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Abstract 

Project planning inevitably involves uncertainty. The basic input parameters 

for planning (time, cost and resources for each activity) are not deterministic 

and are affected by various sources of uncertainty. Moreover, there is a causal 

relationship between these uncertainty sources and project parameters; this 

causality is ignored in current state-of-the-art project planning techniques 

(such as simulation techniques). In this paper we present an approach, using 

Bayesian network modelling, that addresses both uncertainty and causality in 

project management. Bayesian networks have been widely used in a range of 

decision-support applications, but the application to project management is 

novel. The model we present empowers the traditional Critical Path Method 

(CPM) to handle uncertainty and also provides explanatory analysis to elicit, 

represent, and manage different sources of uncertainty in project planning. 

 
Keywords : Project planning; uncertainty; Bayesian networks; CPM. 



 2

1 Introduction 

Project planning is difficult because it inevitably involves uncertainty. Projects are 

typically characterised by: 

 

• uniqueness (no similar experience) 

• variability (trade-off between performance measures like time, cost and 

quality)  

• ambiguity (lack of clarity, lack of data, lack of structure and bias in estimates)  

 

Yet, although many different techniques and tools have been developed to support 

better project planning (and these tools are used seriously by a large majority of 

project managers [Fox 1998, Pollack-Johnson 1998]), quantifying uncertainty is rarely 

prominent in these approaches.  

 

Since it is still an important open problem, this paper focuses especially on the 

problem of handling uncertainty in project scheduling. In Section 2 we elaborate on 

the nature of uncertainty in project scheduling and summarise the current state-of-the-

art. Our approach to incorporating uncertainty is to adapt one of the best-used 

scheduling techniques, Critical Path Method (CPM)  [Kelly 1961], and incorporate it 

into an explicit uncertainty model (using Bayesian Networks). Thus, in Section 3 we 

summarise the basic CPM methodology and notation, along with a standard example 

that we will use in subsequent extensions. In section 4 we present a brief introduction 

to Bayesian Networks, and describe how the CPM approach can be incorporated. In 

Section 5 we demonstrate the results of the model and show how it can be used to 
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support project scheduling. Since the research described here represents work in 

progress, Section 6 suggests the way forward and possible future modifications. 

 

 

2 The nature of uncertainty in project scheduling 

The project management body of knowledge PMBOK identifies risk management as a 

key area:  

 

‘It includes the processes concerned with identifying, analyzing, and 

responding to project risk. It includes maximizing the results of positive events 

and minimizing the consequences of adverse events’. [Duncan 1996] 

 

Central to risk management is the issue of handling uncertainty. [Ward and Chapman 

2003] argue that current project risk management processes induce a restricted focus 

on managing project uncertainty. They believe it is because the term ‘risk’ has 

become associated with ‘events’ rather than more general sources of significant 

uncertainty.  

 

In different project management processes there are different aspects of uncertainty. 

Here we are especially interested in uncertainty in project scheduling. The most 

obvious area of uncertainty here is in estimating duration for a particular activity. 

Difficulty in this estimation arises from a lack of knowledge of what is involved 

rather than from the uncertain consequences of potential threats or opportunities. This 

uncertainty arise from one or more of the following: 
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• Uncertainty about the level of available and required resource  

• Trade-off between resources and time 

• Possible occurrence of uncertain events (i.e. risks)  

• Causal factors and inter-dependencies between them 

• Lack of previous experience and use of subjective data instead of objective 

data (expert judgement) 

• Uncertainty about the basis of subjective estimation (i.e. Bias in estimation) 

• Common casual factors that affect more than one activity (such as 

organizational issues) 

 

The best-known technique to support project scheduling is the Critical Path Method 

(CPM) (which we describe in detail in Section 3). This technique, which is 

incorporated into the most widely-used project management software tools, is purely 

deterministic. It makes no attempt to handle or quantify uncertainty. However, 

another well-used technique Program Evaluation and Review Technique (PERT) 

[Miller 1962, Moder 1988] does incorporate uncertainty in a restricted sense, by 

using a probability distribution for each task. Instead of having a single deterministic 

value, three different estimates (pessimistic, optimistic and most likely) are 

approximated. Then the ‘critical path’ and the start and finish date are calculated by 

use of distributions’ means and applying probability rules. Results in PERT are more 

realistic than CPM but PERT does not address explicitly any of the sources of 

uncertainty listed above. 

 

In addition to PERT most recent techniques for handling uncertainty in project 

scheduling use Monte Carlo simulation [Cook 2001]. For example, Pertmaster 
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[Pertmaster 2005] has incorporated Monte Carlo simulation to provide project risk 

analysis in time and cost. However, the Monte Carlo approach has attracted some 

criticism. For example, [Williams 2004] describes how Monte Carlo simulation 

results can mislead project managers by ignoring potential management actions to 

bring late running project back on track. [Van Dorp and Duffey 1999] explain another 

weakness of Monte Carlo simulation, namely the assumption of statistical 

independence of activity duration in a project network. Of more concern to us is the 

issue that Monte Carlo simulation tools like Pertmaster (being event-oriented) do not 

identify the source of uncertainty. As argued in [Ward and Chapman 2003] managing 

uncertainty in project planning is not just about managing perceived threats, 

opportunities and their implication. A proper uncertainty management provides 

identifying various sources of uncertainty, understanding the origins of them and then 

managing them to deal with desirable or undesirable implications. Our challenge is to 

address these specific issues, and we do so by incorporating the CPM approach into 

the most widely used formalism for modelling causality and uncertainty, Bayesian 

Nets. Next we provide an overview of the CPM methodology and notation. 

 

  

3 CPM methodology and notation 

CPM [Moder 1988] is a deterministic technique which, by use of a network of 

dependencies between tasks and given deterministic values for task durations, 

calculates the earliest network (the ‘critical path’) which is the earliest time for 

project completion.  
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CPM has the following steps: 

 

• Identify the individual activities (tasks). This usually is done by work breakdown 

structure. Based on size and complexity of the project, the project manager 

specifies the list of all required activities during the project. 

• Determine the dependency between activities. This requires listing immediate 

predecessors, which must complete before each activity can start. 

• Draw project network (diagram). This shows all activities and their 

dependencies.  

• Estimate activities durations. This is usually done by historic data or expert 

judgement. For each activity a single point duration is estimated. 

• Identify the critical path. This is the longest path of the network and the earliest 

time for project completion. 

• Update the CPM network. As the project progresses and more information about 

activities is available, the network structure and calculation are updated. 

 

The critical path can be identified by determining the following parameters for each 

activity: 

 

D - Duration 

ES - earliest start time 

EF - earliest finish time 

LF - latest finish time 

LS - latest start time 
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The earliest start and finish times of each activity are determined by working forward 

through the network and determining the earliest time at which an activity can start 

and finish considering its predecessor activities. For each activity j: 

 

ESj = Max [ESi + Di | i one of the predecessor activities]  

EFj =ESj+ Dj 

 

The latest start and finish times are the latest times that an activity can start and finish 

without delaying the project and are found by working backward through the network. 

For each activity i: 

 

LFi = Min [LFj – Dj | j one of the successor activities] 

LSi= LFi – Di 

 

The activity's slack (which is the amount that the activity’s duration can be increased 

without increasing the overall project completion time) is the difference in the latest 

and earliest finish of each activity. A critical activity is one with no slack time and 

should receive special attention (delay in a critical activity will delay the whole 

project). The critical path then is the path(s) through the network whose activities’ 

have minimal slack. 

 

Example (1): Consider a small project with five activities A, B, C, D and E. Activity 

A is processor of B and C, and activities C and D are predecessors of E. Figure 1 

shows a simple project network.  
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A

B D

C E

 

Figure 1 project network for example (1) 

 

Table (1) summarizes the results. Activities A, C and E with no slack time are critical 

and the overall the project takes 20 days. 

 

Table 1 Activities’ time (days) for example (1) 

Activity Duration ES EF LS LF Slack 

A 5 0 5 0 5 0 

B 4 5 9 9 13 4 

C 10 5 15 5 15 0 

D 2 9 11 13 15 4 

E 5 15 20 15 20 0 

 

 

The CPM approach is very simplistic and provides very useful information about a 

project and its activities’ schedule. However, because of its’ single point estimate 

assumption it is not useful for realistic projects. The challenge is to incorporate the 

inevitable uncertainty. 
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4 Proposed BN solution 

Bayesian Networks (BNs) are recognised as a mature formalism for handling causality 

and uncertainty [Heckerman et al 1995]. In this section we provide a brief overview of 

BNs and describe a new approach for scheduling project activities in which. CPM 

parameters (i.e. ES, EF, LS and LF) are determined in a BN.  

4.1 Bayesian Networks: An overview 

Bayesian Networks (also known as Belief Networks, Causal Probabilistic Networks, 

Causal Nets, Graphical Probability Networks, Probabilistic Cause-Effect Models, and 

Probabilistic Influence Diagrams) provide decision-support for a wide range of 

problems involving uncertainty and probabilistic reasoning.  Example real-world 

applications can be found in [Heckerman et al 1995, Fenton et al 2002, Neil et al 

2001]. 

 

 

Figure 2 Bayesian Network for Activity Duration  

 

A BN is a directed graph (such as the one shown in Figure 2), together with an 

associated set of probability tables. The graph consists of nodes and arcs. The nodes 
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represent uncertain variables, which may or may not be observable. The arcs represent 

causal or influential relationships between variables. 

 

The main use of BNs is in situations that require statistical inference. In addition to 

statements about the probabilities of events, the user knows some evidence, that is 

some events that have actually been observed, and wishes to infer the probabilities of 

other data, which have not as yet been observed. These observed values (evidence) 

represent a posterior probability, and by applying Bayes rule in each affected node, 

they can influence other BN nodes via propagation, modifying the probability 

distributions. There are numerous commercial tools that enable users to build BN 

models and run the propagation calculations. With such tools it is possible to perform 

fast propagation in large BNs (with hundreds of nodes). In this work we have used 

[AgenaRisk 2005], which is especially well-suited to this kind of application. 

 

In summary, BNs have the following advantages that make them highly suitable for 

the project planning domain: 

 

• Explicitly quantify uncertainty 

• Reason from effect to cause as well as from cause to effect (propagation is 

both ‘forward’ and ‘backward’) 

• Overturn previous beliefs in the light of new data (‘explaining away’) 

• Make predictions with incomplete data 

• Combine subjective and objective data 

• Arrive at decisions that are based on visible auditable reasoning 
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BNs, as a tool for decision support, have been deployed in domains ranging from 

medicine to politics. We believe BNs potentially address many of the ‘uncertainty’ 

raised in Section 2. In particular, by incorporating CPM-style scheduling into a BN 

framework we can properly handle uncertainty in project scheduling. 

 

4.2 BN for Activity Duration 

Figure 2 above shows a prototype BN that we have built to model uncertainty sources 

and their affects on duration of a particular activity. The model contains variables that 

capture the uncertain nature of activity duration. ‘Expert Judgement’ is the first 

estimation of activity duration; it is estimated based on historic data or previous 

experience. ‘Resources’ is any affecting factor, which can increase or decrease the 

activity duration. It is a ranked node, which for simplicity here we restrict to three 

levels: low, average and high. The level of resources can be inferred from so called 

‘indicator’ nodes. Hence, the causal link is from the ‘resources’ to directly observable 

indicator values like the ‘cost’ and the level of available ‘people’ (in terms of quantity 

and quality) and the level of available ‘technology’. There are many alternative 

indicators. An important and novel aspect of this approach is to allow the model to be 

adapted to use whichever indicators are available.  

 

The power of this model is better understood by showing the results of running it 

under various scenarios in the AgenaRisk software (all subsequent figures are outputs 

from the tool). We can enter observations anywhere in the model to perform not just 

predictions but also many types of trade-off and explanatory analysis. So, for 

example, we can enter observations for ‘expert judgement’ and ‘resources’ and let the 
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model show us the distributions for ‘duration’. Figure 3 shows how the distribution of 

an activity changes when the level of its available resources changes. 

 

 

a) Resource is ‘Low’ 

 

b) Resource is ‘High’ 

Figure 3 Probability distribution for ‘Duration’  (number of days) changes when the level of ‘Resources’ changes 
  

 

Another possible analysis in this model is the trade-off analysis between ‘duration’ 

and ‘Resources’. When there is a time constraint for activity duration and we are 

interested to know about the level of required resource. For example, Figure 4, shows 

the resulting distribution for the node ‘Resources’ if the first estimation for an activity 

is five days but it needed to be finished in three days; note that the required resource is 

most likely to be ‘high’. 

 

 

Figure 4 Level of required ‘Resources’ when there is constraint on ‘Duration’  
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The model also provides additional analytical information about the posterior 

probability of ‘risk’ and ‘resources’. When actual duration of an activity is known as 

the project progresses, by comparing ‘actual’ and ‘predicted’ durations, the model can 

update the distribution for ‘risk’ and ‘resources’. In turn this distribution can be used 

for later analysis or for other activities with common casual dependencies. Figure 5 

shows the distribution of ‘resources’ for an activity that was originally estimated at 

five days but actually lasted seven days. 

 

 

a) Resource 

 

b) Risk 

Figure 5 Posterior probability for a) Resource and b)Risk when the actual ‘Duration’ was 7 
 

 

In the next section we use this model to reason about more uncertain activities.  

 

4.3 Mapping CPM to BN 

As we have seen, the main component of CPM networks is activity. Activities are 

linked together to represent dependencies. In order to map a CPM network to a BN 
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we first need to map a single activity. We take the activity parameters identified in 

Section 3 and represent each as a variable (node) in the BN: 

 

Duration (D): This is the most uncertain variable and its values are inferred from the 

risk factors and common causal dependencies. It may have various probability 

distributions. For uncertain activities which need more analysis, the duration network 

(explained in section 4.2) can be used. 

 

Earliest Start (ES): This gets its value from the predecessor activity/activities. For 

the first activity of the project ES = 0 and for other activities ES is the maximum of 

the predecessor activity’s EF. 

 

Earliest Finish (EF): This is a derived node, which adds the ES and D. 

 

Latest Finish (LF): This gets its value from the successor activity/activities. For the 

last activity of the project LF=EF and for other activities LF is the minimum of the 

successor activities’ LS. 

 

Latest Start (LS): This is a derived node, which subtracts D from LF. 

 

Figure (6) shows a schematic model of the BN fragment associated with an activity. It 

clearly shows the relation between the activity parameters and also the relation with 

predecessor and successor activities. 
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Figure 6 Schematic of BN for an activity 
 

The next step is to define the connecting link between dependent activities. The 

forward pass method in CPM is mapped as a link between EF of predecessor activity 

to ES of successor activity. The backward pass method in CPM is mapped as a link 

between LS of successor activity to LF of predecessor activity. 

 

Figure 7 shows the BN representation of example (1). Every activity has 5 associated 

nodes. Forward pass calculation of CPM is done through connection between ES and 

EF. Activity ‘A’, the first activity of the project, has no predecessor, so its ES is set to 

zero. ‘A’ is predecessor for ‘B’ and ‘C’ so EF of ‘A’ is linked to ES of ‘B’ and ‘C’. 

EF of ‘B’is linked to ES of its successor, ‘D’. And finally EF of ‘C’ and ‘D’ are 

connected to ES of ‘E’. In fact ES of ‘E’ is the maximum of EF of ‘C’ and ‘D’. EF of 

‘E’ is the earliest time for project completion time. 
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Figure  7 Overview of BN for example (1) 

 

The same approach is used for backward CPM calculation with connecting LF and 

LS. Activity ‘E’ that is the last activity of project has no successor, so its LF is set to 

EF. ‘E’ is successor of ‘C’ and ‘D’ so LS of ‘E’ is linked to LF of ‘C’ and ‘D’. LS of 

‘D’ is linked to LF of its predecessor ‘B’. And finally LS of ‘B’ and ‘C’ are linked to 

LF of ‘A’. LF of ‘A’ is the minimum of LS of ‘B’ and ‘C’. 
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For simplicity in this example, we suppose that activities ‘A’ and ‘E’ are more risky 

and need more detailed analysis. For other activities the uncertainty about ‘duration’ 

is expressed simply by a normal distribution. 

 
 

4.4 Object Oriented approach 

It is clear from Figure 7 that even simple CPM networks lead to fairly large BNs. In 

fact this complexity can be handled using the Object Oriented Bayesian Network 

(OOBN) approach [Koller and Pfeffer 1997]. This approach supports a natural 

framework for abstraction and refinement, which allows complex domains to be 

described in terms of inter-related objects. In addition to generalization, OOBN 

supports hierarchy and inheritance.  

 

In our model each activity, as the basic unit of a network, is an object and the internal 

parts of the activity subnet (Figure 2) are encapsulated within the object. The OOBN 

approach can also significantly improve the performance of inference in the model. 

Although the OOBN approach to this particular problem is beyond the scope of this 

paper, the key point to note is that there is an existing mechanism (and 

implementation of it) that enables us to genuinely ‘scale-up’ the proposed solution to 

real-world projects. 
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5 Results 

In this section we explore scenarios of the BN model derived from the simple CPM 

network of example 1.  

 

The main objective is to predict project completion time (i.e. the earliest finish of E, 

the last activity of the project) in such a way that it fully characterises our uncertainty.   

 

Suppose the initial estimation of activities’ duration is the same as Table 1. Suppose 

the resource level for ‘A’ and ‘E’ is ‘medium’. If the earliest start of ‘A’ is set to zero, 

the distribution for project completion is shown in Figure 8a. The distribution’s mean 

is 20 days as was expected from CPM analysis. However, unlike CPM our prediction 

is not a single point and its variance is 4.  Figure 8b illustrates the cumulative 

distribution of finishing time, which shows the probability of completing the project 

before a given time. For example, with probability of 90% the project will finish in 22 

days.  

 

 

a) Probability Distribution 

 

b) Cumulative Distribution 

Figure 8 Distribution of project completion (days) for main Scenario in example (1) 
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In addition to this baseline scenario, by entering various evidence (observations) to 

the model we are able to analyses the project plan from different aspects. For 

example, one scenario is to see how changing the resource level affects the project 

completion time. Figure 9 compares the distributions for project completion time 

when level of people is ‘low’ against ‘high’. When the level of ‘people’ changes from 

‘low’ to ‘high’ the mean of finishing time changes from 22.7 days to 19.5 days and 

the 90% confidence interval changes from 26.3 days to 21.2 days. 

 

 

a) Probability 

 

b) Cumulative 

Figure 9 Change in project time distribution (days) when l evel of ‘People’ changes from ‘low’ to ‘high’ 
 

 

Another useful analysis is when there is a constraint on project completion time and 

we want to know how much resource we need. Figure 10 illustrates this trade-off 

between project time and required resources. If the project needs to be completed in 

18 days (instead of baseline 20 days) then the resource required for ‘A’ most likely 

must be ‘high’; if the project completion is set to 22, the resource level for A changes 

moves significantly in the direction of  ‘low’. 
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a) Finish time=18 days 

 

b) Finish time=22 days 

Figure 10 Trade-off between project time and required resources 
 

 

The next scenario is the investigation of the impact of risk in activity A on the project 

completion time. Figure 11 shows this scenario. When there is a risk in activity A the 

mean of the distribution for project completion time changes from 19.5 to 22.4 

 

 

a) Probability 

 

b) Cumulative 

Figure 11 The impact of risk in activity A on project completion time (days) 
 

 

Another powerful advantage of BNs is their potential for parameter learning, which is 

shown in the next scenario. Imagine activity A actually finishes in 7 days even though 

it was originally estimated as 5 days. By entering this observation in EJ_A and EF_A 

the model gives the probability of resource and risk for activity A as it is illustrated in 

Figure 12. 
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a) Risk 

 

b) Resources 

Figure 12 Probability for A’s risk and resource when the actual duration is 7 days rather than initially estimated 5 days 
 

 

 

If activities have common causal risks, the learnt probability for A’s risk inform 

activity E. Figure 13 compares the distributions of completion time when learned 

information from risk of activity A is entered to risk of activity E. 

  

 

a) Probability 

 

b) Cumulative 

Figure 13 Completion time (days) based on learned parameters compare with baseline scenario  
 

Another application of parameter learning in these models is the ability to incorporate 

and learn about estimation bias. So if we get several observations in which actual task 

completion times are underestimated the model learns that this may be due to bias 

rather than unforeseen risks and this information will inform subsequent predictions. 
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6 Conclusions and way forward 

Handling risk and uncertainty is increasingly seen as a crucial component of project 

management and planning. Researchers (and some practitioners) have thus moved on 

from the generation of MS Project type tools that treat project planning and 

scheduling purely deterministically. However, most current techniques for handling 

risk and uncertainty in project planning (i.e. simulation based techniques) are often 

event-oriented and try to model the impact of possible ‘threats’ on project 

performance. They ignore the source of uncertainty and the causal relations between 

project planning parameters. 

 

We have proposed a new approach that enables us to incorporate risk, uncertainty and 

causality. Specifically, we have shown how a Bayesian Network model can be 

generated from a project’s CPM network. Part of this process is automatic and part 

involves identifying specific risks (which may be common to many activities) and 

resource indicators. The benefit of incorporating the project schedule into a BN is that 

we can then bring the full weight and power of BN analysis to bear on the problem of 

project scheduling.  This means we can  

 

• Make explicit different sources of uncertainty and use this to inform project 

planning.  

• Express uncertainty about completion time for each activity and the whole 

project with full probability distributions 

• Model the ‘trade-off’ between ‘time’ and ‘resources’ in project activities 

• Use ‘what-if?’ analysis for finding the level of required resources given 

constraints like, for example, a specific completion time 
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• Learn from data (as the project progresses and more information become 

available) so that predictions become more relevant and accurate  

 

The application of the approach was explained by use of an artificial simple example. 

In order to scale this up to real projects with many activities the approach must be 

extended to use the so-called Object Oriented BNs.  

 

The BN approach could be extended and improved by:  

 

• Including additional uncertainty sources in the duration network 

• Handling dynamic parameter learning as more information becomes available 

when project progresses 

• Handling common causal risks which affect more than one activity 

• Handling management action when the project is behind its plan 

 

Hence we feel that the BN approach provides a potentially revolutionary way forward 

for tackling uncertainty in project planning. 
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