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Using soft evidence to model mutually exclusive 
causes in Bayesian networks 

Norman Fenton, Martin Neil and David Lagnado 

Abstract—Bayesian network (BNs) are especially well suited for reasoning about the impact of uncertain evidence in many domains, 

especially in legal arguments. Yet, standard BN modelling techniques and algorithms do not capture the correct intuitive reasoning in 

situations in which different possible causes of some effect are mutually exclusive. Despite this being a very common scenario, it has never 

been adequately addressed in the literature and none of the ‘standard’ proposed solutions work properly. We demonstrate a novel and 

simple solution to the problem. It is achieved by introducing a special type of ‘constraint’ node, which enforces mutual exclusivity between 

causes, and the use of specific ‘soft evidence’ to preserve prior probabilities of causes as well as ensuring that impossible states do not 

occur. The solution can be implemented in standard BN tools and is applicable to a wide range of common reasoning problems.  

Index Terms— Bayesian networks, mutually exclusive causes, legal arguments, uncertain reasoning.  

——————————      —————————— 

1 INTRODUCTION

Bayesian network (BN) is a graphical probabilistic model 
that is especially well-suited in decision-making scenarios 
that require us to consider multiple pieces of uncertain 

evidence involving causal relationships. A BN consists of a set 
of nodes (that represent uncertain variables) and directed edg-
es between those nodes for which there is a causal or influen-
tial relationship. Every node has an associated node probability 
table (NPT); for any node without parents the NPT specifies the 
prior probabilities of each of the node states, while for any 
node with parents the NPT captures the prior probability of 
each node state conditioned on each combination of states of 
the parent nodes. A BN enables us to visualise the relationship 
between different hypotheses and pieces of evidence in a com-
plex argument. In addition to its powerful visual appeal, a BN 
has an underlying calculus based on Bayes Theorem that de-
termines the revised probability beliefs of all uncertain varia-
bles when any piece of new evidence is presented. This process 
is called evidence propagation. There are widely available BN 
tools that implement standard propagation algorithms, and 
hence enable non-specialist users to easily build and run BN 
models. Propagation enables a BN to be used for both prognos-
tic and diagnostic types of reasoning. In prognostic reasoning 
we enter evidence about causes to reason about effects (we also 
refer to this as ‘forward inference’) whereas in diagnostic rea-
soning we enter evidence about effects to reason about causes 
(we also refer to this as ‘backward inference’). 

What we are interested in here is the special case, which is 

common in legal and other arguments, where different possible 
causes of some effect are necessarily mutually exclusive (mean-
ing that at most one of the causes can be true for any instance 
of the problem). In Section 2 we introduce a set of necessary 
axioms that need to be satisfied by any BN that attempts to 
model mutually exlusive causes and show that standard BN 
modelling techniques and algorithms do not satisfy these axi-
oms.  Although a number of studies have touched on the prob-
lem [14],[19],[26],[29],[33] the problem has never been stated 
explicitly or adequately resolved. In Section 3 we explain why 
none of the proposed ‘solutions’ (most of which are implicit) 
are adequate. Hence, in Section 4 we provide a novel and sim-
ple solution to the problem that is easily implemented practi-
cally. Section 5 provides guidelines on where it is appropriate 
to use the proposed solution. 

Executable versions of all of the BN models described in the 
paper are freely available for inspection and use at: 

www.eecs.qmul.ac.uk/~norman/Models/legal_models.html 

2 THE PROBLEM 

One of the most powerful features of BN reasoning is the con-
cept of ‘explaining away’.  In its simplest form explaining away 
can be cast in the BN example of Fig. 1, with two possible caus-
es of some event. 

 
Fig. 1. Generic ‘explaining away’ pattern  

In the classic example cited in [19] the event is “wet grass” and 
the two causes are “sprinkler on” and “rain” respectively. For 
simplicity we assume that all three nodes are Boolean (i.e. hav-
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ing just two possible states True and False). A typical imple-
mentation of this BN, showing its initial probabilities is shown 
in Fig. 2.  

 
Fig 2 Implementation of BN showing priors and NPT for 'Wet Grass' 

If we observe “Wet Grass” is true then the result of the 
backward inference is shown in Figure 3(a). After this observa-
tion we are fairly confident that there must be rain. However, if 
we discover that the sprinkler is on, as shown in Figure 3(b), 
our subsequent confidence in rain drops significantly. In other 
words our belief in rain has been ‘explained away’ by the 
sprinkler evidence.  

 
a) “Wet 
Grass” is 
true 

 
  
b) “Sprin-
kler” is true 

 
 

Fig 3 Explaining away evidence 

This type of uncertain reasoning is what makes BNs such a 
powerful and useful tool. Indeed, in the context of legal reason-
ing Hepler et al [18] considered ‘explaining away’ as an explicit 
‘pattern of reasoning’. 

However, it turns out that explaining away does not work in 
a very important class of situations that are especially relevant 
for reasoning about evidence (notably in legal cases). These are 
the situations where the causes are mutually exclusive, i.e. if 
one of them is true then the other must be false, and exhaus-
tive, i.e. where there are no other possible causes. For example, 
a bruise can either be caused by a criminal attack or be self-
inflicted (to keep the example as simple as possible we ignore a 

third possible cause – accident – but the method proposed in 
this paper applies to situations where there are an arbitrary 
number of causes). People regularly report to police stations 
claiming to have bruises that were the result of a criminal at-
tack. In such situations the police have to determine both 
whether there is bruising (to merit any investigation at all) and 
then the most likely cause. This situation is shown in Figure 4. 

 

  
Fig 4 BN with mutually exclusive causes 

However the NPTs of the model in Fig. 4 are defined the result-
ing model should satisfy the following basic axioms: 

 Axiom 1 (basic mutual exclusivity): If one of the causes 
is known to be true then the other must be false. 

 Axiom 2 (backward inference for exhaustivity): If E is 
known to be true then the individual probabilities of 
the causes being true must sum to 1. 

 Axiom 3 (encoding of the priors): Any prior probabili-
ties we have for the cause nodes and the effect node 
given the causes must be encoded in the model. Also, 
in its intial state (i.e. before evidence has been entered) 
the marginal probabilities for each cause node should 
match its priors.  

Axiom 1 immediately rules out the exclusive OR construct as 
being a solution (in this construct E is defined to be true with 
probability one when exactly one of the parents is true and 
false with probability one otherwise). Exclusive OR also fails to 
satisfy axiom 3 if there is any prior uncertainty about the prob-
ability of a cause leading to E. 

In fact, it turns out that there is no way to define the NPT of 
the node E in Fig.4 to satisfy the first two axioms. To see why, 
let us make the following simple prior assumptions (if we can-
not define a solution in this simple case then we certainly can-
not for any general case): 
1. The prior probabilities of C1 and C2 being true are 0.7 and 

0.3 respectively. In other words criminal attacks account 
for 70% of the cases where people report bruises and self-
harm account for the rest. 

2. There is a probability of 0.2 that a criminal attack on a per-
son will result in a bruise. 

3. There is a probability of 0.9 that an attempt by a person to 
self-inflict harm will result in a bruise. 

From axiom 3 the NPTs for the nodes C1 and C2 must be de-
fined as: 

P(C1 = true) = 0.7; P(C1 = false) = 0.3; 
P(C2 = true) = 0.3; P(C2 = false) = 0.7; 

The NPT for the node E is less obvious. Table 1 shows the 
completed entries based on the prior information in assump-
tions 2 and 3. 

 
TABLE 1 NPT FOR NODE E? 

C1 False True 

C2 False True False True 
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E False 1  0.8 0.1 ? 

E True 0  0.2 0.9 ? 

 
But how are we to define the values in column 4, i.e. when both 
causes are true? Because of mutual exclusivity this column is 
meaningless since it represents a situation that is impossible. 
Unfortunately, there is no mechanism for excluding it from the 
BN model.  In theory we should be able to assign any probabil-
ity values for E in this case without affecting the reasoning. 
However, it turns out that no matter how we assign them we 
cannot satisfy the axioms. Consider, for example, the following 
possibilities  
 
Case 1: There is an argument that the most ‘logical’ assignment 
for column 4 of the NPT in Table 1 is to set the probability E 
being true to be one. After all, the probability is one if either 
one of the causes is true so it seems sensible that the probability 
is one if both are true. However, as demonstrated in Fig. 5, the 
model resulting from this assignment fails to satisfy axioms 1 
and 2. 

 
(a) Axiom 1 
fails 

 
  (b) Axiom 2 
fails 

 
Fig 5 Case 1 does not work 

Case 2: Since it is impossible that both causes are true at the 
same time there is an argument for assigning the probability E 
being true to be zero in column 4 of the NPT in Table 1. How-
ever, although axiom 2 is satisfied in this case, as shown in Fig. 
6, axiom 1 is not. 

 
 
 
 
 
 
(a) Axiom 1 
fails 

 
  

(b) Axiom 2 
works 

 
Fig 6 Case 2 does not work 

In fact no possible assignment for column 4 of the NPT in Table 
1 will result in Axiom 1 being satisfied; this is because if one of 
the causes is true there will be a non-zero probability that E is 
true, and by Bayesian inference, this propagates to a non-zero 
probability that the other cause is true. 

 

3   PREVIOUSLY PROPOSED SOLUTIONS – AND WHY THEY 

ARE INADEQUATE 

 
The fundamental problem is that the notion of mutual ex-

clusivity in BNs is normally encoded via the states of a node 
rather than by distinct nodes. Indeed, by definition, the states 
of a BN node represent mutually exclusive and exhaustive pos-
sibilities. It follows that the natural way to solve the problem is 
to collapse causes into a single ‘cause’ node whose states corre-
spond to the mutually exclusive causes, as shown in Figure 7. 
Since, by definition, all states of a BN are mutually exclusive 
this seems a natural and very simple solution. 
 

 
 
Fig. 7 'Standard' proposed solution with alternative causes modelled as 
mutually exclusive states of a single node 

While Fig. 7 shows that the standard proposed solution satis-
fies axiom 3,  Fig. 8 shows it satisfies the axioms 1 and 2.  
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(a) Axiom 1 works (b) Axiom 2 works 

 
Fig. 8 Solution 1 satisfies the two axioms 

So why does this standard solution not work in practice? Be-
cause in general there will be: 

 separate causal pathways (which may be quite com-
plex) that lead to the different causes 

 separate observable pieces of evidence about the sepa-
rate causes 

Schematically the real situation is shown in Figure 9. 
 

 
 
Fig. 9 Separate causal pathways and separate evidence for the mutually 
exclusive causes 

For example, the cause ‘self-harm’ may itself have been caused 
by a variety of factors, such as a ‘cry for attention’, and there 
may be separate evidence (such as witness testimonies) in sup-
port of, or against, that hypothesis.  

Now if we apply solution one in this case we would end up 
with the model shown in Fig.10.  
 

 
Fig. 10 Collapsing into a single cause node 

There is a fundamental practical problem with such a model. 
The NPTs for both the cause node and the evidence nodes re-
quire us to consider meaningless state combinations of their 
parents. For example, in the simplest possible case there is just 
a single Factor 1 that could lead to cause 1 and a single Factor 2 
that could lead to cause 2. Since the impact of Factor 1 on cause 
1 is independent of Factor 2 we should only need to consider 
the probabilities relating to cause 1 given Factor 1. However, 
the NPT for the cause node has the structure shown in Table 2.  
 

TABLE 2 NPT FOR CAUSE NODE 

Factor 1 True False 

Factor 2 True False True False 
cause 1     
cause 2     

 
To complete this NPT we have to consider cause 1 given 

both Factor 1 and Factor 2. So, if we know that  
P(cause 1| Factor 1 is true) = 0.2  

then we would be forced to enter  both  
P(cause 1| Factor 1 is true, Factor 2 is true) = 0.2  
P(cause 1| Factor 1 is true, Factor 2 is false) = 0.2  

to capture this information in the NPT. So, not only are the en-
tries of the NPT confusing but half of them are redundant. 

The NPT for the node ‘evidence of cause 1’ (whose structure 
is shown in Table 3) has a related problem. 

 TABLE 3 NPT FOR ‘EVIDENCE OF CAUSE 1’ NODE 

Cause cause 1 cause 2 

True   
False   

 
In this case the entire shaded column is redundant, since the 

evidence of cause 1 given cause 2 is meaningless. 
 In summary, merging the causal pathways, into a single 

node may detract from the semantics of the model and make 
elicitation and communication difficult. It also goes against the 
whole spirit of BNs, which seek to provide a compact represen-
tation of the joint probability distribution to aid representation 
and inference. This is achieved by separating out independent 
causal pathways, so the collapsing of alternative causes into a 
single causal variable undermines a key motivation for the BN 
framework. 

Hence, we introduce a fourth axiom: 
Axiom 4: (Separate causal pathways). The mutually 
exlusive causes must be represented as separate nodes. 

 
In addition to the above ‘standard’ proposed solution there are 
two other textbook ‘solutions’ to the problem. We will present 
these in turn, explaining why they are inadequate in practice.  
 
Proposed solution 2 (introduce dependency between the cause 
nodes):  
 
In this approach we retain the separate cause nodes (to pre-
serve axiom 4), but introduce a dependency between them to 
ensure mutual exclusivity, as shown in Fig. 11. 
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Fig. 11 Solution 2: introduce dependency between cause nodes 

One immediate problem with this solution is that again we are 
forced to define NPT entries for node E for the ‘impossible’ 
state combination where both causes are true. However, 
providing we assign a probability of one to E being False in 
this case, the model satisfies axioms 1 and 2, as shown in Fig. 
12 (Fig. 11 already shows that the model satisfies axiom 3). 
 
  

(a) Axiom 1 
works (simi-
larly if we 
enter C2 
True C1 
becomes 
false) 

 
  (b) Axiom 2 
works 

 
     
Fig. 12 Solution 2 satisfies the axioms 

The primary reason why solution two does not work in prac-
tice is because the introduction of a dependency between the 
causes means that, in the case where there are separate causal 
pathways for the two causes, cause 1 necessarily becomes part 
the causal pathway leading to cause 2. This means that, for 
every possible state of the factors that could lead to cause 2, we 
have to consider whether cause 1 is true or false. Hence, defin-
ing the NPT for cause 2 involves a whole range of meaningless 
columns and unnecessary complexity. In addition to this fun-
damental problem there is another unsatisfactory aspect of so-
lution 2: the fact that we had to arbitrarily decide which one of 
cause 1 and 2 was to be the ‘parent’ of the other, despite these 
nodes representing completely alternative and equally likely 
hypotheses.  
 
Proposed Solution 3: Introducing Boolean constraint node 
 
Jensen and Nielsen [19] propose that mutual exclusivity among 
different nodes can be ensured by introducing a Boolean con-

straint node as shown in Figure 13  
 

  
Fig.13 Enforcing mutual exclusivity by introducing a constraint node 

As shown, the NPT for the constraint node is defined as true 
when exactly one of the parents is true and false otherwise. 
Providing the constraint is always set to be true when the 
model is run, axioms 1 and 2 are satisfied.  However, this pro-
posed solution fails to satisfy axiom 3, because as soon as the 
constraint is set to true, the priors for the cause nodes change 
even though no actual evidence about the problem has been 
entered. This is shown in Fig. 14. 
 

(a) Before 
setting the 
constraint 
node to true 
the causes 
nodes have 
the correct 
priors 

 
  (b) Axiom 3 
fails as soon 
as the con-
straint is set 
to true 

 
 

Fig. 14 Solution 3 fails to satisfy axiom 3 

It is important to note that in the examples in [19] the priors for 
the mutually exclusive nodes were assumed to be uniform. In 
this very special case axiom 3 is satisfied. 

4 PROPOSED SOLUTION 

It turns out that there is a satisfactory solution based on intro-
ducing a constraint node, but we need a very different type of 
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constraint node to the one proposed in [19].  
Our solution is completely general - it works for any num-

ber of mutually exclusive and exhaustive causes C1, C2, …, Cn - 
and it works irrespective of the particular priors for the Ci’s 
and for any assignment of probabilities for E given Ci.  Howev-
er, before providing the general proof, it is helpful to illustrate 
the solution for the simple two-cause case above.  

The trick, as shown in Fig. 14, is to introduce a constraint 
node that has states corresponding to each of the causes (we 
label these states using lower case letters c1, c2, …to distin-
guish them from the associated cause nodes) plus a state “NA” 
representing the impossible state.  
 

  
Fig. 15 Solution with special constraint node 

We define the NPT for E in such a way that NA is true for any 
impossible combination of states of the cause nodes. 

So the constraint state is equal to: 

 c1 if and only if cause C1 is true and cause C2 is false.  

 c2 if and only if cause C1 is false and cause C2 is true. 

 NA for all other combinations of states for the cause 
nodes. 

It follows that, if we can set as evidence the probability of 
the state NA as zero, then axioms 1 and 2 will be satisfied. We 
use the technique of soft evidence to do this. For reasons that 
will become clear once we provide the proof in the general 
case, the soft evidence we have to set for the constraint node (in 
the case where we are assuming as before that P(C1 is true) = 
0.7 and P(C2 is true) = 0.3) is: 

1

2

1
:

0.7

1
:

0.3

: 0

c

c

NA

 

This results in the marginal values being equal to the priors 
(to satisfy axiom 3) as shown in Fig. 16. 
 

 
Fig. 16 Constraint model with marginals shown 

Fig. 17 shows this solution satisfies axioms 1 and 2 (the results 
in Fig. 16 and 17 should be compared with the results in Fig. 7 
and 8). 
  

(a) Axiom 1 
works  

 
  (b) Axiom 2 
works 

 
     
Fig. 17 Constraint solution works 

It is important to note that the soft evidence required for the 
constraint node must be exactly (up to constant multiples) as 
stated. It is not sufficient to assume that the NA state has zero 
probability. For example, if we simply give equal weights to c1 
and c2 in the constraint node, axiom 3 is not satisfied, as is 
shown in Fig. 18. 
 

1 1
Set as c1 = ; c2 = 

0.7 0.3
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Fig. 18 Axiom 3 is not satisfied when incorrect soft evidence is set 

The general solution model is shown in Fig. 19. 
 

  
Fig. 19  General solution 

 
We will assume that, for each i=1 to n, the prior probability that 
node Ci is true is xi. 

The NPT for the constraint node is defined as in Table 2. 
 

TABLE 2 NPT FOR CONSTRAINT NODE 

C1 False True 

C2 False True False True 

…         

Cn False True False True False True False True 

c1 0 0 0 0 1 0 0 0 

c2 0 0 1 0 0 0 0 0 

…         

cn 0 1 0 0 0 0 0 0 

NA 1 0 0 1 0 1 1 1 

 
So the constraint state is equal to ci if and only if Cause Ci is 
true and the other causes are false. For all other combinations 
of states for the cause nodes, the constraint state is NA. 

It follows then that the marginal probabilities for the states 
of the constraint node are: 

1 1 2 1 2

2 1 2 3 1 2

( ) ( , ,..., ) (1 )...(1 )

( ) ( , , ) (1 ) ...(1 )

n n

n

P c P C true C false C false x x x

P c P C false C true C false x x x

      

      
 

 … 
so, in general for each i: 

1 2( ) ( , ,..., ) (1 )
n

i n i j

j i

P c P C true C false C false x x


       

  
and for the state NA by the complement rule: 

1 1

( ) 1 ( ( )) 1 (1 )
nn n

i i j

i i j i

P NA P c x x
  

 
     

 
    

Before establishing what soft evidence weights are required, 
note that the calculation of the marginals given soft evidence 
weights of w1, w2, …, wn, wNA respectively for the states of the 
constraint node, are: 

(1 )

( | soft evidence)

n

i i j

j i

i

w x x

P c
D








  for each i=1,..,n 

 
   
and  
 

1

1 (1 )

( | soft evidence)

nn

NA i j

i j i

w x x

P NA
D

 

  
   

   

 
 

 
where 

  
1

(1 )
nn

i i j

i j i

D w x x
 

 
   

 
 

1

1 (1 )
nn

NA i j

i j i

w x x
 

  
   

   
   

 
But we know that, for axiom 3: 
 

  ( | soft evidence)   for each i iP c x i  and  

( | soft evidence) 0P NA   

Hence, for each i=1,..,n we have: 

   

(1 )
n

i i j

j i

i

w x x

x
D








 

and so 
 

 

(1 )
i n

j

j i

D
w

x






 

 

and 0NAw  . 

Since D is constant for each of the weights w1,..,wn, if follows 
that we can simply set the weights as: 
 

 1

(1 )
i n

j

j i

w

x






 

 
Example  
Here we determine the explicit formulas in the case where we 
have three causes C1, C2, C3. First, the marginal probabilities 
for the constraint node states are: 

Set as c1 = 0.5; c2 = 0.5

C1 C2 Cn….

Constraint

E
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 

1 1 2 3 1 2 3

2 1 2 3 1 2 3

3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

( ) ( , , ) (1 )(1 )

( ) ( , , ) (1 ) (1 )

( ) ( , , ) (1 )(1 )

( ) 1 (1 )(1 ) (1 ) (1 ) (1 )(1 )

P c P C true C false C false x x x

P c P C false C true C false x x x

P c P C false C false C true x x x

P NA x x x x x x x x x

      

      

      

         

 

 
The marginals given the soft evidence are: 
 

 

1 1 2 3
1

2 1 2 3
2

3 1 2 3
3

4 1 2 3 1 2 3 1 2 3

1 1 2 3 2 1

(1 )(1 )
( | soft evidence)

(1 ) (1 )
( | soft evidence)

(1 )(1 )
( | soft evidence)

(1 )(1 ) (1 ) (1 ) (1 )(1 )
( )

[ (1 )(1 )] [ (1 )

w x x x
P c

D

w x x x
P c

D

w x x x
P c

D

w x x x x x x x x x
P NA

D

where

D w x x x w x x

 


 


 


       


    

 

2 3

3 1 2 3

4 1 2 3 1 2 3 1 2 3

(1 )]

[ (1 )(1 ) ]

(1 )(1 ) (1 ) (1 ) (1 )(1 )

x

w x x x

w x x x x x x x x x

 

  

       

 
But, since we want  

1 1

2 2

3 3

( |   )

( |   )

( |   )

( ) 0

P c soft evidence x

P c soft evidence x

P c soft evidence x

P NA









;  

we have 
 

1

2 3

2

1 3

3

1 2

4

1

(1 )(1 )

1

(1 )(1 )

1

(1 )(1 )

0

w
x x

w
x x

w
x x

w


 


 


 



 

  
So, suppose x1 = 0.7; x2 = 0.2; x3 = 0.1, then we simply set the 
soft evidence as: 
 

 

1

2

3

4

1
1.388888

0.8 0.9

1
3.7037037

0.3 0.9

1
4.166666

0.3 0.8

0

w

w

w

w

 


 


 




 

 
Fig. 20(a) shows how the soft evidence weights are set in the 
AgenaRisk tool (most BN tools have a similar simple mecha-
nism for setting soft evidence). Fig. 20(b) shows the resulting 
marginals.  
 
  

a) setting 
the soft 
evidence 
weights in 
AgenaRisk 

 
  b) Result-
ing mar-
ginals sat-
isfy axiom 
3 

 
   
Fig. 20 Soft evidence and resulting marginals 

  
a) axiom 1 
works 

 
  b) axiom 2 
works 

 
     
Fig. 21 Constraint solution works 

Fig. 21 shows how axioms 1 and 2 are satisfied. 
So far, we have made the assumption that the ‘true’ priors 

for the cause nodes must sum to one. But even if the causes are 
mutually exhaustive and exclusive is this a reasonable assump-
tion? The answer is no because the priors for the causes only 
need to sum to one once we known that the constraint is true 
(axiom 2). In practice, we may wish to define the ‘true’ priors 
based on a wider population of situations other than those 
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where we know one cause must be true. For example, suppose 
a particular type of electronic unit fails if exactly one of two 
components A or B fails. In this case the relevant prior proba-
bilities we have will be the failure rates of A and B. Suppose, 
for example we know that A fails on average once in every 10 
uses, while B fails on average twice in every 10 uses. Then the 
prior probability that A fails is most naturally expressed as 0.1 
(and 0.2 for B). Although these do not sum to one, they must 
sum to one once we know the system has failed, and in that 
case expect the ratio between the true marginals for A and B 
should be retained (i.e. the probability A fails should be 1/3 
and the probability B fails should be 2/3). 
 
It turns out that the formula for the weights will work exactly 
as required in such cases. So, in the above example, if we set 
the soft evidence weights to be 1/0.8 (=1.25) and 1/0.9 
(=1.1111) respectively then we get exactly the marginals 1/3 
and 2/3 (see Fig. 21). 
 

a) priors 
without soft 
evidence on 
constraint 
node 

 
  b) priors 
with soft 
evidence on 
constraint 
node 

 
 
Fig. 22 Dealing with prior 'trues' that do not sum to 1 

5 USING THE PROPOSED SOLUTION 

Although our proposed solution works in a much broader class 
of problems than the previously proposed solutions, there are 
still situations, where care is needed before applying the pro-
posed solution: 
 
Unknown causes 

In most realistic situations it will be impossible to identify 
the set of all potential causes and hence there is a danger in 
assuming that the set of identified potential causes is exhaus-
tive. This danger is especially pertinent for legal arguments, 
where the causes represent different hypotheses (for example, 
the defendant fired a weapon without provocation or fired in 
self-defence). Strong evidence against one hypothesis here 
would result in favouring the other. This would be an inap-
propriate conclusion in the case where an additional potential 
hypothesis, say ‘fire by accident’, had been wrongly omitted 
from the model. The ‘fix’ to this problem is either to accept that 

mutual exclusivity and exhaustivity does not apply (and to use 
probability to deal with unknown causes) or to add a catch-all 
‘other/unknown’ cause to the list of known causes. However, 
including such a node in a BN model creates different prob-
lems, notably that of completing the necessary prior condition-
al probabilities for the event given a cause that we do not 
know. 
 
Handling priors and soft evidence weighting in the case where 
the causes have ancestors 

As we have made clear, a major rationale for the proposed 
solution was to satisfy axiom 4, where the potential causes 
were themselves dependent on separate complex arguments; 
i.e. where the causes have ancestor nodes. In such situations 
any evidence entered on ancestor nodes will change the priors 
for the cause nodes. For the proposed solution to work proper-
ly the soft evidence weights for the constraint node have to 
therefore be adjusted to take account of any evidence entered 
for ancestors. No existing BN tools provide a means of making 
such adjustments automatically. However, there is a practical 
manual solution as follows: 
 
1. Enter all available evidence about ancestor nodes and 

run the model.  
2. Use the resulting marginals for the cause nodes to set 

the soft evidence weights based on the same formula 
as above. 

3. Now evidence on descendent nodes can be entered 
freely as before. 

4. If at any stage new evidence about ancestors becomes 
available, we need to remove any descendant evidence 
and go to step 2. 

6 CONCLUSIONS 

BNs have proven to be a very powerful method for reasoning 
about uncertainty. When there are different possible causes of 
some event E a simple BN with the structure shown in Fig. 1 
should be sufficient to produce the expected reasoning, for 
both forward and backward inference and ‘explaining away’. 
Yet, in the special but very common situation when the causes 
are mutually exclusive, it turns out that no formulation of the 
NPTs in the simple BN structure provides a satisfactory solu-
tion.    

There have been three proposed solutions to the problem, 
but we have shown that none of these works in practice. The 
simplest proposed solution – to replace the separate cause 
nodes with a single cause node - breaks down in practice 
whenever there are separate causal pathways leading to the 
separate causes. The solution involving adding a dependency 
between the cause nodes breaks down for similar reasons. Fi-
nally, the proposed solution to introduce a Boolean constraint 
node breaks down when the priors for the causes are not ‘igno-
rant’ because the solution loses the prior information.  

We have presented a practical solution to the problem that 
involves adding a constraint node that has states correspond-
ing to the causes plus an NA state. The solution requires set-
ting soft evidence weights that a) makes the NA state impossi-
ble and b) preserves the priors for the causes. We have present-
ed (with a proof) the formulas required to calculate the soft 
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evidence weights. The solution can be easily implemented in 
practice in BN tools. 

Although we have described the problem and its solution in 
generic form this is certainly not a purely theoretical exercise. 
Indeed, we were motivated to find the solution as a result of 
our practical work in legal reasoning where, as expert witness-
es, we have been using BNs to help lawyers better understand 
the impact of different types of evidence. It was in this context 
that we came across examples where we needed to model mu-
tually exclusive causes and discovered that the standard BN 
solutions did not work. 
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