans to be
decribed in terms of inter-related objects. In addition to generdization, OOBN

supports hierarchy and inheritance.

In our moded each activity, as the basc unit of a network, is an object and the interna
parts of the activity subnet (Figure 2) are encapsulated within the object. The OOBN
goproach can dso dgnificantly improve the performance of inference in the modd.
Although the OOBN gpproach to this particular problem is beyond the scope of this
paper, the key point to note is that there is an exiting mechanism (and
implementetion of it) that enables us to genuindy ‘scde-up’ the proposed solution to

real-world projects.
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5 Results

In this section we explore scenarios of the BN modd derived from the smple CPM

network of example 1.

The main objective is to predict project completion time (i.e. the earliest finish of E,

the last activity of the project) in such away that it fully characterises our uncertainty.

Suppose the initid edtimation of activities durdtion is the same as Table 1. Suppose
the resource level for ‘A’ and ‘E’ is ‘medium’. If the earliest start of ‘A’ is set to zero,
the digtribution for project completion is shown in Figure 8a The didribution’s mean
is 20 days as was expected from CPM andysis. However, unlike CPM our prediction
is not a sngle point and its vaiance is 4. Fgure 8b illudraes the cumulaive
didribution of finishing time, which shows the probability of completing the project
before a given time. For example, with probability of 90% the project will finish in 22

days.
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Figure 8 Distribution of project completion (days) for main Scenario in example (1)
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In addition to this basdine scenario, by entering various evidence (observations) to
the modd we ae able to anayses the project plan from different aspects. For
example, one scenario is to see how changing the resource level affects the project
completion time. Figure 9 compares the didributions for project completion time
when leve of people is ‘low’ againg ‘high’. When the level of ‘people€ changes from
‘low’ to ‘high’ the mean of finishing time changes from 22.7 days to 195 days and

the 90% confidence interva changes from 26.3 daysto 21.2 days.
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Figure 9 Changein project timedistribution (days) when level of ‘People’ changes from ‘low’ to ‘high’

Another useful andyss is when there is a condraint on project completion time and
we want to know how much resource we need. Figure 10 illudrates this trade-off
between project time and required resources. If the project needs to be completed in
18 days (instead of basdine 20 days) then the resource required for ‘A’ most likely
must be ‘high’; if the project completion is set to 22, the resource level for A changes

moves sgnificantly in the direction of ‘low’.

19




Low Meclium

High

a) Finish time=18 days

Law Mudhum High

b) Finish time=22 days

Figure 10 Trade-off between project time and required resources

The next scenario is the invedtigation of the impact of risk in activity A on the project

completion time. Figure 11 shows this scenario. When there is a risk in activity A the

mean of the distribution for project completion time changes from 19.5to 22.4
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Figure 11 Theimpact of risk in activity A on project completion time (days)

Another powerful advantage of BNSs is ther potentia for parameter learning, which is

shown in the next scenaio. Imagine activity A actually finishes in 7 days even though

it was origindly edimated as 5 days. By entering this observation in EJ A and EF A

the modd gives the probability of resource and risk for activity A as it is illustrated in

Figure 12.
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Figure 12 Probability for A’srisk and resourcewhen the actual duration is7 daysrather than initially estimated 5 days

If activities have common causd risks the leant probability for A’s risk inform

activity E. Figure 13 compares the digributions of completion time when learned

information from risk of activity A isentered to risk of activity E.
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Figure 13 Completion time (days) based on learned parameters compare with baseline scenario

Ancther gpplication of parameter learning in these modds is the ability to incorporate

and learn about estimation bias. So if we get severd observations in which actud task

completion times are underestimated the modd learns that this may be due to bias

rather than unforeseen risks and this information will inform subsequent predictions.
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6 Conclusions and way forward

Handling risk and uncertainty is increesngly seen as a crucid component of project
management and planning. Researchers (and some practitioners) have thus moved on
from the generation of MS Project type tools that treat project planning and
scheduling purdy determinigticaly. However, mogt current techniques for handling
risk and uncertainty in project planning (i.e. Smulation based techniques) are often
event-oriented and try to modd the impact of possble ‘threstS on project
performance. They ignore the source of uncertainty and the causal reations between

project planning parameters.

We have proposed a new approach that enables us to incorporate risk, uncertainty and
causdity. Specificdly, we have shown how a Bayesan Network modd can be
generated from a project’'s CPM network. Part of this process is automatic and part
involves identifying specific risks (which may be common to many activities) and
resource indicators. The benefit of incorporating the project schedule into a BN is that
we can then bring the full weight and power of BN analyss to bear on the problem of

project scheduling. This meanswe can

+  Make explicit different sources of uncertainty and use this to inform project
planning.

+ Express uncertainty about completion time for each activity and the whole
project with full probability digtributions

+  Mode the ‘trade-off’ between ‘time’ and ‘resources’ in project activities

+ Use ‘what-if? andyss for finding the levd of required resources given

condraintslike, for example, a specific completion time
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Learn from data (as the project progresses and more information become

available) so that predictions become more relevant and accurate

The gpplication of the gpproach was explained by use of an atificid smple example.
In order to scale this up to red projects with many activities the gpproach must be

extended to use the so-called Object Oriented BNs.

The BN approach could be extended and improved by:

Including additiona uncertainty sources in the duration network

Handling dynamic parameter learning as more information becomes avalable
when project progresses

Handling common causd risks which affect more than one activity

«  Handling management action when the project is behind its plan

Hence we fed that the BN agpproach provides a potentialy revolutionary way forward

for tackling uncertainty in project planning.
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