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Abstract 

 
This paper shows how recent revolutionary Bayesian Network (BN) algorithms can be used to 
model very complex reliability problems in a simple unified way. The algorithms work for so-
called hybrid BNs, which are BNs that can contain a mixture of both discrete and continuous 
variables. Such hybrid BNs enable  us to model failure times and reliability together.  The 
approach allows a compact representation of the event-dependent failure behaviours 
characteristic of fault-tolerant systems, avoiding the state space explosion problem of the 
Markov Chain based approaches. The BN framework presented is able to solve any 
configuration of static and dynamic gates with general time-to-failure distributions, without 
using numerical integration techniques or simulation methods. Unlike other approaches 
(which tend to be restricted to using exponential distributions) we can use as input any 
parametric or empirical failure rate distribution. The approach offers a powerful framework 
for analysts and decision makers to successfully perform robust reliability assessment. 
Sensitivity, uncertainty, diagnosis analysis, common cause failures, and warranty analysis can 
also be easily performed within this framework.  
 
Keywords: Bayesian networks; Systems Reliability; Dependability; Dynamic Fault Trees; 
Dynamic discretisation. 
 
 
1. Introduction 
 
Most published reliability analysis methods are based on parametric and non-parametric 
statistical models of time-to-failure data and its associated metrics [38]. The underlying 
assumption of these methods is that a coherent, statistical model of system failure time can be 
developed that will prove stable enough to accurately predict a system’s behaviour over its 
lifetime. However, given the increasing complexity of the component dependencies and 
failure behaviours of today’s real-time safety-critical systems, the statistical models may not 
be feasible to build or computationally tractable. This has led to an increasing interest in more 
flexible modelling frameworks for reliability analysis. The most notable such frameworks are 
combinatorial models such as fault trees (FTs), space state based approaches such asdynamic 
fault trees (DFTs), which we describe in Section 2.1; and Bayesian Networks, which we 
describe in Sections 2.2 and 2.3.  
 
While the DFT approach is very flexible, in practice it has severe limitations, such as the 
problem of state based explosion and the inability to handle non-standard statistical 
distributions. To date the Bayesian Network (BN) framework has only partially addressed 
these limitations.  
 
The main characteristic of real real-world applications is the combination of discrete and 
continuous components with static and time-dependent life distributions. Previous attempts to 
apply BN models to reliability assessment have not adequately handled the necessary ‘hybrid’ 
models required, i.e. models containing both continuous and discrete variables, with non-
Gaussian distributions.  
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In this paper we present (in Section 3) a simple event-based hybrid BN modelling method for 
reliability assessment that scales up to large, complex dynamic systems, and overcomes the 
limitations of both dynamic fault trees and previous BN approaches. The new approach 
incorporates a recent powerful approximate inference algorithm for hybrid BNs, based on a 
process of dynamic discretisation of the domain of all continuous variables in the BN.  
 
The significant novel research contributions provided in this work are: 
 

• Modelling of very complex reliability problems in a simple unified way based on a 
single revolutionary algorithm.  

• Modelling system state and failure times together (because of the ability to combine 
discrete and continuous nodes in the BN model) 

• Overcoming most of the complexity problems inherent to space-state based reliability 
models 

• Solving any configuration of static and dynamic gates with general time-to-failure 
distributions, without using numerical integration techniques or simulation methods 

• Producing Time To Failure distributions for all gates and models.  
• Ability to use as input any parametric or empirical failure rate distribution (so unlike 

previous approaches we are not: restricted to Exponential). 
 
The power and flexibility of the approach is demonstrated (in Sections 3 and 4) by comparing 
the results with traditional space-state approaches, like DFTs, used in a number of popular 
reliability tools. We test the accuracy of the algorithm on a range of classical dynamic fault 
trees constructs, allowing the system components to adopt any time to failure distribution 
occurring in practical applications. In each case we compare the results with the analytical 
solution of the Markov chain representation or the approximated solutions generated by 
numerical integration schemes, as appropriate. The results are very close to the analytic 
solutions and are achieved with much less effort. In several cases our approach provides 
predictions of situations that simply cannot be modelled by the alternative approaches.  
 
All the example models shown in this paper are built and executed using the commercial 
general-purpose Bayesian Network software tool AgenaRisk [1], in which our dynamic 
discretisation algorithm is now implemented.  
 
Glossary of terms used 
 

BDD Bayesian Decision Diagram 
BN Bayesian Network 
CPD Conditional Probability Distribution 
CPU Central Processing Unit 
CSP Cold Spare Gate 
DBN Dynamic Bayesian Network 
DFT Dynamic Fault Tree 
FDEP Functional Dependency Gate 
FFT Fast Fourier Transform 
FT Fault Tree 
HCAS Hypothetical Cardiac Assist System 
HSP Hot Spare Gate 
JT Junction Tree 
KL Kuback-Leibler 
MC Markov Chain 
MCMC Markov Chain Monte Carlo 
MTE Mixtures of Truncated Exponential 
MTTF Mean Time To Failure 
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NPT Node Probability Table  
PAND Priority AND 
PDEP Probability Dependency Gate 
SEQ Sequential Enforcing Gate 
WSP Warm Spare Gate 
  
  

 
 
2. Background 
 
This section reviews the most relevant previous work. In Section 2.1 we review the work on 
reliability modelling that has evolved from FT and DFT type analysis. This includes Monte 
Carlo methods. The rest of the section covers BNs. A brief overview of BNs is presented in 
Section 2.2 and a review of previous BN work in reliability modelling is presented in Section 
2.3.  
 
2.1. Reliability modelling using Fault Tree and Markov chain based 

approaches 
 
The most popular methods for addressing the kind of complex reliability analysis problem 
described in the Introduction are based on two main frameworks.  
 

1. Combinatorial models, like Static FTs; and 
2. State-space models, like DFTs 

In the Static FT framework Boolean constructs are used to model how combinations of 
components’ failures can cause the failure of subsystems or of the whole system [39], [45]. 
Efficient qualitative and quantitative analysis of FTs can be performed using Binary Decision 
Diagrams (BDD) [7], [9]. 
 
The problem with static FTs is that they cannot capture complex event-dependent behaviours 
(sequence-dependent failures, functional dependencies, and stand-by spares) of fault-tolerant 
systems. This is the problem that the state-space models, like DFTs [10], [11] were developed 
primarily to address. DFTs have increased the modelling power of FTs by taking into account 
not only the combinations but also the sequential ordering of occurrence of component 
failures’ that led to system failure. Analytical solutions of DFTs are obtained by automatic 
conversion to the equivalent continuous time Markov process, with state-space given by the 
combination of occurrence of all possible events, and transition probabilities characterised by 
the components’ hazard rates [10].  
 
While the DFT approach will model nearly any sequence-dependent system, representing 
dynamic tree model failures as states of a Markov process is a daunting, error-prone task that 
also has two major limitations: 
 

1. The state-space generated grows exponentially with the size of the system.  
2. There are limitations on the modelling of spares (such as warm or cold spares with 

non-exponential time-to-failure distributions)  
 
Several methods have been developed to deal with these limitations. For the first limitation, 
modularisation algorithms have been introduced to help to break down the size of large 
systems into smaller independent subtrees that do not share basic events. These subtrees are 
then solved separately using a suitable technique according to its classification as static 
(Boolean) or dynamic ([11], [12],  [18]). However, if the top-level gate of the fault tree is 
dynamic, the modularisation technique cannot be applied since it does not provide an exact 
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solution ([11]). Solving several Markov processes corresponding to the independent modules 
is computationally more efficient than solving the single Markov model for the entire system 
fault tree. However, the state space explosion and resulting computational complexity remains 
a major limitation in using the Markov representation of DFTs, as even a relatively simple 
DFT can give rise to a very large Markov model.  
 
In order to overcome the second limitation, numerical integration methods have been used to 
obtain approximate solutions of DFTs without converting them to a Markov model [3]. 
Alternatively, Monte-Carlo simulation techniques have been adopted to solve DFTs. These 
approaches have extended the modelling capabilities of DFTs by allowing the inclusion of 
spares components with general time-to-failure distributions  (Lognormal, Weibull), 
previously not feasible using Markov-based techniques [11], [12]. However, the well-known 
trade-off between long computational times and high accuracy represents a major drawback in 
the use of simulation and the models are overly complex.  
 
2.2. Bayesian Networks overview 
 
 
A BN  ( [19], 0, [36]) consists of two main elements.  
 

1. Qualitative: This is given by a directed acyclic graph (DAG), with nodes representing 
random variables, which can be discrete or continuous, and may or may not be 
observable, and directed arcs (from parent to child) representing causal or influential 
relationship between variables.  

2. Quantitative: Conditional Probability Distributions (CPDs) that define the 
probabilistic relationship of each node given its respective parents. Nodes without 
parents, called root nodes, are described according to their marginal probability 
distributions.  

 
Together, the qualitative and quantitative parts of the BN encode all relevant information 
contained in a full probability model. The conditional independence assertions about the 
variables, represented by the lack of arcs, allow decomposition of the underlying joint 
probability distribution as a product of CPDs. This significantly reduces the complexity of 
inference tasks on the BN [25], [43]. If the variables are discrete, the CPDs can be represented 
as Node Probability Tables (NPTs), which list the probability that the child node takes on 
each of its different values for each combination of values of its parents.  
 
BNs are widely recognised as being an effective and robust decision support framework for 
problems involving uncertainty and probabilistic reasoning. BNs are mathematically sound 
and at the same time flexible and simple enough to allow the interaction with domain experts 
and decision makers. The graphical view, as presented in tools like AgenaRisk [1], is 
especially powerful. BNs enable us to express our complete state of knowledge about a 
problem and handle the associated uncertainties. The BN formalism offers powerful 
algorithms for both predictive (cause to effect) type reasoning and diagnostic (effect to cause) 
type reasoning. So, for example, predictive reasoning enables us to calculate the reliability of 
any part of a system based on the prior probability distributions of the basic components and 
the conditional dependence assertions. In diagnostic reasoning we can perform statistical 
inference, i.e. revising prior probabilities in the light of actual observations of events.  
 
One of the most important benefits of BNs is that they enable us to integrate information from 
different sources, including experimental data, historical data, and prior expert opinion. We 
have applied BNs to a range of real-world dependability-type problems [31], [32], [33], [35] 
and have convincingly demonstrated both the feasibility and usefulness of the technology. In 
the area of software system reliability, we have shown the advantages of BNs over traditional 
methods for predictive and diagnostic reasoning [13], [14], [15], [16]. 
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To incorporate the time dimension into BNs so that dynamic systems can also be modelled, 
different extensions have been suggested, mainly by adding a direct mechanism for 
representing temporal dependencies among the variables [2], [17], [29]. 
 
 
2.3. BNs in reliability analysis 
 
A number of recent studies have attempted to use BNs to provide a unified framework for 
reliability modelling and analysis of complex systems. In particular, BNs have been used as 
an alternative representation to combinatorial based models like reliability block diagrams 
and (static) FTs. BNs have been shown to increase both the modelling capabilities and 
analysis power by including new modelling features - like multi-state variables, noisy gates, 
common cause failures, and simple sequentially dependent failures - and general a posteriori 
diagnosis analysis [4], [24], [37], [39], [44].   
 
In space-state based reliability models, like DFTs, two different formalisms have been 
adopted to represent temporal (and functional) dependencies among the system components: 
 

1. The time-slice approach; and 
2. The event-based approach 

 
The time-slice approach uses a Dynamic Bayesian Network (DBN) to perform DFT analysis 
[27] [46]. A DBN consists of a sequence of identical BNs indexed by the discretised time line. 
Each time-indexed BN represents a snapshot of the corresponding DFT at a particular point in 
time (time slice). In particular, each time slice contains a set of time-indexed discrete random 
variables representing the state of the associated DFT components at a particular time 
instance. Directed arcs between nodes within a slice represent ‘instantaneous’ causal or 
statistical relationships, whereas directed arcs interconnecting nodes from different time slices 
reflect temporal dependency between the variables. Although this approach allows modelling 
many complex configurations, there are some drawbacks:  
 

1. Computing and filling the intra-slice conditional and marginal multidimensional NPT, 
and the inter-slice transition probabilities can be a tedious job, especially in the case 
where the components’ time-to-failure distributions are non-exponential.  

2. As pointed out in [27], the DBN formalism corresponds to a discrete time Markov 
chain representation of the DFT, which differs from the usual continuous time 
Markov chain adopted in reliability analysis. As a consequence, some assumptions 
have to be made in the discrete approach regarding contemporary faults, which are 
not allowed in a continuous time model. 

 
 
In this paper we adopt the event-based approach, in which the DFT is translated into an 
equivalent BN with continuous random variables representing the time-to-failure of the 
components of the system. These can be either the time-to failure of elementary components 
of the system, or the time-to-failure of the fault tree constructs. In the latter case, the nodes in 
the BN are connected by means of incoming arcs to several components’ time-to-failures and 
are defined as deterministic functions of the corresponding input components time-to-failure 
as shown in Figure 1Error! Reference source not found..  
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Figure 1– An event-based reliability BN example <NEED TO REPLACE DIGRAM 
WITH ONE CONTAINING THE MATHS> 

 
In order to specify the probability distribution of the BN, we must give the marginal 
probability density functions of all root nodes and the CPDs of all non-root nodes. If the time-
to-failure nodes corresponding to elementary components of the system (or some subsystem) 
are assumed statistically independent, (as is the case in static FT analysis, or dynamic gates 
with independent inputs), these are characterised by their marginal probability distributions. 
The marginal time-to-failure distributions of the root nodes are generally given by standard 
parametric probability density functions. The values of the parameters of these density 
functions can be either obtained as prior information according to expert knowledge, or 
estimated in a previous reliability data analysis step if some failure data is available (See 0 for 
an example of parameter learning in BNs).  
 
The CPDs for both static and dynamic gates are probability distributions of variables that are 
a deterministic function of its parents, and are determined according to the types of constructs 
of the corresponding DFT. For some simple configurations, such as static gates or dynamic 
gates with exponential time-to-failure components distributions, an exact closed-form 
analytical expression can be derived for the CPDs. However, for general components’ failure 
distributions, a closed-form expression for the CPDs of dynamic gates may not be feasible. In 
this case, numerical approximation methods need to be applied, as we shall show in Section3. 
The BN structure is created in a modular way by combining a predefined set of BN 
substructures designed to capture the failure mechanisms of the different (existing or new) 
DFT constructs. This approach is limited to events that can happen at most once (e.g., 
component failures of a non-repairable system).  
 
A full discretised version of the event-based BN reliability model is given in [5], where the 
time line is partitioned into a finite number of time intervals. In this case, the nodes states are 
interpreted as the time intervals at which the failure of the corresponding system component 
can take place. The advantage of the discretised space state approach is that exact inference 
can be carry out on the resulting discrete BN using standard propagation algorithms [20], 
[26], [41]. However, despite its simplicity, this approach presents some drawbacks:  
 

1. In order to model temporal ordering among a set of nodes, all nodes need to have the 
same time granularity n.  
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2. For large values of n, computing and filling the corresponding multidimensional 
NPTs can be a tedious or even unfeasible job, especially in the case where the 
components’ time-to-failure distributions are non-exponential.  

3. As with any static discretisation approach, there is a trade-off between long 
computational times and high accuracy controlled by the time granularity n.  

 
A full continuous version of the event-based BN reliability model is shown in [6], where the 
time-to-failure density functions for several static and dynamic gates are expressed in terms of 
the unit-step and Dirac delta functions. Again, exact closed-form analytical expressions are 
only possible for some simple configurations. 
 
In conclusion, despite the advances summarised above, the application of BNs as mainstream 
technology for reliability modelling problems remains modest. In addition to the problems 
already highlighted, a major impediment to progress has been the limitations of the previous 
generation BN tools: Designing, implementing and applying BNs in reliability analysis using 
these tools and technology was near impossible, especially where we need to incorporate 
continuous variables and inference from large data sets. In what follows we explain how we 
have solved most of these problems. 
 
3. The new BN approach to reliability modelling 
 
Our approach to solving DFTs uses a general framework, where continuous nodes represent 
the failure time of the system components and constructs, and discrete random variables are 
also included in the model to represent the state of the system (or any subsystem) at a 
particular time instance. Specifically, if the continuous random variable Cτ  represents the 
time-to-failure of a component (system, subsystem) C, then, a discrete child node C, with an 
incoming arc from Cτ , may be included in the model to represents the state of the component. 
The NPT for the discrete node C, which define the probability distribution of the component 
states at a given time t, can be automatically computed from the component time-to-failure 
distribution (e.g., ( ) ( )t CP C fail P tτ= = ≤ ). The resulting model (Figure 1Error! Reference 
source not found.) is a hybrid BN containing both continuous as well as discrete variables, 
with general static and time-dependent failure distributions. 
 
 
Unfortunately, for hybrid BNs containing mixtures of discrete and continuous nodes with 
non-Gaussian distributions, exact inference becomes computationally intractable. The 
traditional approach to handling (non-Gaussian) continuous nodes is static: you have to 
discretise them using some pre-defined range and intervals. However, this approach is 
unacceptable for critical type systems where there is a demand for reasonable accuracy.  To 
overcome this problem we have developed a new and powerful approximate algorithm for 
performing inference in hybrid BNs. We use a process of dynamic  discretisation of the 
domain of all continuous variables in the BN and using entropy error as the basis for 
approximation. This dynamic discretisation technique is described in the next section.  
 
Several alternatives to discretisation have been suggested for approximate inference on hybrid 
BNs. Those include the use of mixtures of truncated exponential (MTE) distributions to 
approximate the nodes distributions [8], [28], combinations of MTE approximations with 
direct sampling methods [21], variational methods [30], and Markov Chain Monte Carlo 
(MCMC) approaches [39].  
  
3.1. Dynamic Discretisation 
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Let τ  be a continuous random node in the BN. The range of τ  is denoted by τΩ , and the 
probability density function (PDF) of τ , with support τΩ , is denoted by fτ . The idea of 

discretisation is to approximate fτ  by (1) Partition τΩ  into a set of interval { }jwτΨ = , and 

(2) Define a locally constant function fτ
%  on the partitioning intervals. 

 
As in [22], we estimate the relative entropy error induced by the discretised function using an 
upper bound of the Kullback-Leibler (KL) metric between two density functions f  and g : 

( )( || ) ( )log ( ) ( )D f g f x f x g x dx= ∫ . Under the KL metric, the optimal value for the 

discretised function fτ
%  is given by the mean of the function fτ  in each of the intervals of the 

discretised domain. The discretisation task reduces then to finding an optimal partition set 
ˆ

τΨ . 
 
Our approach to dynamic discretisation searches τΩ  for the most accurate specification of the 
high-density regions given the model and the evidence, calculating a sequence of 
discretisation intervals in τΩ  iteratively. At each stage in the iterative process, a candidate 

discretisation, { }jwτΨ = , is tested to determine whether the relative entropy error of the 

resulting discretised probability density fτ
%  is below a given threshold, defined according to 

the trade off between the acceptable degree of precision and computation time.  
The dynamic discretisation approach allows more accuracy in the regions that matter 
and incur less storage space over static discretisations. Moreover, we can adjust the 
discretisation any time in response to new evidence to achieve greater accuracy. By 
efficiently integrating our iterative approximation scheme within existing robust 
propagation algorithms on BN architectures, such as Junction Tree (JT) [20], we are 
able to perform robust inference analysis on complex systems. A detailed description 
of the dynamic discretisation algorithm is given in [34].  
 
 
3.2. Estimating the CPD for DFT constructs 
 
Once we have determined the marginal time-to failure distributions for the root nodes, the 
conditional probability distributions (CPDs) for the constructs need to be computed. In this 
the case, the conditional distributions involve a deterministic function of the input random 
variables. In general, calculating the probability distribution of variables that are a 
deterministic function of its parents represents a major challenge for most BN software. For 
standard continuous and discrete density functions this does not represent a problem but for 
more complex conditional distributions approximation techniques need to be used.  
 
A simple method for generating the local conditional probability table ( | { })p X pa X  
commonly used under the static discretisation approach proceeds by first sampling values 
from each parent interval in { }Ωpa X  for all parents of X  and calculating the result 

{ }( )X f pa X= , then counting the frequencies with which the results fall within the static 
bins predefined for X , and finally normalising the NPT.  
 
Although simple this procedure is flawed. On the one hand, there is no guarantee that every 
bin in XΩ  will contain a probability density if the parents’ node values are under sampled. 
The implication of this is that some regions of XΩ  might be void; they should have 
probability mass but do not. Any subsequent inference in the BN then will return an 
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inconsistency when it encounters either a valid observation in a zero mass interval in X or 
attempts inference involving X . The only way to counter this under static discretisation is to 
generate a large number of samples, which is expensive and made more difficult by the fact 
that the sampling configuration settings in tools that use the static approach are inaccessible. 
 
On the other hand, samples from each parent interval in { }Ωpa X  are usually taken uniformly 

such that at least two samples are taken for each interval in { }Ωpa X . As the number of parent 

nodes increases, and the states in XΩ and { }Ωpa X increases, the number of cells in the NPT, 
( | { })p X pa X , increases exponentially. 

 
We resolve all deterministic functions by modelling them as an approximate mixture of 
Uniform distributions and use the dynamic discretisation algorithm to fit a histogram 
composed of Uniform distributions. 
 
 
3.3. BN modelling of Boolean constructors  
 
We now define the basic BN constructs (OR, AND, Voting OR) used in static FT analysis. 
Let us denote by iτ , i = 1,..,n,  the time-to-failure of the i-th input component of the construct.  
 
• The AND gate. In order for the output of an AND gate to fail, all input components of the 

gate must fail. So, if ANDτ  represents the time-to-failure of the output event, then, the 
probability of failure of the output of the AND gate in the time interval [0, t] is given by 

 

( ) ( )
{ }( )

1 ,...,

max

AND n

ii

P t P t t

P t

τ τ τ

τ

≤ = ≤ ≤

= ≤
 

Eq.  1 

 

 
 

That is, the time-to-failure of the AND gate is a random variable defined as a function of 
its parents by { }maxAND ii

τ τ= . 

  
• The OR gate. The output of the OR gate will fail if at least one of the input components 

of the gate fail, so 
 

( ) ( )

( )
11 ,...,

1 min

OR n

ii

P t P t t

P t

τ τ τ

τ

≤ = − > >

= − >
 

Eq.  2 

 

 
We then define the time-to-failure of the OR gate by { }minOR ii

τ τ= . 

 
• The Voting OR. If any k-out-of-n input components of a Voting OR fail the output will 

fail. Consider a Voting OR system consisting of three components such that 2-out-of-3 
components are required for the system to operate. The output of the Voting OR gate will 
fail in the time interval [0, t] if 

 
(i)  { }1 2 3, ,t t tτ τ τ≤ ≤ > or 
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(ii) { }1 2 3, ,t t tτ τ τ≤ > ≤ or 

(iii) { }1 2 3, ,t t tτ τ τ> ≤ ≤ or 

(iv) { }1 2 3, ,t t tτ τ τ≤ ≤ ≤  
 

So, the time-to-failure of the Voting OR gate can be written as a combination of min and 
max of the components time to failure as 

 
{ } { } { } { }( )1 2 1 3 2 3 1 2 3min max , ,max , ,max , ,max , ,VotingORτ τ τ τ τ τ τ τ τ τ=  Eq.  3 

 

 
We have defined the time-to-failure of the basic FT constructs as deterministic functions of its 
input components. The next step is to define the marginal time-to failure distributions for the 
basic components. In our framework, any parametric failure distribution can be used. The 
CPDs for the FT constructs are then estimated using approximation approach explained in 
Section 3.2.. Once this has been achieved, we can compute the reliability of the system for 
any mission duration, and other metrics of interest can also be automatically derived. These 
include the expected value of the failure density function, often designated as the Mean Time 
To Failure (MTTF), and the quantile of order α  (0<α <1), representing a warranty period or 
time by which reliability will be equal to (1-α )%.       
 
Example 1 
 
Consider a system consisting of two components, 1C  and 2C , arranged in series (parallel). 
The corresponding FT consists of two basic inputs connected by an OR (respect. AND) gate. 
If we denote by Cτ  the continuous random variable representing the time-to-failure of 
component iC , i = 1,2, then, in the BN framework, Cτ  and Cτ  are represented by root nodes 

connected to the basic gate node { }minOR ii
τ τ=  (respect. { }maxAND ii

τ τ= ). The BN models 

are depicted in Figure 2, with marginal and conditional distributions superimposed on the 
graph. In this example we assumed that 1C  is exponentially distributed with inverse scale  
(rate) parameter 1/10.000λ = , and 2C  follows a Weibull distribution with shape (s) = 6 and 
inverse scale (β ) = 1/10000. We also included in the model a binary random variable C = 
OR (AND), with an incoming arc from Cτ , representing the state of the system at a mission 
time t = 7000 hours. The NPT for the discrete node C give use an estimate of the reliability of 
the system at a given time. This is computed from the component time-to-failure distribution 
by ( ) ( )ont CP C P tτ= = > . In our example, the reliability of the system at time t is given by  
 

( ) ( ) ( )

( ) ( ) ( )

OR_gate on

AND_gate on 1 (1 ) (1 )

s

s

tt
t OR

tt
t AND

P P t e e

P P t e e

βλ

βλ

τ

τ

−−

−−

= = > = ×

= = > = − − × −
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Figure 2 – BNs for OR (left) and AND (right) gates 

 
Running the model for 40 iterations results in the summary values given in Example 1 of  
Table 1. This are compared with the analytical results for the reliability and estimates using 
numerical integration for the other metrics. The results are very close, and in the case of both 
the MTTF and the 90% warranty period of the AND gate, our approach produces predictions 
that are not possible analytically. 
 
Example 2 
Consider now a component (or system) that has already accumulated 1T  hours of operation. 
For general (non-exponential) failure density functions, the probability of failure in the next 
mission of duration T is dependent upon the prior operating time. This can be computed by 
 

( )( )
( )

( )

1

1

1

1 1

s

s

T T

T
S S

T

f t dt
P T T P T

f t dt

τ

τ

τ τ

+

∞≤ + > =
∫
∫

 
Eq.  4 

 

 
We can modify the BN model to update the marginal failure density functions of a root 
component that has already accumulated some operation time. This is achieved by simply 
adding a binary child node to the aged components time-to-failure, with state values “yes” 
and “no”, representing the statement that the component has or not already operated for a 
given period of time. Once we enter “yes” as evidence to the conditioning node, the backward 
(diagnostic) analysis capabilities of the BN allows revising the probabilities in the light of the 
new evidence. The resulting posterior failure density function represents the conditional time-
to-failure density function for the component, given that it has already operated during a 
given period of time. Figure 3 shows the resulting posterior failure densities for a component 

2C  with Weibull distribution with shape (s) = 6 and inverse scale (β ) = 1/10000, that has 
already operated during 5,000 hours, together with the reliability of the component at a new 
mission time of T = 3,000 hours. Results together with the analytical values are shown in 
Table 1, Example 2. 
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Figure 3 Conditional reliability 

 
 
 
3.4. BN modelling of dynamic constructs 
 
In the DFT formalism, new special purpose constructs (called dynamic gates) have been 
added to the traditional Boolean (AND, OR, M-out-of N) gates, in order to cope with many 
complex sequence dependencies among failure events or component states. In particular, the 
Spare gates model dynamic replacement of a failed main component from a pool of 
(independent) spares. The Sequence Enforcing gates (SEQ) model failures that occur only if 
others occur in certain order. SEQ gates are a special case of the Cold spare gate, so the same 
BN model can be use for both types. The Functional and Probability Dependency gates 
(FDEP and PDEP) model dependencies that propagate failure in one component to others. 
Finally, the Priority And gate (PAND) models situations where failures can occur only in a 
predefined order.  
 
We now show the BN models for the Spare and PAND constructs. The SEQ gate is a special 
case of the Cold spare gate, and, for non-repairable systems with perfect coverage [10], the 
FDEP and PDEP gates can be modelled using OR gates, therefore these gates will not be 
considered in the following.  
 
The SPARE gate. In a Spare or standby redundancy configuration, the spare components have 
two operation modes: a standby mode and an active mode. Each operation mode is 
represented by its failure distribution. A standby spare component becomes active (is called 
into service) when the current active component fails. A system in a spare configuration fails 
if all, main and spare, components fail. According to the standby mode failure distribution of 
the spare component, Spare gates are classified as: Hot, Warm, and Cold spares.  
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• Hot spare (HSP) gate . Both standby and active failure distributions of the spare are the 
same as the failure distribution of the main component. This is equivalent to a static AND 
gate.   

 
• Cold spare (CSP) gate . The spare components never fail (the hazard rate is zero) when in 

standby mode. If mainτ  represents the time-to-failure of the main component and iτ  is the 
time-to-failure of the ith spare component when in active mode, then the probability that a 
system in a warm standby configuration fails in the time interval [0, t] is given by  

 

( ) ( )
( )

1

1

main n

CSP main nP t P t
F F F tτ τ τ

τ τ τ τ≤ = + + ≤
∗ ∗ ∗

L
L  Eq.  5 

 

 
That is, the failure distribution of the CSP gate is given by the convolution of the failure 
distributions of the main and active spare components. Calculating such a distribution 
represents a major challenge for most BN software. Traditional methods to obtain this 
function include Fast Fourier Transform (FFT) or Monte Carlo simulation. Here we use 
the estimation procedure explained in Section 3.2. using the mixture of Uniform and 
dynamic discretisation.  
 
Example 3 
 
Consider a cold spare configuration with two components. Both the main and active 
spare failure distributions are Weibull with shape (s) = 1.5 and inverse scale (β ) = 
1/1000. The BN model is depicted in Figure 4, with marginal and conditional 
distributions superimposed on the graph. The reliability of the system at a mission time 
t = 1000 hours is also shown in the graph. In this example, the reliability of the system 
at time t is given by (See Appendix) 

 

( ) ( ) ( ) ( )( )CSP_gate on
ss t uu

t CSP t
P P t e e duββτ

∞ − −−= = > = ∫  
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Figure 4 – BNs for Cold spare gate 

 
Running the model for 40 iterations results in the summary values given in Table 1, 
example 3, and are compared with the estimates using numerical integration.  

 
 
• Warm spare (WSP) gate. The hazard rate of the spare components is less in standby 

mode than in active mode. Consider a warm standby system consisting in one main 
component and one spare. Let us denote by mainτ  he time-to-failure of the main 

component, standby
sbτ  the time-to-failure of the spare component when in standby mode, and 

standby
actτ  is the time-to-failure of the spare component when in active mode. Then, the 

mutually exclusive events leading to the warm standby system fail in the time interval [0, 
t] are 
 
i) The spare component fails (when in standby mode) before the main component 

and the main component fails at time 1t t< , or 
ii) The main component fails at time 1t t< , the spare component is not failed at 

time 1t  (when in standby mode), and the spare component fails in the active 
mode during the time 1t t−  

 
For spare components with constant hazard rate (exponential failure distribution), the 
above statements can be directly written in terms of the components time-to-failure by,  
   
i) { }standby main

sbτ τ< &{ }main tτ <  

ii) { }standby main
sbτ τ> &{ }main tτ < &{ }standby main

act tτ τ< −  
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From the above expression, we can derive the failure distribution of the WSP gate with 
exponential failure distribution by 

 

main standby main

main standby standby main

if 
if 

sb

WSP act sb

τ τ τ
τ

τ τ τ τ

 <
= 

+ >
 Eq.  6 

 

 
Example 4 

 
Consider a system with two components in a warm standby configuration. The main 
component has an exponential failure distribution with rate 1 0.001λ = . The spare 
component also has exponential failure distribution with rate 2 0.0005λ =  and 

3 0.001λ =  when is in standby and active mode respectively. The BN model is depicted 
in Figure 5, with marginal and conditional distributions superimposed on the graph. 
The reliability of the system at a mission time t = 800 hours is also shown in the graph. 
In this example, the reliability of the system by time t is given by (See Appendix) 

 

( ) ( )

( )

31 1 2

1 231

10

1

1 2 3

t t uu u u
WSP t

ttt

P t e du e e e du

e e e

λλ λ λ

λ λλλ

τ λ

λ
λ λ λ

∞ − −− − −

− +−−

> = +

 = + − + −

∫ ∫
 

 
  

 
Figure 5 – BNs for Warm spare gate (exponential case) 
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Running the model for 40 iterations results in the summary values given in Table 1, 
Example 4 and are compared with the analytical solutions.  

 
The Equation 5 for the failure distribution of the WSP gate is no longer valid if the 
failure distribution of the spare component is not exponential. As stated previously, for 
components that have already accumulated some operation time in its wearout region 
(non-exponential failure distribution), the probability of failure during the next mission 
time depends upon the prior operating time. In order to compute the probability that the 
spare component fails in the active mode during the time 1t t− , in a system with non-
exponential warm standby configuration, we need to compute the equivalent operating 
time et  for the spare component, had it be operating in its active mode since the start of 
the mission. This is because, when operating in its wearout region, 

( ) ( )standby standby0 act act
e eP t P t t tτ τ< < < < < + .  

 
If we modify the Equation 5 to include the accumulated operation time et  of the spare 
component when it becomes active, had it been operating in the active mode since the 
start of the mission, we obtain the following expression for failure distribution of the 
WSP gate  

 

( )
main standby main

main standby standby standby main

if 

if 

sb

WSP act act sb
e et t

τ τ τ
τ

τ τ τ τ τ

 <= 
+ − > >

 
Eq.  7 

 

 
Example 5 
 
Consider a system with two components in a warm standby configuration. The main 
component has Weibull failure distribution with shape ( 1s ) = 1.5 and inverse scale ( 1β ) 
= 1/1500. When operating in the active mode, the spare component also has Weibull 
failure distribution with shape ( 2s ) = 1.5 and inverse scale ( 2β ) = 1/1500. When 
operating in the standby mode, the spare failure distribution is Weibull with shape ( 3s ) 
= 1.5 and inverse scale ( 3β ) = 1/2000.  
 
We can modify the BN model shown in Figure 5 to account for the accumulated 
operation time of the spare component when it becomes active. As before, this is 
achieved by simply adding a binary child node to spare time-to-failure, with state 
values “yes” and “no”, representing the statement that the component has or not already 
operated for a given period of time, and entering  “yes” as evidence. The resulting 
posterior failure density function represents the conditional active time-to-failure 
distribution for the spare component, given that it has already operated during a period 
of time equivalent to the period of operation in standby mode. The resulting BN is 
depicted in Figure 6, with marginal and conditional distributions superimposed on the 
graph. The reliability of the system at a mission time t = 1000 hours is also shown in 
the graph. In this example, the reliability of the system by time t is given by (See 
Appendix) 

 

( ) ( ) ( ) ( )
( )( )

( )

3
3

1 1 2
1 1 21 1

3
3

1
1 0

s
es s s

s
e

t t u
tt u us s

WSP t

e
P t e u e e du

e

β
β β β

β
τ β

− + −
− − −−

−
> = + ∫  
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Figure 6 – BNs for Warm spare gate (non-exponential case) 

 
Running the model for 40 iterations results in the summary values given in Table 1, 
Example 5 and are compared with the estimates using numerical integration.  

 
• The PAND gate. The output of the PAND gate will fail if all of its input components fail 

in a predefined order (left to right). Consider a PAND system consisting in two 
components, and denote by iτ  the time-to-failure of the ith component, i = 1,2. If ANDτ  
represents the time-to-failure of the output event, then, the probability of failure of the 
output of the PAND gate in the time interval [0, t] is given by 

 

( ) ( )
( ) ( )

1 2

2 2 1 2 1

PANDP t P t
P t P

τ τ τ
τ τ τ τ τ

≤ = ≤ ≤
= ≤ ≥ ≥

 Eq.  8 

 

Example 6 
 
Consider a PAND system consisting of two components, 1C  and 2C . The BN models 
are depicted in Figure 7, with marginal and conditional distributions superimposed on 
the graph. In this example we assumed that both components are exponentially 
distributed with rate parameters 1 0.002λ =  and 2 0.001λ =  respectively. The NPT for 
the discrete node gives an estimate of the reliability of the system at a given time. In 
our example, the reliability of the system at a mission time t = 1000 hours is given by  

( )
( )

1 2 2

1 2 2 1

10

1

1 2

1

1 1 1

t u u t
WSP

t t t

P t e e e du

e e e

λ λ λ

λ λ λ λ

τ λ

λ
λ λ

− − −

− + − −

 > = − − 

   = − − + −  +

∫
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Figure 7 – BNs for PAND gate 

 
Running the model for 40 iterations results in the summary values given in Table 1, 
Example 6 and are compared with the analytical results for the reliability and estimates 
using numerical integration for the other metrics.  

 
 
4. Application example 
 
We now show how our BN formalism can be used to perform DFT-like analysis of a real-
world system. The example provided in this section is the CPU module of the Hypothetical 
Cardiac Assist System (HCAS), designed to treat mechanical and electrical failures of the 
heart. A detailed description of the system is given in [5], [6]. Figure 8 shows the 
corresponding BN model. 
 
The BN model for the CPU module of the HCAS consists of three sub modules: a trigger (T), 
a WSP gate (CPU), and a FDEP gate (CPUT). The trigger consists of a crossbar switch (CS) 
and a system-supervision (SS). The CPU unit is a warm standby configuration with main 
component P and spare B. The CPU unit is also functionally dependent on the trigger 
component: the failure of either CS or SS causes the failure of the CPU unit. Thus, the CPUT 
node in the BN models the time to failure of the FDEP gate with trigger T and dependent 
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event CPU. The failure distribution for all the components is exponential: CS, SS, and the 
standby mode spare B have failure rate 6

1 10 hλ −= , and P and the active mode spare B have 

failure rate 6
2 2 10 hλ −= × . 

  

 

Figure 8 – BNs for CPU module of HCAS system 

 
Once we have defined the marginal time-to failure distributions for the basic components, the 
CPDs for the DFT constructs are automatically estimated using the approximation approach 
and dynamic discretisation algorithm explained in Section 2 <AGAIN!!!>. No analytical 
calculation needs to be performed and no tables need to be filled. From the estimated failure 
distributions of the DFT constructs, we also obtain estimates for the reliability of the system 
for any mission time and other metrics of interest. Running the model for 40 iterations results 
in the summary values given in Table 1 Example 7 and are compared with the analytical 
results given in [6].  
 
 
5. Conclusions 
 
We have presented a new, effective and flexible event-based BN framework for system 
reliability modelling. By combining the modelling capabilities of BNs with our dynamic 
discretisation inference algorithm we offer a unified technique for reliability analysis of large, 
safety critical dynamic systems. Our BN framework is mathematically sound and at the same 
time simple enough to allow the interaction with domain experts and decision makers.  
 
The modelling power of BNs provides a versatile high-level modelling tool to express 
complex components dependencies and different behavioural modes. It also overcomes most 
of the problems inherent in state-space based reliability models, like DFTs. In particular, it 
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avoids the state-space explosion problem of the Markov Chain based approaches, and the 
limitation on the modelling of dynamic gates with general failure distributions. The modelling 
covers: 
 

o OR, AND, Voting OR gates 
o Warm standby 
o Hot standby 
o Cold standby 
o Sequential failure gate 
o Functional dependency gate 
o Common cause failures 
o  
o Shared spares 
o Priority AND gate 

 
 
Within our framework, approximated solutions for both Boolean and dynamic constructs are 
obtained simultaneously. No modularisation method is necessary. Furthermore, by modelling 
the failure distributions of the DFT constructs as an approximate mixture of Uniform 
distributions and using the dynamic discretisation algorithm, our BN framework is able to 
solve any configuration of static and dynamic gates with general time-to-failure distributions, 
without using numerical integration techniques or simulation methods.  
 
Another advantage of the combined effect of the event-based BN and dynamic discretisation 
algorithm is that the diagnostic analysis capabilities of the BN can be used to obtain estimates 
of the parameterised marginal failure distribution (for the root nodes), either using some 
available raw failure data or as prior information according to expert knowledge. No exact 
expression for the marginal is needed and no tables need to be filled. 
 
In a range of examples we have demonstrated that our approach achieves results which are 
almost as good as analytical results, but with much less effort. Moreover, in many cases we 
were able to obtain results that cannot be computed analytically. 
 
The approach offers a powerful framework for analysts and decision makers to successfully 
perform robust reliability assessment. Sensitivity, uncertainty, diagnosis analysis, common 
cause failures, and warranty analysis can also be easily performed within this framework.  
 
 



 21

 

Table 1: Summary Comparative Values (Analytical results in brackets) 

Example 1  
 Reliability at t = 7000 MTTF 90% Warranty period 
OR gate 0.44149(0.4415) 5980.8(5978.9*) t = 1054.9(1053.6*) 
AND gate 0.94312(0.9441) 13319(13298.2*) t = 7677.7(7687*) 
 
 
Example 2  
 Reliability at t = 3000   
New component 0.9991(0.9993)   
Aged component 
(5000 hours) 

0.7910(0.7815)   

 
 
Example 3  
 Reliability at t = 1000 MTTF 90% Warranty period 
Cold spare 0.8355(0.8212*) 1808.1(1805.2*) t = 782.6(784.2*) 
    
 
 
Example 4  
 Reliability at t = 800 MTTF 90% Warranty period 
Warm spare 0.7434(0.7456) 1681.2(1666.1) t = 441.2(435.8*) 
 
 
Example 5  
 Reliability at t = 1000 MTTF 90% Warranty period 
Warm spare 0.6807(0.7057*) 1378.1(1436.4*) t = 543.2(621.5*) 
 
 
Example 6  
 Reliability at t = 800   
PAND gate 0.7599 (0.7524)   
 
 
Example 7  
 Reliability at t = 105 

hours  
MTTF  

HCAS_CPU 0.805(0.797) 351.470(350.000) 
hours 

 

* Approximate results obtained by numerical methods using ReliaSoft 
 
 
Appendix. Computing the reliability of standby redundant systems 
 
An analytical expression for the reliability of standby redundant systems can be derived by 
adding the reliability associated with the mutually exclusive events leading to system 
success. For simplicity, let us consider a warm standby system consisting in one main 
component and one spare. Let us denote by mainτ  the time-to-failure of the main component, 

standby
sbτ  the time-to-failure of the spare component when in standby mode, and standby

actτ  is the 
time-to-failure of the spare component when in active mode.  
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For spare components with constant hazard rate (exponential failure distribution), the 
mutually exclusive events leading to the warm standby system success in the time interval [0, 
t] are 

  
i) { }main tτ >  or  

ii) { }main 1t tτ = < &{ }standby 1
sb tτ > &{ }standby 1

act t tτ > −  

 
Then, if 1R  and 2R  denote the reliabilities associated with events i) and ii) respectively, we 
obtain  

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

main main spare spare

main

1 2

0

main spare spare0

sb act

t

t y t y

t sb act

R t R t R t

f y dy f y f x f z dzdxdy

R t f y R y R t y dy

τ τ τ τ

τ

∞ ∞ ∞

−

= +

= +

= + −

∫ ∫ ∫ ∫

∫

 
Eq.  9 

 

 
where, mainR  denotes the reliability of the main component, spare

sbR  is the reliability of the spare 

when in standby mode, and , spare
actR  is the reliability of the spare when active. 

 
If the failure distribution of the spare component is not exponential, we need to modify the 
Equation 9 to include the accumulated operation time et  of the spare component when it 
becomes active, had it been operating in the active mode since the start of the mission. This is 
because, when operating in its wear-out region, 

( ) ( )standby 1 standby 1 standby
act act act

e eP t t P t t t tτ τ τ> − > > − + > . Therefore, for general (non-exponential) 

failure distribution, the reliability of the WSP gate is given by the following expression  
 

( ) ( ) ( ) ( ) ( )
( )main

spare
main spare0

spare

act
t esb

act
e

R t t y
R t R t f y R y dy

R tτ

+ −
= + ∫  Eq.  10 

 

 
Note that, in the case of hot spares, spare

sbR ≡ spare
actR  and et = y for all [ ]0,y t∈ , so Equation 10 

reduces to 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )( )

mainmain spare 0

main spare main spare

main spare1 1 1

tactR t R t R t f y dy

P t P t P t P t

R t R t

τ

τ τ τ τ

= +

= > + > − > >

= − − −

∫
 

Eq.  11 

 

 
which coincides with the reliability for a parallel configuration (or AND gate). Similarly, in 
the case of cold spares, spare 1sbR ≡ , which means that the equivalent operating time for the spare 

unit if it had been operating at the active mode is et = 0. So, Equation 10 simplifies to  
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( ) ( ) ( ) ( )
mainmain spare0

t actR t R t f y R t y dyτ= + −∫  Eq.  12 
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