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IntroductIon

Software project planning is notoriously unreliable. 
Attempts to predict the effort, cost and quality of 
software projects have foundered for many rea-
sons. These include the amount of effort involved 
in collecting metrics, the lack of crucial data, the 
subjective nature of some of the variables involved 
and the complex interaction of the many variables 

which can affect a software project. In this chapter 
we introduce Bayesian Networks (BNs) and show 
how they can overcome these problems.

We cover sufficient BN theory to enable the 
reader to construct and use BN models using a suit-
able tool, such as AgenaRisk (Agena Ltd. 2008). 
From this readers will acquire an appreciation for 
the ease with which complex, yet intuitive, statistical 
models can be built. The statistical nature of BN 
models automatically enables them to deal with the 
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uncertainty and risk that is inherent in all but the 
most trivial software projects.

Two distinctive types of model will be pre-
sented. The first group of models are primarily 
causal in nature. These take results from empirical 
software engineering, and using expert domain 
knowledge, construct a network of causal influ-
ences. Known evidence from a particular project 
is entered into these models in order to predict 
desired outcomes such as cost, effort or quality. 
Alternatively, desired outcomes can be entered and 
the models provide the range of inputs required 
to support those outcomes. In this way, the same 
models provide both decision support and trade 
off analysis.

The second group of models are primarily 
parameter learning models for use in iterative or 
agile environments. By parameter learning we 
mean that the model learns the uncertain values 
of the parameters as a project progresses and uses 
these to predict what might happen next. They take 
advantage of knowledge gained in one or more 
iterations of the software development process to 
inform predictions of later iterations. We will show 
how remarkably succinct such models can be and 
how quickly they can learn from their environment 
based on very little information.

bAckground

Before we can describe BN software project 
models, it is worthwhile examining the problems 
that such models are trying to address and why 
it is that traditional approaches have proved so 
difficult. Then, by introducing the basics of BN 
theory, we will see how BN models address these 
shortcomings.

cost and Quality Models

We can divide software process models into two 
broad categories: cost models and quality mod-
els. Cost models, as their name implies, aim to 

predict the cost of a software project. Since effort 
is normally one of the largest costs involved in a 
software project, we also take “cost models” to 
include effort prediction models. Similarly, since 
the “size” of a software project often has a direct 
bearing on the effort and cost involved, we also 
include project size models in this category. Qual-
ity models are concerned with predicting quality 
attributes such as mean time between failures, or 
defect counts.

Estimating the cost of software projects is 
notoriously hard. Molokken and Jorgensen (2003) 
performed a review of surveys of software effort 
estimation and found that the average cost overrun 
was of the order 30-40%. One of the most famous 
such surveys, the Standish Report (Standish Group 
International 1995) puts the mean cost overrun 
even higher, at 89%, although this report is not 
without its critics (Glass 2006). Software quality 
prediction, and in particular software defect predic-
tion, has been no more successful. Fenton and Neil 
(1999) have described the reasons for this failure. 
We briefly reproduce these here since they apply 
equally to both cost and quality models.

1.  Typical cost and quality models, such as 
COCOMO (Boehm 1981) and COQUALMO 
(Chulani & Boehm 1999) take one or two 
parameters which are fed into a simple alge-
braic formula and predict a fixed value for 
some desired cost or quality metric. Such 
parametric models therefore take no account 
of the inaccuracy in the measurement of their 
parameters, or the uncertainty surrounding 
their coefficients. They are therefore unable 
to attach any measure of risk to their predic-
tions. Changes in parameters and coefficients 
can be simulated in an ad-hoc fashion to try 
to address this, but this is not widely used 
and does not arise as a natural component 
of the base model.

2.  Parametric models cannot easily deal with 
missing or uncertain data. This is a major 
problem when constructing software process 
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models. Data can be missing because it sim-
ply wasn’t recorded. It can also be missing 
because the project is in a very early stage 
of its lifecycle. Some of the problems ap-
pear quite prosaic, for example ambiguity 
arises because of difficulties in defining what 
constitutes a line of code. Do comments, 
empty lines and declarative statements 
count? Similarly there is uncertainty about 
what counts as a defect. What is regarded 
as a defect in one project might be regarded 
as a user change request in another. Do only 
post production software failures count as 
defects, or do defects uncovered during 
testing count towards the total?

3.  Traditional models have difficulty incorpo-
rating subjective judgements, yet software 
development is replete with such judge-
ments. The cost and quality of a software 
project clearly depend to a significant extent 
on the quality of the development team, yet 
such a metric is rarely available form that 
is easily measured and is more usually the 
subject of opinion than of measurement.

4.  Parametric models typically depend on a 
previous metrics measurement programme. 
A consistent and comprehensive metrics 
programme requires a level of discipline 
and management commitment which can 
often evaporate as deadlines approach and 
corners are cut. Failure to adjust the coef-
ficients in a parametric model to match local 
conditions can result in predictions which are 
significantly (often several hundred percent) 
different from actual values (Briand et. al. 
1999; Kemerer 1987).

5.  Metrics programmes may uncover a simple 
relationship between an input and an output 
metric, but they tell us nothing about how 
this relationship arises, and crucially, they 
do not tell us what we must do to improve 
performance. For example, if we wish to 
reduce the number of defects, are we bet-
ter off investing in better test technology, 

in more training for the test team, or more 
experienced developers?

Many attempts have been made to find alterna-
tives to simple parametric models. These include 
multivariate models (Neil 1992), classification and 
regression trees (Srinivasan & Fisher 1995), anal-
ogy based models (Shepperd & Schofield 1997; 
Briand et. al. 1999), artificial neural networks 
(Finnie & Wittig & Desharnais 1997) and systems 
dynamics models (Abdel-Hamid 1989). However 
no single one of these approaches addresses all of 
the problems outlined above. In the next section, 
we demonstrate how BNs can help overcome 
these disadvantages and add considerable value 
and insight to software process modelling.

Introduction to bayesian networks

A Bayesian Network (BN), (Jensen, 2001), is 
a directed acyclic graph (such as the example 
shown in Figure 1), where the nodes represent 
random variables and the directed arcs define 
causal influences or statistical or functional re-
lationships. Nodes without parents (such as the 
“Probability of finding defects” and “Defects In” 
nodes in Figure 1) are defined through their prior 
probability distributions. Nodes with parents are 
defined through Conditional Probability Distri-
butions (CPDs). For some nodes, the CPDs are 
defined through deterministic functions of their 
parents (such as the “Defects Out” node in Figure 
1), others (such as the “Defects Found” node in 
Figure 1) are defined as standard probability dis-
tribution functions. Conditional independence (CI) 
relationships are implicit in the directed acyclic 
graph: all nodes are conditionally independent of 
their ancestors given their parents. This general 
rule makes it unnecessary to list CI relationships 
explicitly.

Trivial as this example may seem, it actually 
incorporates a great many of the features that 
make BNs so powerful. within comparison with 
regression based models there are a number of 
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beneficial features and advantages:

1.  One of the most obvious characteristics of 
BNs is that we are no longer dealing with 
simple point value models. Each of the ran-
dom variables in Figure 1 defines a statistical 
distribution. The model simultaneously deals 
with a wide range of possible outcomes. In 
particular, its predictions, in this case limited 
to the “Defects out” node, is in the form of a 
marginal distribution which is typically uni-
modal, giving rise to a natural “most likely” 
median value and a quantitative measure of 
risk assessment in the form of the posterior 
marginal’s variance.

2.  We can run the model without entering any 
evidence. The model then uses the prior 
distributions which can be based on em-
pirical studies of a wide range of software 
projects, such as those provided by Jones 
(1986; 1999; 2003), or by publicly avail-
able databases (ISBSG 2008). Nodes such 
as “Probability of finding defects” may be 
assigned priors in this way. The “Defects in” 
node can also be assigned a prior based on 
empirical studies. In more complex BNs it 
will often be assigned a distribution which 
is conditional on other causal factors, or on 
evidence gathered from the project.

3.  The nodes in this model are all represented 
by numeric scales. BNs are not limited to 
this however. Any set of states which can 
be assigned a probability can be handled by 
a BN. We shall show shortly how ordinal 
measures can be used to include subjective 
judgments into BN models.

4.  Unlike parametric models, where the under-
lying variation in software process measure-
ment has been “averaged” out, this model 
contains all of the available information. 
It is therefore not limited to an “average” 
project, but can encompass the full range of 
values included in its priors. As we shall see 
later, this dramatically reduces the amount 

of information needed in order to adapt a 
BN model to local conditions and enables 
us to dispense with the metrics collection 
phase traditionally used to tune parametric 
models.

5.  Unlike simple regression models the rela-
tionship between all the causal factors is 
explicitly stated. This means that, in addition 
to using the model to make predictions, we 
can set our desired outcome (for example 
to how many defects are acceptable in the 
released product) and the model will be able 
to tell us how many “Defects in” are the 
most likely explanation of this and what our 
probability of finding a defect must be. In 
larger models, where our initial conditions 
are defined by the available resources, such 
models can be used for management decision 
support as well as project management and 
planning.

When a variable is actually observed, this 
observation can be entered into the model. An 
observation reduces the marginal probability 
distribution for the observed variable to a unit 
probability for the observed state (or a small 

Figure 1. A simple Bayesian Network illustrating 
defect detection in a software project
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interval containing the value in the continuous) 
and zero otherwise. The presence of an observa-
tion updates the CPD of its children and, through 
Bayes theorem (Equation 1), the distributions of 
its parents. In this way observations are propa-
gated recursively through the model. BN models 
can therefore update their beliefs about probable 
causes and so learn from the evidence entered into 
the model. More information on BNs and suitable 
propagation algorithms can be found in Jensen 
(2001) and Lauritzen & Spiegelhalter (1988).
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P B A P A

P B
( | )

( | ) ( )
( )

=  (1)

dynamic bayesian networks

Dynamic Bayesian Networks (DBN) extend BNs 
by adding a temporal dimension to the model. 
Formally, a DBN is a temporal model represent-
ing a dynamic system which changes state usually 
over time (Murphy 2002). A DBN consists of a 
sequence of identical Bayesian Networks, Zt, t = 
1,2,...,T where each Zt represents a snapshot of 
the process being modelled at time t. We refer 
to each Zt as a timeslice. For iterative software 
development environments this is a particularly 
apt approach.

The models presented here are all first order 
Markov. Informally this means that the future 
is independent of the past given the present 
P Z Z P Z Z

t t t t
( | ) ( | )

:1 1 1- -=  and in practice it 
means that we do not need to recompute the model 
afresh each time a new prediction is needed. The 
first order Markov property reduces the number 
of dependencies, making it computationally fea-
sible to construct models with a larger numbers 
of timeslices. Consistent propagation is achieved 
using standard junction tree algorithms (Lauritzen 
& Spiegelhalter 1988). These algorithms provide 
exact (as opposed to approximate) propagation in 
discrete BNs and are generally regarded as among 
the most efficient BN propagation algorithms 

(Lepar & Shenoy 1998).

Indicator nodes and ranked nodes

Two types of nodes deserve special mention - these 
are indicator nodes and ranked nodes. Indicator 
nodes are nodes with no children and a single 
parent. They are often used in circumstances 
where the parent is not directly observable but 
where some indicator of the parent’s status can 
be measured easily (hence their name). When no 
evidence is entered into an indicator it has no ef-
fect on its parent. When evidence is entered into 
an indicator node it causes a change in the likely 
distribution of states in the parent.

Indicator nodes can also be used where a large 
number of causal factors all have a direct impact 
on a single child node. The number of entries in 
the CPD of the child grows exponentially with 
the number of parents. If there are more than a 
couple of such causal factors then the CPD of 
the child can become unmanageable. Thanks to 
Bayes Theorem (Equation 1) we can reverse the 
direction of the arrows and turn the causal factors 
into indicators. Since each indicator node only 
has a single parent, their CPDs become much 
easier to define.

Ranked nodes are nodes whose states are mea-
sured on an ordinal scale, often with either three 
or five states ranging from “Very Low” through 
to “Very High”. They are used to elicit subjective 
opinions from experts so that they can be entered 
as observations into the model. In the tool used to 
build most of the models described here (Agena 
Ltd. 2008), the underlying ordinal scale is rep-
resented by an equi-partitioned continuous scale 
in the range [0, 1]. It is thus possible to easily 
combine ranked nodes and variables consisting 
of numeric states in the same distributions.
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the ModIst Model

Fenton and Neil’s pioneering paper (Fenton & 
Neil 1999) inspired a number of research groups to 
apply BNs to software process modelling. Wooff, 
Goldstein, and Coolen (2002) have developed BNs 
modeling the software test process while Stamelos 
et al (2003) used COCOMO81 cost factors to build 
a BN model of software project productivity. Bibi 
and Stamelos (2004) have shown how BNs can 
be constructed to model IBM’s Rational Unified 
Process. Fenton and Neil’s own research group 
have also gone on to develop a series of BN mod-
els, culminating in the AID tool (Neil, Krause, & 
Fenton 2003), the MODIST models (Fenton et. al. 
2004), and the trials of revised MODIST models 
at Philips (Neil & Fenton 2005; Fenton et. al 
2007a; Fenton et. al 2007b). A similar model has 
been developed by Siemens (Wang et. al. 2006). 
Here we will discuss the MODIST models and 
its successor, the “Philips” model.

A greatly simplified version of the MODIST 
model, with many of the causal factors and indi-
cator nodes removed, is shown in Figure 2. The 
model is most easily understood as a series of 
subnets, fragments of a whole BN, which capture 
specific aspects of the software development 
process. The subnets are:

•	 Distributed communications and man-
agement. Contains variables that capture 
the nature and scale of the distributed as-
pects of the project and the extent to which 
these are well managed.

•	 Requirements and specification. Contains 
variables relating to the extent to which the 
project is likely to produce accurate and 
clear	requirements	and	specifications.

•	 Process quality. Contains variables relat-
ing to the quality of the development pro-
cesses used in the project.

•	 People quality. Contains variables relat-
ing to the quality of people working on the 

project.
•	 Functionality delivered. Contains all rel-

evant variables relating to the amount of 
new functionality delivered on the proj-
ect, including the effort assigned to the 
project.

•	 Quality delivered. Contains all relevant 
variables	relating	 to	both	 the	final	quality	
of the system delivered and the extent to 
which it provides user satisfaction (note 
the clear distinction between the two).

The full BN model is too large to be fully 
described here but in the next section we discuss 
just one of the subnets, the “People quality” sub-
net and use it as an example to show subjective 
judgements can be entered into the model.

People Quality subnet

Figure 3 shows the variables and causal connec-
tions in this subnet. A description of the main 
variables, including the model’s rationale is given 
in Table 1. All of the variables shown in Figure 
3 are ranked nodes, measured using a five point 
scale ranging from very low to very high. Obser-
vations are not normally entered directly on the 
variables described in Table 1. Instead we enter 
observation at primary causes (variables with no 
parents in the BN) and indicators.

In the ‘people quality’ subnet (Figure 3), indi-
cator nodes are used to infer the staff quality. The 
default variables in our model for this are: staff 
turnover, staff experience, staff motivation, staff 
training and programming language experience. 
This can be varied to suit local process needs and is 
replicated in a similar way in the other subnets.

Although this approach is very flexible and 
does not insist on an organisation using specific 
metrics it does depend on some regularity in the 
way that development projects are estimated. This 
ensures that there are usable indicators for key 
attributes of quality and size, which our model 
can be adapted to use. It also makes it likely that 
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the organisation’s project managers will have 
accumulated the experience to be able to make 
stable judgments about the strength of these indi-
cators. Some organisations may also accumulate 
data from past projects; there is no difficulty in 
principle in using such data in adapting the model 
and we hope to provide this capability in future 
versions of the toolset.

using the bayesian net 
for decision support

What makes the Bayesian resource model so pow-
erful, when compared with traditional software 
cost models, is that we can enter observations 
anywhere to perform not just predictions but also 
many types of trade-off analysis and risk assess-
ment. So we can enter requirements for quality 
and functionality and let the model show us the 
distributions for effort and time. Alternatively we 
can specify the effort and time we have available 
and let the model predict the distributions for 
quality and functionality delivered (measured in 

function points).
As an example of this, if we simply set “New 

functionality delivered” to 1000 function points, 
the model produces the predictions shown in Fig-
ure 4. This tells us that the most likely duration is 6 
to 8 months (the modal value), although the mean 
and median values are considerably larger at 21 
months and 17 months respectively. The standard 
deviation is very large, at 16 months, because we 
have not entered any of the other project attributes. 
The model similarly predicts that the number of 
people required will have a modal value of one 
or two, but large mean and median values of 21 
and 16 respectively.

If we fix the number of people at 10 and set 
the “Process and people quality” to “Very High”, 
we get a modal value for the duration of 2 to 4 
months, and mean and median values of 10 and 5 
months respectively with a standard deviation of 
13 months, making the model far less uncertain in 
its predictions. These figures are consistent with 
typical parametric models. However, this ability 
to vary the project constraints in any desired way 

Figure 2. A simplified version of the MODIST model
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while producing consistent estimates of the risk, 
provides far greater insight into the interplay be-
tween variables and allows far greater flexibility 
than is possible with parametric models.

the defect Model

As with the MODIST model, the defect model 
(Neil & Fenton 2005) is too large to be shown 
here in full. The core of the model is shown in 
Figure 5.

Separate subnets governing: the scale of new 
functionality, specification and documentation 

quality, design and development quality, testing 
and rework quality, and features of the existing 
code base, all feed into this core defect model. 
Unlike the MODIST model, the defects model 
does not require all of its subnets to be included. 
The defects model is designed to model multiple 
phases of software development where not all 
aspects of the full software development process 
are present in each development phase. So there 
could be phases which involve requirements and 
specification, but no development or test. These 
give rise to specification errors only. Alternatively 
there can be phases which have development 
stages but no new requirements, giving rise to new 

Figure 3. The “People quality” subnet of the MODIST model

Table 1. Details of subnet for people quality 

    Variable Name     Description

    Overall management qual-
ity

    This is a synthetic node that combines ‘communications management adequacy’, ‘subcontract manage-
ment adequacy’ and ‘interaction management adequacy’. If any of these three is poor then generally the 
value of ‘overall management quality’ will be poor.

    Overall staff quality     This is the quality of non-management staff working on the project.

    Overall people quality     This is a synthetic node that combines ‘overall management quality’ and ‘overall staff quality’.
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code defects. The model can link these different 
phases together so that the defects which arise, 
but aren’t fixed, in one phase, to be carried over 
to the next. In this way, the model can handle a 
very large and diverse range of possible software 
development processes.

The model operates as follows. A piece of 
software of a given size, in this case measured 
inn thousands of lines of code (KLOC) gives 
rise to a certain number of defects. Some of 
these defects will be the result of inaccuracies 
in the specification and requirements. A mature 
software process, combined with close customer 
contact and experienced management can help to 
mitigate this. This gives rise to the “Probability of 
avoiding specification defects” node. Similarly, a 
good development team can reduce the number of 
defects introduced during development, leading 
to the “Probability of avoiding defects in devel-
opment” node. The effort and experience of the 
test team affects the probability of finding the 
remaining defects, and the quality of the rework 
phase affects the ability to fix them.

The model shown in Figure 5 actually comes 
from a model validated at Philips (Neil & Fenton 
2005; Fenton et. al 2007a; Fenton et. al 2007b). 
This differed from the original defects model in 
several important respects.

Project size was measured in KLOC. The 
original defects model used function points (FPs) 
as its size measure. However, FPs were not widely 
used at Philips and it seemed unlikely that they 
could be introduced purely to validate this model. 
Initialling the model was simply modified to 
deduce the number of FPs from the KLOC. This 
led to problems because it introduced a level of 
uncertainty in the FP measure which was not 
originally present. FPs also include a measure 
of problem complexity which is absent from the 
KLOC measure. Eventually it became clear that 
the “scale of new functionality” subnet had to be 
re-written to accommodate the switch from FPs 
to KLOC.

The second big change from the defects model 
was that many of the original indicator nodes were 
converted to causal factors. This was because the 

Figure 4. Probability distribution of “Project duration” for 1000 FPs
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development managers at Philips found it easier 
to understand the model when expressed in these 
terms. Managers frequently added evidence to both 
an indicator node and its parent, thus blocking 
the indicator evidence. However, turning indica-
tor nodes into causal factors led to the classic 
problems that arise when nodes have multiple 
parents: how to construct CPDs involving large 
numbers of nodes, and how to provide tools so 
that such CPDs can be easily elicited from domain 
experts. These problems were solved by devising 
a comprehensive set of weighted mean functions 
(Fenton, Neil & Caballero 2007).

The model has been extensively trialed at 
Philips, with considerable success. The R2 cor-
relation between predicted and actual defect 
values is in excess of 93%. It is of course possible 
to construct regression models with similar, or 
even higher correlations, but only by including 
most of the data as training data, which implies 
an extensive metrics collection programme. The 
defects model’s success was achieved using only 
empirical data from the literature, and observa-
tional data from the projects on which the model 

was being tested. Much of the raw data for these 
trials has been published and is available for use 
with the model (Fenton et. al 2007b).

the ProductIvIty Model

While the MODIST and defects models were 
successful in practical applications they contain 
some limitations. Overcoming or reducing these 
limitations became the motivation for the Produc-
tivity Model. This model provides unique features 
which were not available in previous models:

1.  This model permits custom prior produc-
tivity rates and custom prior defect rates. 
Companies typically gather some data from 
their past projects. Productivity and defect 
rates are among the easiest to extract from 
project databases. Even if a company does 
not collect effort data, which may happen, it 
is often quite easy to estimate post hoc. The 
ability to enter such prior rates arose from 
criticism of past models, which work well 

Figure 5. The core of the defects model
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but only within their targeted domain. This 
Productivity Model can accommodate local 
user data by explicitly capturing prior rates 
provided by users. In cases where providing 
such custom productivity and defect rates is 
not possible, these rates can be estimated by 
our PDR model discussed later.

2.  This model enables trade-off analysis be-
tween key project variables on a numeric 
scale. All the key project variables, namely: 
functionality, software quality and effort 
are expressed as numbers, not on a ranked 
scale, as effort and quality were in some of 
the past models.

3.  This model enables customised units of 
measurement. Previous models captured 
key variables expressed in fixed units of 
measurement. For example, effort was 
captured only in person-months. This model 
can express key numeric variables in various 
units. Users can use one of a set of predefined 
units provided by the model, and can even 
introduce their own units.

4.  The impact of qualitative factors can be 
easily changed by changing weights in node 
expressions. We provide a questionnaire 
which can help determine users’ opinions 
on the relationships between various model 
variables. These opinions can be different 
for different software companies and may 
depend on the type of software developed, 
the processes used and various other factors. 
Proper model calibration ensures that the 
model reflects reality more accurately.

5.  This model allows target values for numeric 
variables to be defined as intervals, not just 
as point values. For example, this model can 
answer the question: how can we achieve a 
defect rate between 0.05 and 0.08 defects/
FP for a project of a specific size and with 
other possible constraints.

6.  Numeric variables in this model are dy-
namically discretised. This means that set-
ting intervals for numeric variables occurs 

automatically during model calculation. 
This not only frees us from spending time 
setting these intervals for each numeric 
variable, but as a main benefit, ensures that 
the discretisation is more accurate because 
it takes into account all observations entered 
into the model.

 
An early version of this model has been pub-

lished	in	(Radliński	et	al.	2007).	The	structure	of	
the most recent version of the model is illustrated 
on Figure 6. Ellipses represent key model variables 
while rounded rectangles are subnets containing 
detailed variables.

There are three steps which need to be fol-
lowed before the Productivity Model can be used 
in performing analyses:

Step 1: Calibrate the model to the individual 
company. This step involves adding new 
detailed factors or removing those which 
are not relevant. This is achieved by setting 
new weights in weighted means: aggre-
gated project, process and people factors. 
Regardless of whether the list of detailed 
factors has been changed or not, another 
task	here	is	to	define	the	impact	of	the	ag-
gregated factors on the adjusted defect and 
productivity rates. This is done by entering 
proper values for constants (multipliers) in 
expressions for the adjusted rates. The user 
has to answer questions like: if project fac-
tors change to the most/least desired state 
how would defect and productivity rates 
increase/decrease? We calibrated the model 
using the results of questionnaires obtained 
from employees working in software com-
panies (mostly managers at different lev-
els) and researchers with some commercial 
experience. We suggest recalibrating the 
model again with a similar questionnaire 
to	ensure	that	the	model	reflects	the	termi-
nology and development process used in a 
particular company.
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Step 2: Nominate a typical past project from 
the past project database. The user nomi-
nates a past project developed by this com-
pany which is closest to the project to be 
modelled. The effort, defect and productiv-
ity rates achieved in these projects should 
be entered as observations to the model 
(prior defect rate, prior productivity rate 
and prior effort). If there are many rel-
evant past projects which could be picked, 
their distributions should be entered to the 
model.

Step 3: Estimate the difference in the current 
project. This step involves assessing how 
the current project is different from the 
project(s) nominated in step 2. The differ-
ences in detailed variables should then be 
entered into the model in subnets: uncon-
trollable project factors, development pro-
cess and effort allocation.

using Productivity Model 
in decision support

Let us suppose that a software company has to 
deliver software consisting of 500 function points 
but constrained to 2500 person-hours of effort. 
Suppose that in similar projects in the past the 
defect rate was typically 0.15 defects per function 
point, productivity rate was 0.2 function points per 
person-hour and the effort was 2000 person-hours. 
For a fair comparison in these examples we assume 
that all other factors included in the model are the 
same in all scenarios. With this information passed 
to the model, it predicts the number of defects 
delivered will be around 79 defects (all predicted 
values discussed here are median values of the 
probability distribution unless stated otherwise). 
Managers decide that this number of defects is 
unacceptably high and they wish to know how 
they can improve it to, say, just 40 defects. The 
model predicts that to achieve this quality target a 
better development process and more productive 
people are required. Also, allocating more effort 
on specification and testing at the cost of effort 
on coding is required. The lower effort on coding 

Figure 6. The core of the Productivity Model
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is balanced by the better coding process and the 
ability of more productive people to deliver the 
assumed product size.

Now let us further assume that the company 
is not able to improve the process and people for 
this project. Thus we need to perform trade-off 
analysis between key project variables. We might 
remove a constraint for the product size. This 
would result in predicting lower product size 
containing lower total number of defects. But 
sacrificing product size would rarely be a good 
solution. We rather analyze how much more effort 
is required to achieve the target for the number of 
defects. The model now predicts that this company 
should spend around 7215 person-hours on this 
project to achieve the lower number of residual 
defects after release. The majority of the increased 
effort should be allocated to specification and 
testing activities.

As a second example of using the Productivity 
Model in decision support, let us assume that we 
analyze the impact of uncontrollable project fac-
tors on estimates provided by the model. Suppose 
that the size of the software to be developed is 
1000 FPs. We leave the prior effort, productivity 
and defect rates at their default states. The model 
initially predicts revised productivity rate of 0.177 
FP/person-hour and revised defect rate of 0.056 
defects/FP. Now we further assume that project 
complexity is as high as possible – which means 
as high as has been observed by the company in 
its previous most complex projects. In this case 
the model predicts that we are likely to achieve 
a lower revised productivity rate (0.161 FP/
person-hour) and that the developed software 
will be of lower quality (higher revised defect 
rate with median=0.062 defects/FP) compared to 
the scenario which assumes no change in project 
complexity.

In addition to the higher project complexity, 
suppose we also assume that there is the highest 
possible deadline pressure. In this case, increased 
deadline pressure causes the developers to work 
faster and thus become more productive (0.176 FP/

person-hour). However, it also means they are less 
focused on delivering software of similar quality 
and thus their revised defect rate is expected to 
further increase (0.073 defects/FP).

Let us now assume that in addition to the 
previously entered known project factors they 
anticipate receiving input documentation of higher 
quality. We assume that the exact improvement in 
input documentation quality is unknown. It is only 
certain that it is of higher quality. We enter such 
information as soft evidence. Entering observa-
tions in this way means that we believe that the 
first four states from ‘extra lower’ to ‘the same’ 
are impossible while the last three from ‘higher’ 
to ‘extra higher’ are equally probable according 
to our knowledge. The model predicts that with 
increased quality of input documentation we 
should expect to be more productive (0.180 FP/
person-month) and deliver better software (0.067 
defects/FP).

Modelling Prior Productivity 
and defect rates

The PDR model aims to estimate prior produc-
tivity and defect rates which are then passed as 
inputs to the Productivity Model. This model has 
a Naïve Bayesian Classifier structure (Figure 7). 
Observations are entered into qualitative factors 
describing the software to be developed (white 
ellipses). The model then estimates the log of 
productivity and defect rates. Finally, dependent 
variables (productivity and defect rates) are cal-
culated on their original scale.

The links between these qualitative factors 
and dependant variables do not reflect any causal 
relationship. However, choosing this structure 
enables easier model creation since only pairwise 
relationships need to be analyzed (between each 
dependant variable and one predictor). As a re-
sult the model does not capture any relationships 
between predictors which need to be independent 
of each other in this type of model.

We identified the qualitative factors and 
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their impact on productivity and defect rates by 
analysing the ISBSG dataset R9 release (2005). 
While fitting various distributions for these de-
pendent variables we observed that LogNormal 
distribution fits the data best. We adjusted the 
impact of qualitative factors on productivity and 
defect rate by other reported data, most notably 
(Jones, 2002 cited after Sassenburg 2006) and 
according to our expert-judgement. Details on 
the steps of empirical analysis, the structure of 
the model and various scenarios on model usage 
can	be	found	in	(Radliński	et	al.,	2008a).

Here we demonstrate one example of the kind 
of analysis which this model can perform. We also 
pass the results obtained from the PDR model for 
productivity and defect rates to the Productivity 
Model. We analyze two scenarios for the same 
functional size (1000 FPs), the same target defect 
rate (0.1 defects/FP) and wish to get a prediction for 
development effort from the Productivity Model. 
In the first scenario we assume that the software 
project will be developed on a mainframe and 
with a 3GL programming language. The second 
scenario assumes that a project will be developed 
on multiple platforms using an application gen-

erator. We enter observations for the appropriate 
qualitative factors into variables in the PDR model. 
For fair comparison we further assume that in 
both scenarios the process and people quality and 
other factors from the Productivity Model have 
‘average’ values.

After running both models we observe that 
the observations entered into the PDR model 
significantly change the predictions provided by 
the Productivity Model. Predicted revised effort 
is about 3.5 times higher in scenario 1 (10740 
person-hours) than in scenario 2 (3074 person-
hours). However, it would be wrong to conclude 
from this that we should only use application 
generators and multiple platforms, while avoid-
ing 3GL languages and mainframe platforms. The 
predictors in the PDR model should be treated as 
uncontrollable factors which describe the inher-
ent nature of the software project. This nature 
determines the best platform, language type to 
be used and other factors.

Figure 7. PDR Model
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AgIle develoPMent 
envIronMents

The models discussed so far mostly apply to 
large, traditional, waterfall style development 
environments. There has been a significant trend 
in recent years, especially in web based and other 
interactive applications, towards so-called “agile” 
development techniques (Agile Manifesto 2008). 
Agile methods eschew extensive specification and 
design phases in favour of rapid prototyping, itera-
tive development, extensive customer feedback 
and a willingness to modify requirements in the 
face of changing business circumstances.

Agile development environments present two 
problems for traditional models. The first problem 
is that the lack of a formal requirements gathering 
phase makes it very difficult to quantify the size 
of the project. There is unlikely to be sufficient 
written documentation in an agile project to justify 
a rigorously determined function point count or 
any similar measure of problem size.

The second problem that traditional models 
face concerns data gathering and entry. The defects 
model described in an earlier section can require 
over 30 individual pieces of data in order to be 
fully specified. Although not all data is required in 
all phases of development, there will normally be 
a need to gather several separate numbers or sub-
jective values. In the case of the subjective judge-
ments, these must also be entered consistently 
across iterations. There is considerable redundancy 
here. If the node “Programmer capability” is set 
to “High” on the first iteration, then it is likely to 
remain high in subsequent iterations.

We can turn these problems into opportuni-
ties as follows. First, by restricting our models 
to whatever data is routinely collected by agile 
development processes. This means that we do 
not require agile projects to collect metrics, such 
as function points, which do not naturally arise in 
that environment. The looser definition of some 
of these metrics means that we somehow have to 
learn the exact interpretation of agile metrics on a 

given project. As we shall see, the iterative nature 
of agile projects makes this perfectly possible.

Second, instead of modelling all the causal 
factors which contribute to a project, we subsume 
their combined effect in our learning mechanism. 
We then model only changes in the development 
environment. This greatly reduces the amount of 
data which needs to be entered into models and 
completely eliminates the redundancy that would 
otherwise be present.

This combination of intelligent model adap-
tation, and learning using minimal data input, is 
only possible because of the empirically derived 
priors and the causal relationships elicited from 
domain experts. The BN models already represents 
a very wide range of possible development envi-
ronments. Rather than “training” the model, data 
is needed to simply “nudge” the model towards a 
set of variable states that are consistent with the 
environment being modelled.

Here we present two models that take this 
approach. In the first we show how productivity, 
and consequently timescales, can be modelled in 
an Extreme Programming environment. In the 
second we present a learning defects model for 
use in iterative environments.

extreme Programming 
Project velocity Model

Extreme Programming (XP) is an agile develop-
ment method that consists of a collection of values, 
principles and practices as outlined by Kent Beck, 
Ward Cunningham and Ron Jeffries (Beck 1999; 
Jeffries, Anderson & Hendrickson 2000). These 
include most notably: iterative development, pair 
programming, collective code ownership, frequent 
integration, onsite customer input, unit testing, 
and refactoring.

The basic unit of work in XP is the User Story. 
Developers assign the effort that they believe is 
required for them to design, code and test each user 
story. Once iteration i is complete, the estimates 
for the completed user stories are added together. 
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This is the Project Velocity Vi for iteration i. As-
suming that the next iteration, i + 1, is the same 
length, the customer selects the highest priority 
uncompleted user stories whose estimated efforts 
sum to Vi. These user stories are then scheduled for 
iteration i + 1. The project velocity can therefore 
be thought of as the estimated productive effort 
per iteration.

The BN used to model project velocity is 
shown in Figure 8. To model the relationship 
between total effort Ei and the actual productive 
effort Ai, there is a single controlling factor that 
we call Process Effectiveness, ei. This is a real 
number in the range [0,1]. A Process Effectiveness 
of one means that all available effort becomes 
part of the actual productive effort. The actual 
productive effort is converted into the estimated 
productive effort (or project velocity) Vi, via a 
bias bi, which represents any consistent bias in 
the team’s estimations.

The Process Effectiveness is, in turn, controlled 
by two further parameters: Effectiveness Limit, 
li, and Process Improvement, ri. The Process Im-
provement is the amount by which the Process 
Effectiveness increases from one XP iteration to 
the next. To allow for failing projects, the Process 
Improvement can take on negative values.

Only Ei and Vi are ever entered into the 
model.

The model shown in Figure 8 is what is known 
as a 1.5 TBN (for 1.5 timeslice temporal BN). 
It shows the interface nodes from the previous 
timeslice and their directed arcs into the current 
timeslice. This is essentially the full model, it is 
not a cut down core such as the ones presented for 
the MODIST and defect models. Notice the tiny 
size of this mode compared to the others. This is 
due to the fact that it is only trying to predict one 
thing, Vi, and that is does so, not by taking into 
account all possible causal factors, but by learn-
ing their cumulative effect on the process control 
parameters: li and ri.

The model works as follows. Initial estimates 
for the amount of available effort Ei are entered 

into the model for each iteration. At this stage the 
number of iterations is unknown, so a suitably 
large number must be chosen to be sure of cover-
ing the entire project. Using empirically derived 
industry priors for l0, r0, e0 and b0 the model then 
makes generic predictions for the behaviour of 
Vi. This enables the project management to see 
how many user stories are likely to be delivered 
in each iteration. The model correctly reproduces 
rapidly rising values for Vi over the initial itera-
tions - a phenomenon that has been observed in 
multiple studies (Ahmed, Fraz, & Zahid 2003; 
Abrahamsson & Koskela, 2004; Williams, Shukla, 
& Anton, 2004).

At each project iteration measured values for Vi 
become available and are entered into the model. 
This causes the learned parameters li, ri and bi to 
update, modifying future predictions. Using data 
from a real XP project (Williams, Shukla, & Anton, 
2004), we were able to enter observations for V1 
and V2, and verify the model’s predictions of the 
remaining Vi. Initially this generates improved 
predictions for early iterations, but significantly 
worse predictions for later iterations. It turns out 
that there was a significant change in the environ-
ment half way through the project, when much 
better customer contact and feedback became 
available. This was added to the model by adding 
an “Onsite customer” indicator node to li. The 
effect of this indicator node had to be calibrated 
independently using a training model which was 
a slightly modified version of the project velocity 
model. Once the effect of the changed environment 
had been taken into account (Figure 9), the model 
was able to produce very good predictions for all 
future values of Vi (Hearty et. al. in press).

The model is not limited to productivity 
predictions. By adding a node which sums the 
Vi distributions, we can create predictions of 
delivered functionality, si, after each iteration.. 
Taking the median values of the si distributions 
and comparing them to the actual functionality 
delivered, we can determine the magnitude of 
relative errors (MRE) for each si. The mean val-
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ues of the MREs give a good overall measure of 
the accuracy of the model. The mean MRE for si 
before learning was 0.51, an error of over 50%. 
After learning the mean MRE for si reduces to 
0.026 - an extraordinary level of accuracy for a 
software process model.

One of the great advantages of a BN model is 
its ability to deliver natural assessments of risk. 
If we take the cumulative probability distribution 
of an si node, then this allows us to read off the 
probability that any given amount of functional-
ity will be delivered. An example for s8 is shown 
in Figure 10. In this case we are trying to read 
off the probability of delivering up to 200 Ideal 
Engineering Days (IEDs) of completed functional-
ity. (An IED is a day spent by a developer doing 
detailed design, writing code, or testing code 
and is assumed to be directly proportional to a 
fixed amount of delivered functionality.) Before 
learning, the model predicted that there was a 
25% chance of delivering 200 IEDs or less. i.e. 
There was a 75% of delivering more than 200 
IEDs. After learning the model reduced this to a 
35% chance of delivering 200 IEDs or more - the 
model was initially too optimistic.

XP is the most common agile development 

method. Another common methodology is Scrum 
(Takeuchi & Nonaka 1986; Schwaber & Beedle 
2002; Sutherland 2004). This approach uses burn-
down charts to plan a project. A burndown chart 
starts with a fixed amount of functionality that 
must be delivered. This reduces with each itera-
tion as more and more functionality is completed. 
The slope of the burndown chart gives the project 
velocity, while its intercept with the horizontal 
time axis gives the projected completion date. 
We can model a burndown chart very easily using 
a modified version of the XP model. Instead of 
letting si represent the cumulative functionality 
delivered, we define it to be the amount of func-
tionality remaining. We can then set si as evidence 
values, rather than Vi as in XP, and learn how the 
burndown chart must be altered as each iteration 
completes. An example is shown in Figure 11.

leArnIng Model for IterAtIve 
testIng And fIxIng defects

The models discussed earlier contain fixed rela-
tionships between variables. The model discussed 
here (see Figure 12) is a learning model in the sense 

Figure 8. Project Velocity model



18

Software Project and Quality Modelling Using Bayesian Networks

that it learns the impact of particular predictors 
on dependent variables using a set of past data. 
The aim for this model is to predict the number 
of defects found and fixed in an iterative testing 
and fixing process. This iterative process assumes 
that all functionality has been developed prior to 
testing. The testing and fixing process is divided 
into series of iterations lasting a variable amount 
of time. More information on earlier versions of 
this model and its assumptions can be found in 
(Radliński	et	al.	2008b).

Links in this model reflect causal relation-
ships. Testing process factors (effort, process and 
people quality and other factors) impact on testing 
effectiveness which, after utilizing the number of 
residual defects at a given point of time, determine 
the number of defects found during a specific test-
ing iteration. The number of open defects from the 
past iterations plus the number of defects found 
in the current iteration form an upper limit for the 
number of defects fixed in the current iteration. 
The second limit comes from the values of fix-
ing process factors in a form of potentially fixed 
defects reflecting how many defects can be fixed 
given specific process data.

In contrast to traditional software reliability 

growth models this model does not assume that 
fixes need to be perfect. This means that it explic-
itly incorporates the number of defects inserted 
as a result of an imperfect fixing process. The 
model assumes that the number of defects inserted 
depends on the number of defects fixed during a 
specific iteration and on the fixing process qual-
ity. When many defects have been fixed than it is 
probable that a proportionate number of defects 
have also been introduced. When the fixing process 
is poor then the number of defects inserted will 
be relatively high.

The model works in the following way. A 
user enters data about the past testing and fixing 
iterations as well as the defects found and fixed 
in these iterations. The model uses the entered 
data to estimate its parameters – multipliers for 
each process factor and the number of residual 
defects. The values of these multipliers reflect the 
importance of each process factor in terms of its 
impact on the number of defects or defects fixed. 
Then the user enters planned values for process 
factors in future iterations – e.g. how much effort 
is planned to be allocated to testing and fixing de-
fects. The model uses these process factors, learnt 
multipliers and learnt residual defects to predict 

Figure 9. Project velocity predictions before and after learning
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the number of defects found and the number of 
defects fixed in future iterations. At this point the 
user can analyze various scenarios which differ in 
effort, process and people quality, or other known 
factors possible in future iterations.

We perform model validation using a semi-

randomly generated dataset. We set point values 
for prior residual defects and values of process 
factor multipliers. Values for process factors were 
generated randomly and then manually adjusted 
in some iterations to more realistically reflect 
the testing and fixing process. The effectiveness 

Figure 10. Cumulative probability distribution of functionality delivered in iteration 8

Figure 11. Scrum burndown chart, before and after learning
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of the testing and fixing process increases over 
time as the process becomes more mature and the 
software under test becomes better understood. 
We estimated values for defects found, fixed and 
inserted using the values of process factors and 
the relationships as incorporated by the model. 
We used these generated datasets in the model 
validation stage and treated them as if they were 
observed values. In the validation stage we tested 
how fast the model can learn the number of re-
sidual defects and the values of process factors’ 
multipliers.

We tested the model using 30 testing and fixing 
iterations. First we used a single learning iteration 
with 29 iterations where values of defects found 
and fixed were predicted. This was followed by 2 
iterations for learning and 28 for prediction, and 
so on. Figure 13 illustrates the values of relative 

errors in predicted total number of defects found 
and defects fixed as estimated after a different 
number of learning iterations. This relative error 
is defined as illustrated on Equation 2.

relative error
total predicted total actual

total actual
=

-

 
(2)

These results confirm that after only 5 learning 
iterations, the model predicts the total number of 
defects found to within a 0.16 relative error of the 
actual value and predicts total number of defects 
fixed to within a 0.30 relative error of the actual 
value. Predictions then become less accurate be-
cause of higher fluctuations in actual number of 
defects found in the dataset. But from 8 learning 

Figure 12. The structure of the LMITFD
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iterations the accuracy again increases (relative 
error decreases). These results show that the 
model is capable of learning its parameters after 
very few iterations and then generates predictions 
with reasonable accuracy.

One of the most important advantages of such 
models is the high potential for performing various 
types of what-if analyses. After the model learns 
its parameters, we can set as observations different 
values for future process factors to see how they 
influence predicted number of defects found. For 
example let us analyze model predictions in two 
scenarios when fixing process and people qual-
ity is ‘very low’ or ‘very high’. Values of other 
process factors are the actual values in iterations 
used for prediction. We use 5 learning iterations 
and the remaining 25 for prediction. Figure 14 
illustrates the model’s predictions for this case. 
We can observe that, as we could expect, with 
lower fixing process and people quality, fewer 
defects are likely to be fixed in future iterations. 
These differences are very high, confirming that 
the model updated its multipliers and residual 
defects to reflect the fact that qualitative process 
factors have a strong influence on defects found 
and defects fixed.

We can see that, although we have only 
modified our observations of fixing process and 
people quality, the predicted values of defects 

found are also different in these two scenarios. 
The reason is the following. Lower fixing process 
and people quality with fixing effort unchanged 
leads to increased number of defects inserted as 
a result of imperfect fixing. Higher number of 
defects inserted causes more residual defects in 
subsequent iterations. Higher number of residual 
defects in turn causes there to be more defects 
found – the more residual defects the easier it is 
to find them.

Another issue which may be surprising in the 
beginning is the fact that predicted number of 
defects fixed in the late iterations is lower both 
with ‘very low’ and ‘very high’ fixing process and 
people quality compared with the scenario with 
the original fixing process and people quality. But 
there is also an explanation for such predictions. 
With ‘very low’ fixing process and people quality 
it is simply not possible to fix more defects without 
assigning significantly more fixing effort. On the 
other hand, with ‘very high’ fixing process and 
people quality defects which were found earlier 
were also fixed earlier. So in these late iterations 
there are fewer defects still to be fixed.

Figure 13. Relative errors in predictions for total number of defects found and defects fixed depending 
on number of iterations used to learn the model
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