Proceedings of 21st Annual Software Engineering Workshop
NASA/Goddard Space Flight Centre, December 4-5, 1996

Predicting Software Quality using Bayesian Belief Networks

Martin Neil & Norman Fenton
Centre for Software Reliability
City University
Northampton Square
London EC1V OHB, UK

Abstract

In the absence of an agreed measure of software quality the density of
defects has been a very commonly used surrogate measure. As a result
there have been numerous attempts to build models for predicting the
number of residual software defects. Typically, the key variables in these
models are either size and complexity metrics or measures arising from
testing information. There are, however, serious statistical and theoretical
difficulties with these approaches. Using Bayesian Belief Networks we
can overcome some of the more serious problems by taking account of
all the diverse factors implicit in defect prevention, detection and
complexity.

1. Background

For the last 20 years the software engineering community has spent much effort in
trying to answer the question, "Can we predict the quality of our software before we
use it?". There are literally scores of papers, articles and reports advocating
statistical models, metrics and solutions which purport to answer this question.
Generally, efforts have tended to concentrate solely on one of the following three
problem perspectives:

a) Predicting the number of defects in the system using software size and complexity
metrics

The earliest study of the relationship between defects and complexity appears to
have been [Akiyama,1971] which was based on a system developed at Fujitsu,
Japan. It is typical of many regression based "data fitting" models which became
common-place in the literature (such as [Ferdinand 1974], [Lipow 1982], [Gaffney
1984], [Basili and Perricone 1984], [Shen 1985], [Compton and Withrow 1990],
[Moller and Paulish 1993]). The study showed that linear models of some simple
metrics provide reasonable estimates for the total number of defects d (the
dependent variable) which is defined as the sum of the defects found during testing
and the defects found during two months after release. Although there is no
convincing evidence to show that any of the hundreds of published complexity
metrics are good predictors of defect density, there is a growing body of evidence
that some of these metrics may be useful in outlier analysis (especially when
grouped together) [Bache and Bazzana 1993]0 they can be used to predict which of
a set of modules is likely to be especially defect-prone.

b) Inferring the number of defects from testing information



Some of the most promising local models for predicting residual defects involve very
careful collection of data about defects discovered during early inspection and
testing phases. A notable example of this is reported by the IBM NASA Space
shuttle team [Keller 1992]. Another class of testing metrics that appears to be quite
promising for predicting defects is the class of so called test coverage measures.
[Fenton and Pfleeger 1996]. For a given strategy and a given set of test cases we
can ask what proportion of coverage has been achieved. The resulting metric is
defined as the Test Effectiveness Ratio (TER) with respect to that strategy. Clearly
we would expect defect rate to decrease as the values of these metrics increases.
[Veevers and Marshall 1994] report on some defect and reliability prediction models
using these metrics which give quite promising results.

¢) Assessing the impact of design or process maturity on defect counts.

There are many experts who argue that the quality of the development process is the
best predictor of product quality. The simplest metric of process quality is the 5-level
ordinal scale SEI Capability Maturity Model ranking. Despite its widespread
popularity, there is no convincing evidence to show that higher maturity companies
generally deliver products with lower residual defect rate than lower maturity
companies. Nevertheless, this seems to be a widely held assumption and is
therefore important in explaining and predicting defects.

2. The need to take account of diverse factors

Despite the many efforts described above there appears to have been little overall
improvement in the accuracy of the predictions made using these models (if
predictions are formally made at all) or indeed whether the models make sense.
Broadly speaking there are a number of serious statistical and theoretical difficulties
that have caused these software quality prediction problems ([Neil 1992] provides
explicit criticisms of many of the models). To avoid these problems we need to take
account of all the diverse factors implicit in defect prevention, detection and
complexity.

Perhaps the most critical issue in any scientific endeavour is agreement on the
constituent elements or variables of the problem under study. Models are developed
to represent the salient features of the problem in a systemic fashion. This is as
much the case in physical sciences as social sciences. For instance, in macro-
economic prediction we could not predict the behaviour of an economy without an
integrated, complex, model of all of the known, pertinent variables. Choosing to
ignore or forgetting to include key variables such as savings rate or productivity
would make the whole exercise invalid and meaningless. Yet this is the position that
many software practitioners are in - they are being asked to accept simplistic models
which are missing key variables that are already known to be enormously important.
Predicting the number of defects discovered based on lines of code alone is as much
use as predicting a person’s 1Q from a knowledge of their shoe size.

Our view is that the isolated pursuit of these single issue perspectives on the quality
problem are, in the longer-term, fruitless. The solution to many of the difficulties
presented above is to develop prediction models that unify the diverse software
quality prediction models. This unification will help produce new systematic models
that better represent the complex relationships inherent in software engineering.



Only when such unified models are developed will statistical experimentation and
then practical use be warranted.

As well as facing up to the complexity inherent in software engineering we must also
recognise that modelling the actions of the designer and manager are crucial if we
are to predict the quality of the final product. Again and again experience dictates
that it is good managers and designers that determine the difference between failure
and success. However researchers have tended to ignore the issue of human
intervention even though we know it is the key variable in software design. A
consequence of this is that subjectivity and uncertainty is all pervasive in software
development. Project managers make decisions about quality and cost using best
guesses; it seems to us that will always be the case and the best that researchers
can do is a) recognise the fact and b) improve the ‘guessing’ process.

The results of inaccurate modelling and inference is perhaps most evident in the
debate that surrounds the ‘Is Bigger Better?’ dilemma. This is the phenomenon that
larger modules have lower defect densities [Basili and Perricone 1984] and [Shen
1985]. [Moller and Paulish 1993] provide further evidence, and also examined the
effect of madifications and reuse on defect density. Similar experiences are reported
by [Hatton 1993, 1994]. Basili and Perricone argued that this may be explained by
the fact that there are a large number of interface defects distributed evenly across
modules, and that larger modules tend to be developed more carefully. Others have
mentioned the possible effects of testing.

The notion that larger modules have lower defect density is surprising because it
questions the whole edifice of problem and design decomposition so central to
software engineering. It suggests that building bigger modules will result in less
defects overall. To act on these results would mean throwing away much of what is
being advocated in structured, object-oriented and formal design - ‘Why should we
apply decomposition when it doesn’t improve quality?’. Post-hoc explanations cannot
easily dismiss the uncomfortable significance of this result.

3. Bayesian Belief Networks (BBNSs)

Achieving the above modelling challenges appear onerous when one considers the
tools previously available to researchers and practitioners. They have had to rely on
the power of classical statistical analysis tools, such as regression, discriminant
analysis and correlation. Classical methods demand simple linear structures and a
wealth of data so often missing in software engineering. These methods have
severely restricted the scale of problems that could be tackled. However, a relatively
new but rapidly emerging technology has provided an elegant solution enabling us to
push back the boundary of the problems that can be attacked: Bayesian Belief
Networks (BBNs) [Pearl, 1988].

A BBN is a graphical network that represents probabilistic relationships among
variables. BBNs enable reasoning under uncertainty and combine the advantages of
an intuitive visual representation with a sound mathematical basis in Bayesian
probability. With BBNs, it is possible to articulate expert beliefs about the
dependencies between different variables and to propagate consistently the impact
of evidence on the probabilities of uncertain outcomes, such as ‘future system
reliability’. BBNs allow an injection of scientific rigour when the probability
distributions associated with individual nodes are simply ‘expert opinions’. A BBN will
derive all the implications of the beliefs that are input to it; some of these will be



facts that can be checked against the project observations, or simply against the
experience of the decision makers themselves. There are many advantages of using
BBNs, the most important being the ability to represent and manipulate complex
models that might never be implemented using conventional methods. Because
BBNs have a rigorous, mathematical meaning there are software tools that can
interpret them and perform the complex calculations needed in their use. The
specific tool used here is Hugin Explorer [Hugin 1996], which provides a graphical
front end for inputting the BBNs in addition to a computational engine for the
Bayesian analysis.

4. The Defect Density BBN
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Figure A - BBN Topology

The topology of the Defect Density BBN is shown in Figure A. The ellipses represent
‘chance’ variables, the rectangles show the ‘decisions’, the diamonds represent
‘utility’ (cost/benefit) variables and the arrows show the flow of information or cause-
effect links. The variables represented are measured on ordinal, subjective, scales.
Subjective scales are used to make the model simpler; there is no theoretical
impediment to modelling ratio scales and continuous variables. Each variable has
the following states: very-high, high, medium, low, very low or none (optional for
some variables). The probabilities attached to each of these states is determined
from an analysis of the literature or common-sense assumptions about the direction
and strength of relations between variables.

The BBN can be explained in two stages. The first stage covers the life-cycle
processes of specification, design or coding and the second stage covers testing. In
Figure A problem complexity represents the degree of complexity inherent in the set



of problems to be solved by development. We can think of these problems as being
discrete functional requirements in the specification. Solving these problems accrues
benefits to the user. At the specification stage a project manager assesses the
complexity of the problems and assigns design effort accordingly. The skill with
which this is done is denoted by the variable: assessor skill—specification. This
assessment process could involve formal measurement, using function points for
example, subjective judgement or some combination of both. Assessing the
complexity of the problem accrues an assessment cost—specification. Any mis-
match between the problem complexity and design effort is likely to cause the
introduction of defects and a greater design complexity. Hence the arrows between
design effort, problem complexity, introduced defects and design complexity. For
example an optimistic project manager may allocate a small amount of design effort
to a complex problem simply because the complexity was underestimated during
assessment of the specification. Applying design effort incurs a design cost.

In Figure A the testing stage follows the design stage. Here design complexity is
assessed by the project manager in order to gauge the amount of testing effort to
allocate. This decision is represented by the assessor skill—testing variable. This is
similar to the specification assessment process in that the project manager may
measure the design complexity directly using appropriate static or dynamic metrics
or will make a guess based on intuition and experience. The extent to which either of
these measure precisely the actual design complexity will be uncertain. Doing the
assessment will incur assessment cost—testing. ldeally any testing effort allocated
would match that required by the design complexity. However in practice the testing
effort actually allocated may be much less, whether by intent or accident. The mis-
match between testing effort and design complexity will influence the number of
defects detected, which is bounded by the number introduced. Fixing these defects
during testing incurs a de-bugging cost. The difference between the defects detected
and defects introduced is the residual defects count. Any residual defects will be
released with the product and may increase the maintenance costs, incurred by the
user and maintainer.
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Figure B - Is Bigger Better? Dilemma

Figure B shows the execution of the defect density BBN model for the ‘Is Bigger
Better?’ dilemma using the Hugin Explorer tool. Each of the decision and chance
variables is shown as a window with a histogram of the predictions made based on
the facts entered. The scenario runs as follows. A very complex problem is
represented as a fact set at ‘very high’. Assume the project manager performs no
precise estimation on this so the assessment skill—specification variable is set to ‘no
measurement’. This results in the allocation of ‘high’ design effort, rather than ‘very
high’ commensurate with the problem complexity. The model then propagates these
‘facts’ and predicts the design complexity with a peak at ‘high’ with probability of
approx. 90%. The introduced defects follows a modal distribution shape with a peak
at ‘medium’ with probability of around 27%. We may also find that the project
manger is again optimistic. He does not measure the design complexity and
allocates a ‘low’ level of testing effort. This results in low levels of defects detected,
with approximately 60% probability of finding no defects at all. From the predicted
values for detected and introduced defects is propagated to predict the residual
defects. Residual defects peaks at ‘low’ with around 40% probability but with a
significant tail towards medium and high numbers of residual defects.

From the model we can see a credible explanation for observing large ‘modules’ with
lower defect densities. Under allocation of design effort for complex problems results
in more introduced defects and higher design complexity. Higher design complexity
requires more testing effort, which is unavailable, leading to less defects being
discovered than are actually there. Dividing the small detected defect counts with
large design complexity values will result in small defect densities! The model



explains the “is bigger better” phenomena without ad-hoc explanation or identification
of ‘outliers’.

5. The Way Forward

At a general level we can see how the use of BBNs and the defect density model
provide a significant new approach to modelling software engineering processes and
artefacts. The dynamic nature of this model provides a way of simulating different
events and identifying optimum courses of action based on uncertain knowledge.
These benefits are reinforced when we examine how the model explains known
results, in particular the ‘Is Bigger Better?’ dilemma. Our new approach shows how
we can build complex webs of interconnection between process, product and
resource factors in a way hitherto unachievable. We also should how we can
integrate uncertainty and subjective criteria into the model without sacrificing rigour
and illustrate how decision-making throughout the development process influences
the quality achieved.

The benefits of this new approach are:

e it is more useful for project management than outlier analysis and classical
statistics

 itincorporates current research ideas and experience

e it can be used to train managers and enable comparison of different decisions by
simulation and what-if analyses

« itintegrates a form of cost and quality forecasting

So far we have explained historical results rather than real projects. Much work
remains to be done to:

» provide guidelines on how to apply the approach to specific situations

» develop a modular approach where whole development processes can be
modelled using linked BBNs

» assess the validity of the model by testing its predictions on real projects

We have embarked on the above tasks in the area of safety cases in the CEC
ESPRIT project SERENE (Safety and Risk Evaluation using Bayesian Nets) and will
be improving it for statistical software process control in the IMPRESS (Improving
the Software Process using Bayesian Nets) project funded by UK EPSRC. We will
be applying the defect density BBN model to a project with Ericsson Radio Systems
in Sweden and are working with the UK Defence Research Agency (DRA) to develop
BBNs for procurement processes.
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