
1

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

Software Project and
Quality Modelling Using

Bayesian Networks
Norman Fenton

Queen Mary, University of London, United Kingdom

Peter Hearty
Queen Mary, University of London, United Kingdom

Martin Neil
Queen Mary, University of London, United Kingdom

Łukasz Radliński
Queen Mary, University of London, United Kingdom, and University of Szczecin, Poland

IntroductIon

Software project planning is notoriously unreliable.
Attempts to predict the effort, cost and quality of
software projects have foundered for many rea-
sons. These include the amount of effort involved
in collecting metrics, the lack of crucial data, the
subjective nature of some of the variables involved
and the complex interaction of the many variables

which can affect a software project. In this chapter
we introduce Bayesian Networks (BNs) and show
how they can overcome these problems.

We cover sufficient BN theory to enable the
reader to construct and use BN models using a suit-
able tool, such as AgenaRisk (Agena Ltd. 2008).
From this readers will acquire an appreciation for
the ease with which complex, yet intuitive, statistical
models can be built. The statistical nature of BN
models automatically enables them to deal with the

AbstrAct

This chapter provides an introduction to the use of Bayesian Network (BN) models in Software Engineering.
A short overview of the theory of BNs is included, together with an explanation of why BNs are ideally
suited to dealing with the characteristics and shortcomings of typical software development environments.
This theory is supplemented and illustrated using real world models that illustrate the advantages of
BNs in dealing with uncertainty, causal reasoning and learning in the presence of limited data.

DOI: 10.4018/978-1-60566-758-4.ch001

2

Software Project and Quality Modelling Using Bayesian Networks

uncertainty and risk that is inherent in all but the
most trivial software projects.

Two distinctive types of model will be pre-
sented. The first group of models are primarily
causal in nature. These take results from empirical
software engineering, and using expert domain
knowledge, construct a network of causal influ-
ences. Known evidence from a particular project
is entered into these models in order to predict
desired outcomes such as cost, effort or quality.
Alternatively, desired outcomes can be entered and
the models provide the range of inputs required
to support those outcomes. In this way, the same
models provide both decision support and trade
off analysis.

The second group of models are primarily
parameter learning models for use in iterative or
agile environments. By parameter learning we
mean that the model learns the uncertain values
of the parameters as a project progresses and uses
these to predict what might happen next. They take
advantage of knowledge gained in one or more
iterations of the software development process to
inform predictions of later iterations. We will show
how remarkably succinct such models can be and
how quickly they can learn from their environment
based on very little information.

bAckground

Before we can describe BN software project
models, it is worthwhile examining the problems
that such models are trying to address and why
it is that traditional approaches have proved so
difficult. Then, by introducing the basics of BN
theory, we will see how BN models address these
shortcomings.

cost and Quality Models

We can divide software process models into two
broad categories: cost models and quality mod-
els. Cost models, as their name implies, aim to

predict the cost of a software project. Since effort
is normally one of the largest costs involved in a
software project, we also take “cost models” to
include effort prediction models. Similarly, since
the “size” of a software project often has a direct
bearing on the effort and cost involved, we also
include project size models in this category. Qual-
ity models are concerned with predicting quality
attributes such as mean time between failures, or
defect counts.

Estimating the cost of software projects is
notoriously hard. Molokken and Jorgensen (2003)
performed a review of surveys of software effort
estimation and found that the average cost overrun
was of the order 30-40%. One of the most famous
such surveys, the Standish Report (Standish Group
International 1995) puts the mean cost overrun
even higher, at 89%, although this report is not
without its critics (Glass 2006). Software quality
prediction, and in particular software defect predic-
tion, has been no more successful. Fenton and Neil
(1999) have described the reasons for this failure.
We briefly reproduce these here since they apply
equally to both cost and quality models.

1. Typical cost and quality models, such as
COCOMO (Boehm 1981) and COQUALMO
(Chulani & Boehm 1999) take one or two
parameters which are fed into a simple alge-
braic formula and predict a fixed value for
some desired cost or quality metric. Such
parametric models therefore take no account
of the inaccuracy in the measurement of their
parameters, or the uncertainty surrounding
their coefficients. They are therefore unable
to attach any measure of risk to their predic-
tions. Changes in parameters and coefficients
can be simulated in an ad-hoc fashion to try
to address this, but this is not widely used
and does not arise as a natural component
of the base model.

2. Parametric models cannot easily deal with
missing or uncertain data. This is a major
problem when constructing software process

3

Software Project and Quality Modelling Using Bayesian Networks

models. Data can be missing because it sim-
ply wasn’t recorded. It can also be missing
because the project is in a very early stage
of its lifecycle. Some of the problems ap-
pear quite prosaic, for example ambiguity
arises because of difficulties in defining what
constitutes a line of code. Do comments,
empty lines and declarative statements
count? Similarly there is uncertainty about
what counts as a defect. What is regarded
as a defect in one project might be regarded
as a user change request in another. Do only
post production software failures count as
defects, or do defects uncovered during
testing count towards the total?

3. Traditional models have difficulty incorpo-
rating subjective judgements, yet software
development is replete with such judge-
ments. The cost and quality of a software
project clearly depend to a significant extent
on the quality of the development team, yet
such a metric is rarely available form that
is easily measured and is more usually the
subject of opinion than of measurement.

4. Parametric models typically depend on a
previous metrics measurement programme.
A consistent and comprehensive metrics
programme requires a level of discipline
and management commitment which can
often evaporate as deadlines approach and
corners are cut. Failure to adjust the coef-
ficients in a parametric model to match local
conditions can result in predictions which are
significantly (often several hundred percent)
different from actual values (Briand et. al.
1999; Kemerer 1987).

5. Metrics programmes may uncover a simple
relationship between an input and an output
metric, but they tell us nothing about how
this relationship arises, and crucially, they
do not tell us what we must do to improve
performance. For example, if we wish to
reduce the number of defects, are we bet-
ter off investing in better test technology,

in more training for the test team, or more
experienced developers?

Many attempts have been made to find alterna-
tives to simple parametric models. These include
multivariate models (Neil 1992), classification and
regression trees (Srinivasan & Fisher 1995), anal-
ogy based models (Shepperd & Schofield 1997;
Briand et. al. 1999), artificial neural networks
(Finnie & Wittig & Desharnais 1997) and systems
dynamics models (Abdel-Hamid 1989). However
no single one of these approaches addresses all of
the problems outlined above. In the next section,
we demonstrate how BNs can help overcome
these disadvantages and add considerable value
and insight to software process modelling.

Introduction to bayesian networks

A Bayesian Network (BN), (Jensen, 2001), is
a directed acyclic graph (such as the example
shown in Figure 1), where the nodes represent
random variables and the directed arcs define
causal influences or statistical or functional re-
lationships. Nodes without parents (such as the
“Probability of finding defects” and “Defects In”
nodes in Figure 1) are defined through their prior
probability distributions. Nodes with parents are
defined through Conditional Probability Distri-
butions (CPDs). For some nodes, the CPDs are
defined through deterministic functions of their
parents (such as the “Defects Out” node in Figure
1), others (such as the “Defects Found” node in
Figure 1) are defined as standard probability dis-
tribution functions. Conditional independence (CI)
relationships are implicit in the directed acyclic
graph: all nodes are conditionally independent of
their ancestors given their parents. This general
rule makes it unnecessary to list CI relationships
explicitly.

Trivial as this example may seem, it actually
incorporates a great many of the features that
make BNs so powerful. within comparison with
regression based models there are a number of

4

Software Project and Quality Modelling Using Bayesian Networks

beneficial features and advantages:

1. One of the most obvious characteristics of
BNs is that we are no longer dealing with
simple point value models. Each of the ran-
dom variables in Figure 1 defines a statistical
distribution. The model simultaneously deals
with a wide range of possible outcomes. In
particular, its predictions, in this case limited
to the “Defects out” node, is in the form of a
marginal distribution which is typically uni-
modal, giving rise to a natural “most likely”
median value and a quantitative measure of
risk assessment in the form of the posterior
marginal’s variance.

2. We can run the model without entering any
evidence. The model then uses the prior
distributions which can be based on em-
pirical studies of a wide range of software
projects, such as those provided by Jones
(1986; 1999; 2003), or by publicly avail-
able databases (ISBSG 2008). Nodes such
as “Probability of finding defects” may be
assigned priors in this way. The “Defects in”
node can also be assigned a prior based on
empirical studies. In more complex BNs it
will often be assigned a distribution which
is conditional on other causal factors, or on
evidence gathered from the project.

3. The nodes in this model are all represented
by numeric scales. BNs are not limited to
this however. Any set of states which can
be assigned a probability can be handled by
a BN. We shall show shortly how ordinal
measures can be used to include subjective
judgments into BN models.

4. Unlike parametric models, where the under-
lying variation in software process measure-
ment has been “averaged” out, this model
contains all of the available information.
It is therefore not limited to an “average”
project, but can encompass the full range of
values included in its priors. As we shall see
later, this dramatically reduces the amount

of information needed in order to adapt a
BN model to local conditions and enables
us to dispense with the metrics collection
phase traditionally used to tune parametric
models.

5. Unlike simple regression models the rela-
tionship between all the causal factors is
explicitly stated. This means that, in addition
to using the model to make predictions, we
can set our desired outcome (for example
to how many defects are acceptable in the
released product) and the model will be able
to tell us how many “Defects in” are the
most likely explanation of this and what our
probability of finding a defect must be. In
larger models, where our initial conditions
are defined by the available resources, such
models can be used for management decision
support as well as project management and
planning.

When a variable is actually observed, this
observation can be entered into the model. An
observation reduces the marginal probability
distribution for the observed variable to a unit
probability for the observed state (or a small

Figure 1. A simple Bayesian Network illustrating
defect detection in a software project

5

Software Project and Quality Modelling Using Bayesian Networks

interval containing the value in the continuous)
and zero otherwise. The presence of an observa-
tion updates the CPD of its children and, through
Bayes theorem (Equation 1), the distributions of
its parents. In this way observations are propa-
gated recursively through the model. BN models
can therefore update their beliefs about probable
causes and so learn from the evidence entered into
the model. More information on BNs and suitable
propagation algorithms can be found in Jensen
(2001) and Lauritzen & Spiegelhalter (1988).

P A B
P B A P A

P B
(|)

(|) ()
()

= (1)

dynamic bayesian networks

Dynamic Bayesian Networks (DBN) extend BNs
by adding a temporal dimension to the model.
Formally, a DBN is a temporal model represent-
ing a dynamic system which changes state usually
over time (Murphy 2002). A DBN consists of a
sequence of identical Bayesian Networks, Zt, t =
1,2,...,T where each Zt represents a snapshot of
the process being modelled at time t. We refer
to each Zt as a timeslice. For iterative software
development environments this is a particularly
apt approach.

The models presented here are all first order
Markov. Informally this means that the future
is independent of the past given the present
P Z Z P Z Z

t t t t
(|) (|)

:1 1 1- -= and in practice it
means that we do not need to recompute the model
afresh each time a new prediction is needed. The
first order Markov property reduces the number
of dependencies, making it computationally fea-
sible to construct models with a larger numbers
of timeslices. Consistent propagation is achieved
using standard junction tree algorithms (Lauritzen
& Spiegelhalter 1988). These algorithms provide
exact (as opposed to approximate) propagation in
discrete BNs and are generally regarded as among
the most efficient BN propagation algorithms

(Lepar & Shenoy 1998).

Indicator nodes and ranked nodes

Two types of nodes deserve special mention - these
are indicator nodes and ranked nodes. Indicator
nodes are nodes with no children and a single
parent. They are often used in circumstances
where the parent is not directly observable but
where some indicator of the parent’s status can
be measured easily (hence their name). When no
evidence is entered into an indicator it has no ef-
fect on its parent. When evidence is entered into
an indicator node it causes a change in the likely
distribution of states in the parent.

Indicator nodes can also be used where a large
number of causal factors all have a direct impact
on a single child node. The number of entries in
the CPD of the child grows exponentially with
the number of parents. If there are more than a
couple of such causal factors then the CPD of
the child can become unmanageable. Thanks to
Bayes Theorem (Equation 1) we can reverse the
direction of the arrows and turn the causal factors
into indicators. Since each indicator node only
has a single parent, their CPDs become much
easier to define.

Ranked nodes are nodes whose states are mea-
sured on an ordinal scale, often with either three
or five states ranging from “Very Low” through
to “Very High”. They are used to elicit subjective
opinions from experts so that they can be entered
as observations into the model. In the tool used to
build most of the models described here (Agena
Ltd. 2008), the underlying ordinal scale is rep-
resented by an equi-partitioned continuous scale
in the range [0, 1]. It is thus possible to easily
combine ranked nodes and variables consisting
of numeric states in the same distributions.

6

Software Project and Quality Modelling Using Bayesian Networks

the ModIst Model

Fenton and Neil’s pioneering paper (Fenton &
Neil 1999) inspired a number of research groups to
apply BNs to software process modelling. Wooff,
Goldstein, and Coolen (2002) have developed BNs
modeling the software test process while Stamelos
et al (2003) used COCOMO81 cost factors to build
a BN model of software project productivity. Bibi
and Stamelos (2004) have shown how BNs can
be constructed to model IBM’s Rational Unified
Process. Fenton and Neil’s own research group
have also gone on to develop a series of BN mod-
els, culminating in the AID tool (Neil, Krause, &
Fenton 2003), the MODIST models (Fenton et. al.
2004), and the trials of revised MODIST models
at Philips (Neil & Fenton 2005; Fenton et. al
2007a; Fenton et. al 2007b). A similar model has
been developed by Siemens (Wang et. al. 2006).
Here we will discuss the MODIST models and
its successor, the “Philips” model.

A greatly simplified version of the MODIST
model, with many of the causal factors and indi-
cator nodes removed, is shown in Figure 2. The
model is most easily understood as a series of
subnets, fragments of a whole BN, which capture
specific aspects of the software development
process. The subnets are:

•	 Distributed communications and man-
agement. Contains variables that capture
the nature and scale of the distributed as-
pects of the project and the extent to which
these are well managed.

•	 Requirements and specification. Contains
variables relating to the extent to which the
project is likely to produce accurate and
clear	requirements	and	specifications.

•	 Process quality. Contains variables relat-
ing to the quality of the development pro-
cesses used in the project.

•	 People quality. Contains variables relat-
ing to the quality of people working on the

project.
•	 Functionality delivered. Contains all rel-

evant variables relating to the amount of
new functionality delivered on the proj-
ect, including the effort assigned to the
project.

•	 Quality delivered. Contains all relevant
variables	relating	 to	both	 the	final	quality	
of the system delivered and the extent to
which it provides user satisfaction (note
the clear distinction between the two).

The full BN model is too large to be fully
described here but in the next section we discuss
just one of the subnets, the “People quality” sub-
net and use it as an example to show subjective
judgements can be entered into the model.

People Quality subnet

Figure 3 shows the variables and causal connec-
tions in this subnet. A description of the main
variables, including the model’s rationale is given
in Table 1. All of the variables shown in Figure
3 are ranked nodes, measured using a five point
scale ranging from very low to very high. Obser-
vations are not normally entered directly on the
variables described in Table 1. Instead we enter
observation at primary causes (variables with no
parents in the BN) and indicators.

In the ‘people quality’ subnet (Figure 3), indi-
cator nodes are used to infer the staff quality. The
default variables in our model for this are: staff
turnover, staff experience, staff motivation, staff
training and programming language experience.
This can be varied to suit local process needs and is
replicated in a similar way in the other subnets.

Although this approach is very flexible and
does not insist on an organisation using specific
metrics it does depend on some regularity in the
way that development projects are estimated. This
ensures that there are usable indicators for key
attributes of quality and size, which our model
can be adapted to use. It also makes it likely that

7

Software Project and Quality Modelling Using Bayesian Networks

the organisation’s project managers will have
accumulated the experience to be able to make
stable judgments about the strength of these indi-
cators. Some organisations may also accumulate
data from past projects; there is no difficulty in
principle in using such data in adapting the model
and we hope to provide this capability in future
versions of the toolset.

using the bayesian net
for decision support

What makes the Bayesian resource model so pow-
erful, when compared with traditional software
cost models, is that we can enter observations
anywhere to perform not just predictions but also
many types of trade-off analysis and risk assess-
ment. So we can enter requirements for quality
and functionality and let the model show us the
distributions for effort and time. Alternatively we
can specify the effort and time we have available
and let the model predict the distributions for
quality and functionality delivered (measured in

function points).
As an example of this, if we simply set “New

functionality delivered” to 1000 function points,
the model produces the predictions shown in Fig-
ure 4. This tells us that the most likely duration is 6
to 8 months (the modal value), although the mean
and median values are considerably larger at 21
months and 17 months respectively. The standard
deviation is very large, at 16 months, because we
have not entered any of the other project attributes.
The model similarly predicts that the number of
people required will have a modal value of one
or two, but large mean and median values of 21
and 16 respectively.

If we fix the number of people at 10 and set
the “Process and people quality” to “Very High”,
we get a modal value for the duration of 2 to 4
months, and mean and median values of 10 and 5
months respectively with a standard deviation of
13 months, making the model far less uncertain in
its predictions. These figures are consistent with
typical parametric models. However, this ability
to vary the project constraints in any desired way

Figure 2. A simplified version of the MODIST model

8

Software Project and Quality Modelling Using Bayesian Networks

while producing consistent estimates of the risk,
provides far greater insight into the interplay be-
tween variables and allows far greater flexibility
than is possible with parametric models.

the defect Model

As with the MODIST model, the defect model
(Neil & Fenton 2005) is too large to be shown
here in full. The core of the model is shown in
Figure 5.

Separate subnets governing: the scale of new
functionality, specification and documentation

quality, design and development quality, testing
and rework quality, and features of the existing
code base, all feed into this core defect model.
Unlike the MODIST model, the defects model
does not require all of its subnets to be included.
The defects model is designed to model multiple
phases of software development where not all
aspects of the full software development process
are present in each development phase. So there
could be phases which involve requirements and
specification, but no development or test. These
give rise to specification errors only. Alternatively
there can be phases which have development
stages but no new requirements, giving rise to new

Figure 3. The “People quality” subnet of the MODIST model

Table 1. Details of subnet for people quality

 Variable Name Description

 Overall management qual-
ity

 This is a synthetic node that combines ‘communications management adequacy’, ‘subcontract manage-
ment adequacy’ and ‘interaction management adequacy’. If any of these three is poor then generally the
value of ‘overall management quality’ will be poor.

 Overall staff quality This is the quality of non-management staff working on the project.

 Overall people quality This is a synthetic node that combines ‘overall management quality’ and ‘overall staff quality’.

9

Software Project and Quality Modelling Using Bayesian Networks

code defects. The model can link these different
phases together so that the defects which arise,
but aren’t fixed, in one phase, to be carried over
to the next. In this way, the model can handle a
very large and diverse range of possible software
development processes.

The model operates as follows. A piece of
software of a given size, in this case measured
inn thousands of lines of code (KLOC) gives
rise to a certain number of defects. Some of
these defects will be the result of inaccuracies
in the specification and requirements. A mature
software process, combined with close customer
contact and experienced management can help to
mitigate this. This gives rise to the “Probability of
avoiding specification defects” node. Similarly, a
good development team can reduce the number of
defects introduced during development, leading
to the “Probability of avoiding defects in devel-
opment” node. The effort and experience of the
test team affects the probability of finding the
remaining defects, and the quality of the rework
phase affects the ability to fix them.

The model shown in Figure 5 actually comes
from a model validated at Philips (Neil & Fenton
2005; Fenton et. al 2007a; Fenton et. al 2007b).
This differed from the original defects model in
several important respects.

Project size was measured in KLOC. The
original defects model used function points (FPs)
as its size measure. However, FPs were not widely
used at Philips and it seemed unlikely that they
could be introduced purely to validate this model.
Initialling the model was simply modified to
deduce the number of FPs from the KLOC. This
led to problems because it introduced a level of
uncertainty in the FP measure which was not
originally present. FPs also include a measure
of problem complexity which is absent from the
KLOC measure. Eventually it became clear that
the “scale of new functionality” subnet had to be
re-written to accommodate the switch from FPs
to KLOC.

The second big change from the defects model
was that many of the original indicator nodes were
converted to causal factors. This was because the

Figure 4. Probability distribution of “Project duration” for 1000 FPs

10

Software Project and Quality Modelling Using Bayesian Networks

development managers at Philips found it easier
to understand the model when expressed in these
terms. Managers frequently added evidence to both
an indicator node and its parent, thus blocking
the indicator evidence. However, turning indica-
tor nodes into causal factors led to the classic
problems that arise when nodes have multiple
parents: how to construct CPDs involving large
numbers of nodes, and how to provide tools so
that such CPDs can be easily elicited from domain
experts. These problems were solved by devising
a comprehensive set of weighted mean functions
(Fenton, Neil & Caballero 2007).

The model has been extensively trialed at
Philips, with considerable success. The R2 cor-
relation between predicted and actual defect
values is in excess of 93%. It is of course possible
to construct regression models with similar, or
even higher correlations, but only by including
most of the data as training data, which implies
an extensive metrics collection programme. The
defects model’s success was achieved using only
empirical data from the literature, and observa-
tional data from the projects on which the model

was being tested. Much of the raw data for these
trials has been published and is available for use
with the model (Fenton et. al 2007b).

the ProductIvIty Model

While the MODIST and defects models were
successful in practical applications they contain
some limitations. Overcoming or reducing these
limitations became the motivation for the Produc-
tivity Model. This model provides unique features
which were not available in previous models:

1. This model permits custom prior produc-
tivity rates and custom prior defect rates.
Companies typically gather some data from
their past projects. Productivity and defect
rates are among the easiest to extract from
project databases. Even if a company does
not collect effort data, which may happen, it
is often quite easy to estimate post hoc. The
ability to enter such prior rates arose from
criticism of past models, which work well

Figure 5. The core of the defects model

11

Software Project and Quality Modelling Using Bayesian Networks

but only within their targeted domain. This
Productivity Model can accommodate local
user data by explicitly capturing prior rates
provided by users. In cases where providing
such custom productivity and defect rates is
not possible, these rates can be estimated by
our PDR model discussed later.

2. This model enables trade-off analysis be-
tween key project variables on a numeric
scale. All the key project variables, namely:
functionality, software quality and effort
are expressed as numbers, not on a ranked
scale, as effort and quality were in some of
the past models.

3. This model enables customised units of
measurement. Previous models captured
key variables expressed in fixed units of
measurement. For example, effort was
captured only in person-months. This model
can express key numeric variables in various
units. Users can use one of a set of predefined
units provided by the model, and can even
introduce their own units.

4. The impact of qualitative factors can be
easily changed by changing weights in node
expressions. We provide a questionnaire
which can help determine users’ opinions
on the relationships between various model
variables. These opinions can be different
for different software companies and may
depend on the type of software developed,
the processes used and various other factors.
Proper model calibration ensures that the
model reflects reality more accurately.

5. This model allows target values for numeric
variables to be defined as intervals, not just
as point values. For example, this model can
answer the question: how can we achieve a
defect rate between 0.05 and 0.08 defects/
FP for a project of a specific size and with
other possible constraints.

6. Numeric variables in this model are dy-
namically discretised. This means that set-
ting intervals for numeric variables occurs

automatically during model calculation.
This not only frees us from spending time
setting these intervals for each numeric
variable, but as a main benefit, ensures that
the discretisation is more accurate because
it takes into account all observations entered
into the model.

An early version of this model has been pub-

lished	in	(Radliński	et	al.	2007).	The	structure	of	
the most recent version of the model is illustrated
on Figure 6. Ellipses represent key model variables
while rounded rectangles are subnets containing
detailed variables.

There are three steps which need to be fol-
lowed before the Productivity Model can be used
in performing analyses:

Step 1: Calibrate the model to the individual
company. This step involves adding new
detailed factors or removing those which
are not relevant. This is achieved by setting
new weights in weighted means: aggre-
gated project, process and people factors.
Regardless of whether the list of detailed
factors has been changed or not, another
task	here	is	to	define	the	impact	of	the	ag-
gregated factors on the adjusted defect and
productivity rates. This is done by entering
proper values for constants (multipliers) in
expressions for the adjusted rates. The user
has to answer questions like: if project fac-
tors change to the most/least desired state
how would defect and productivity rates
increase/decrease? We calibrated the model
using the results of questionnaires obtained
from employees working in software com-
panies (mostly managers at different lev-
els) and researchers with some commercial
experience. We suggest recalibrating the
model again with a similar questionnaire
to	ensure	that	the	model	reflects	the	termi-
nology and development process used in a
particular company.

12

Software Project and Quality Modelling Using Bayesian Networks

Step 2: Nominate a typical past project from
the past project database. The user nomi-
nates a past project developed by this com-
pany which is closest to the project to be
modelled. The effort, defect and productiv-
ity rates achieved in these projects should
be entered as observations to the model
(prior defect rate, prior productivity rate
and prior effort). If there are many rel-
evant past projects which could be picked,
their distributions should be entered to the
model.

Step 3: Estimate the difference in the current
project. This step involves assessing how
the current project is different from the
project(s) nominated in step 2. The differ-
ences in detailed variables should then be
entered into the model in subnets: uncon-
trollable project factors, development pro-
cess and effort allocation.

using Productivity Model
in decision support

Let us suppose that a software company has to
deliver software consisting of 500 function points
but constrained to 2500 person-hours of effort.
Suppose that in similar projects in the past the
defect rate was typically 0.15 defects per function
point, productivity rate was 0.2 function points per
person-hour and the effort was 2000 person-hours.
For a fair comparison in these examples we assume
that all other factors included in the model are the
same in all scenarios. With this information passed
to the model, it predicts the number of defects
delivered will be around 79 defects (all predicted
values discussed here are median values of the
probability distribution unless stated otherwise).
Managers decide that this number of defects is
unacceptably high and they wish to know how
they can improve it to, say, just 40 defects. The
model predicts that to achieve this quality target a
better development process and more productive
people are required. Also, allocating more effort
on specification and testing at the cost of effort
on coding is required. The lower effort on coding

Figure 6. The core of the Productivity Model

13

Software Project and Quality Modelling Using Bayesian Networks

is balanced by the better coding process and the
ability of more productive people to deliver the
assumed product size.

Now let us further assume that the company
is not able to improve the process and people for
this project. Thus we need to perform trade-off
analysis between key project variables. We might
remove a constraint for the product size. This
would result in predicting lower product size
containing lower total number of defects. But
sacrificing product size would rarely be a good
solution. We rather analyze how much more effort
is required to achieve the target for the number of
defects. The model now predicts that this company
should spend around 7215 person-hours on this
project to achieve the lower number of residual
defects after release. The majority of the increased
effort should be allocated to specification and
testing activities.

As a second example of using the Productivity
Model in decision support, let us assume that we
analyze the impact of uncontrollable project fac-
tors on estimates provided by the model. Suppose
that the size of the software to be developed is
1000 FPs. We leave the prior effort, productivity
and defect rates at their default states. The model
initially predicts revised productivity rate of 0.177
FP/person-hour and revised defect rate of 0.056
defects/FP. Now we further assume that project
complexity is as high as possible – which means
as high as has been observed by the company in
its previous most complex projects. In this case
the model predicts that we are likely to achieve
a lower revised productivity rate (0.161 FP/
person-hour) and that the developed software
will be of lower quality (higher revised defect
rate with median=0.062 defects/FP) compared to
the scenario which assumes no change in project
complexity.

In addition to the higher project complexity,
suppose we also assume that there is the highest
possible deadline pressure. In this case, increased
deadline pressure causes the developers to work
faster and thus become more productive (0.176 FP/

person-hour). However, it also means they are less
focused on delivering software of similar quality
and thus their revised defect rate is expected to
further increase (0.073 defects/FP).

Let us now assume that in addition to the
previously entered known project factors they
anticipate receiving input documentation of higher
quality. We assume that the exact improvement in
input documentation quality is unknown. It is only
certain that it is of higher quality. We enter such
information as soft evidence. Entering observa-
tions in this way means that we believe that the
first four states from ‘extra lower’ to ‘the same’
are impossible while the last three from ‘higher’
to ‘extra higher’ are equally probable according
to our knowledge. The model predicts that with
increased quality of input documentation we
should expect to be more productive (0.180 FP/
person-month) and deliver better software (0.067
defects/FP).

Modelling Prior Productivity
and defect rates

The PDR model aims to estimate prior produc-
tivity and defect rates which are then passed as
inputs to the Productivity Model. This model has
a Naïve Bayesian Classifier structure (Figure 7).
Observations are entered into qualitative factors
describing the software to be developed (white
ellipses). The model then estimates the log of
productivity and defect rates. Finally, dependent
variables (productivity and defect rates) are cal-
culated on their original scale.

The links between these qualitative factors
and dependant variables do not reflect any causal
relationship. However, choosing this structure
enables easier model creation since only pairwise
relationships need to be analyzed (between each
dependant variable and one predictor). As a re-
sult the model does not capture any relationships
between predictors which need to be independent
of each other in this type of model.

We identified the qualitative factors and

14

Software Project and Quality Modelling Using Bayesian Networks

their impact on productivity and defect rates by
analysing the ISBSG dataset R9 release (2005).
While fitting various distributions for these de-
pendent variables we observed that LogNormal
distribution fits the data best. We adjusted the
impact of qualitative factors on productivity and
defect rate by other reported data, most notably
(Jones, 2002 cited after Sassenburg 2006) and
according to our expert-judgement. Details on
the steps of empirical analysis, the structure of
the model and various scenarios on model usage
can	be	found	in	(Radliński	et	al.,	2008a).

Here we demonstrate one example of the kind
of analysis which this model can perform. We also
pass the results obtained from the PDR model for
productivity and defect rates to the Productivity
Model. We analyze two scenarios for the same
functional size (1000 FPs), the same target defect
rate (0.1 defects/FP) and wish to get a prediction for
development effort from the Productivity Model.
In the first scenario we assume that the software
project will be developed on a mainframe and
with a 3GL programming language. The second
scenario assumes that a project will be developed
on multiple platforms using an application gen-

erator. We enter observations for the appropriate
qualitative factors into variables in the PDR model.
For fair comparison we further assume that in
both scenarios the process and people quality and
other factors from the Productivity Model have
‘average’ values.

After running both models we observe that
the observations entered into the PDR model
significantly change the predictions provided by
the Productivity Model. Predicted revised effort
is about 3.5 times higher in scenario 1 (10740
person-hours) than in scenario 2 (3074 person-
hours). However, it would be wrong to conclude
from this that we should only use application
generators and multiple platforms, while avoid-
ing 3GL languages and mainframe platforms. The
predictors in the PDR model should be treated as
uncontrollable factors which describe the inher-
ent nature of the software project. This nature
determines the best platform, language type to
be used and other factors.

Figure 7. PDR Model

15

Software Project and Quality Modelling Using Bayesian Networks

AgIle develoPMent
envIronMents

The models discussed so far mostly apply to
large, traditional, waterfall style development
environments. There has been a significant trend
in recent years, especially in web based and other
interactive applications, towards so-called “agile”
development techniques (Agile Manifesto 2008).
Agile methods eschew extensive specification and
design phases in favour of rapid prototyping, itera-
tive development, extensive customer feedback
and a willingness to modify requirements in the
face of changing business circumstances.

Agile development environments present two
problems for traditional models. The first problem
is that the lack of a formal requirements gathering
phase makes it very difficult to quantify the size
of the project. There is unlikely to be sufficient
written documentation in an agile project to justify
a rigorously determined function point count or
any similar measure of problem size.

The second problem that traditional models
face concerns data gathering and entry. The defects
model described in an earlier section can require
over 30 individual pieces of data in order to be
fully specified. Although not all data is required in
all phases of development, there will normally be
a need to gather several separate numbers or sub-
jective values. In the case of the subjective judge-
ments, these must also be entered consistently
across iterations. There is considerable redundancy
here. If the node “Programmer capability” is set
to “High” on the first iteration, then it is likely to
remain high in subsequent iterations.

We can turn these problems into opportuni-
ties as follows. First, by restricting our models
to whatever data is routinely collected by agile
development processes. This means that we do
not require agile projects to collect metrics, such
as function points, which do not naturally arise in
that environment. The looser definition of some
of these metrics means that we somehow have to
learn the exact interpretation of agile metrics on a

given project. As we shall see, the iterative nature
of agile projects makes this perfectly possible.

Second, instead of modelling all the causal
factors which contribute to a project, we subsume
their combined effect in our learning mechanism.
We then model only changes in the development
environment. This greatly reduces the amount of
data which needs to be entered into models and
completely eliminates the redundancy that would
otherwise be present.

This combination of intelligent model adap-
tation, and learning using minimal data input, is
only possible because of the empirically derived
priors and the causal relationships elicited from
domain experts. The BN models already represents
a very wide range of possible development envi-
ronments. Rather than “training” the model, data
is needed to simply “nudge” the model towards a
set of variable states that are consistent with the
environment being modelled.

Here we present two models that take this
approach. In the first we show how productivity,
and consequently timescales, can be modelled in
an Extreme Programming environment. In the
second we present a learning defects model for
use in iterative environments.

extreme Programming
Project velocity Model

Extreme Programming (XP) is an agile develop-
ment method that consists of a collection of values,
principles and practices as outlined by Kent Beck,
Ward Cunningham and Ron Jeffries (Beck 1999;
Jeffries, Anderson & Hendrickson 2000). These
include most notably: iterative development, pair
programming, collective code ownership, frequent
integration, onsite customer input, unit testing,
and refactoring.

The basic unit of work in XP is the User Story.
Developers assign the effort that they believe is
required for them to design, code and test each user
story. Once iteration i is complete, the estimates
for the completed user stories are added together.

16

Software Project and Quality Modelling Using Bayesian Networks

This is the Project Velocity Vi for iteration i. As-
suming that the next iteration, i + 1, is the same
length, the customer selects the highest priority
uncompleted user stories whose estimated efforts
sum to Vi. These user stories are then scheduled for
iteration i + 1. The project velocity can therefore
be thought of as the estimated productive effort
per iteration.

The BN used to model project velocity is
shown in Figure 8. To model the relationship
between total effort Ei and the actual productive
effort Ai, there is a single controlling factor that
we call Process Effectiveness, ei. This is a real
number in the range [0,1]. A Process Effectiveness
of one means that all available effort becomes
part of the actual productive effort. The actual
productive effort is converted into the estimated
productive effort (or project velocity) Vi, via a
bias bi, which represents any consistent bias in
the team’s estimations.

The Process Effectiveness is, in turn, controlled
by two further parameters: Effectiveness Limit,
li, and Process Improvement, ri. The Process Im-
provement is the amount by which the Process
Effectiveness increases from one XP iteration to
the next. To allow for failing projects, the Process
Improvement can take on negative values.

Only Ei and Vi are ever entered into the
model.

The model shown in Figure 8 is what is known
as a 1.5 TBN (for 1.5 timeslice temporal BN).
It shows the interface nodes from the previous
timeslice and their directed arcs into the current
timeslice. This is essentially the full model, it is
not a cut down core such as the ones presented for
the MODIST and defect models. Notice the tiny
size of this mode compared to the others. This is
due to the fact that it is only trying to predict one
thing, Vi, and that is does so, not by taking into
account all possible causal factors, but by learn-
ing their cumulative effect on the process control
parameters: li and ri.

The model works as follows. Initial estimates
for the amount of available effort Ei are entered

into the model for each iteration. At this stage the
number of iterations is unknown, so a suitably
large number must be chosen to be sure of cover-
ing the entire project. Using empirically derived
industry priors for l0, r0, e0 and b0 the model then
makes generic predictions for the behaviour of
Vi. This enables the project management to see
how many user stories are likely to be delivered
in each iteration. The model correctly reproduces
rapidly rising values for Vi over the initial itera-
tions - a phenomenon that has been observed in
multiple studies (Ahmed, Fraz, & Zahid 2003;
Abrahamsson & Koskela, 2004; Williams, Shukla,
& Anton, 2004).

At each project iteration measured values for Vi
become available and are entered into the model.
This causes the learned parameters li, ri and bi to
update, modifying future predictions. Using data
from a real XP project (Williams, Shukla, & Anton,
2004), we were able to enter observations for V1
and V2, and verify the model’s predictions of the
remaining Vi. Initially this generates improved
predictions for early iterations, but significantly
worse predictions for later iterations. It turns out
that there was a significant change in the environ-
ment half way through the project, when much
better customer contact and feedback became
available. This was added to the model by adding
an “Onsite customer” indicator node to li. The
effect of this indicator node had to be calibrated
independently using a training model which was
a slightly modified version of the project velocity
model. Once the effect of the changed environment
had been taken into account (Figure 9), the model
was able to produce very good predictions for all
future values of Vi (Hearty et. al. in press).

The model is not limited to productivity
predictions. By adding a node which sums the
Vi distributions, we can create predictions of
delivered functionality, si, after each iteration..
Taking the median values of the si distributions
and comparing them to the actual functionality
delivered, we can determine the magnitude of
relative errors (MRE) for each si. The mean val-

17

Software Project and Quality Modelling Using Bayesian Networks

ues of the MREs give a good overall measure of
the accuracy of the model. The mean MRE for si
before learning was 0.51, an error of over 50%.
After learning the mean MRE for si reduces to
0.026 - an extraordinary level of accuracy for a
software process model.

One of the great advantages of a BN model is
its ability to deliver natural assessments of risk.
If we take the cumulative probability distribution
of an si node, then this allows us to read off the
probability that any given amount of functional-
ity will be delivered. An example for s8 is shown
in Figure 10. In this case we are trying to read
off the probability of delivering up to 200 Ideal
Engineering Days (IEDs) of completed functional-
ity. (An IED is a day spent by a developer doing
detailed design, writing code, or testing code
and is assumed to be directly proportional to a
fixed amount of delivered functionality.) Before
learning, the model predicted that there was a
25% chance of delivering 200 IEDs or less. i.e.
There was a 75% of delivering more than 200
IEDs. After learning the model reduced this to a
35% chance of delivering 200 IEDs or more - the
model was initially too optimistic.

XP is the most common agile development

method. Another common methodology is Scrum
(Takeuchi & Nonaka 1986; Schwaber & Beedle
2002; Sutherland 2004). This approach uses burn-
down charts to plan a project. A burndown chart
starts with a fixed amount of functionality that
must be delivered. This reduces with each itera-
tion as more and more functionality is completed.
The slope of the burndown chart gives the project
velocity, while its intercept with the horizontal
time axis gives the projected completion date.
We can model a burndown chart very easily using
a modified version of the XP model. Instead of
letting si represent the cumulative functionality
delivered, we define it to be the amount of func-
tionality remaining. We can then set si as evidence
values, rather than Vi as in XP, and learn how the
burndown chart must be altered as each iteration
completes. An example is shown in Figure 11.

leArnIng Model for IterAtIve
testIng And fIxIng defects

The models discussed earlier contain fixed rela-
tionships between variables. The model discussed
here (see Figure 12) is a learning model in the sense

Figure 8. Project Velocity model

18

Software Project and Quality Modelling Using Bayesian Networks

that it learns the impact of particular predictors
on dependent variables using a set of past data.
The aim for this model is to predict the number
of defects found and fixed in an iterative testing
and fixing process. This iterative process assumes
that all functionality has been developed prior to
testing. The testing and fixing process is divided
into series of iterations lasting a variable amount
of time. More information on earlier versions of
this model and its assumptions can be found in
(Radliński	et	al.	2008b).

Links in this model reflect causal relation-
ships. Testing process factors (effort, process and
people quality and other factors) impact on testing
effectiveness which, after utilizing the number of
residual defects at a given point of time, determine
the number of defects found during a specific test-
ing iteration. The number of open defects from the
past iterations plus the number of defects found
in the current iteration form an upper limit for the
number of defects fixed in the current iteration.
The second limit comes from the values of fix-
ing process factors in a form of potentially fixed
defects reflecting how many defects can be fixed
given specific process data.

In contrast to traditional software reliability

growth models this model does not assume that
fixes need to be perfect. This means that it explic-
itly incorporates the number of defects inserted
as a result of an imperfect fixing process. The
model assumes that the number of defects inserted
depends on the number of defects fixed during a
specific iteration and on the fixing process qual-
ity. When many defects have been fixed than it is
probable that a proportionate number of defects
have also been introduced. When the fixing process
is poor then the number of defects inserted will
be relatively high.

The model works in the following way. A
user enters data about the past testing and fixing
iterations as well as the defects found and fixed
in these iterations. The model uses the entered
data to estimate its parameters – multipliers for
each process factor and the number of residual
defects. The values of these multipliers reflect the
importance of each process factor in terms of its
impact on the number of defects or defects fixed.
Then the user enters planned values for process
factors in future iterations – e.g. how much effort
is planned to be allocated to testing and fixing de-
fects. The model uses these process factors, learnt
multipliers and learnt residual defects to predict

Figure 9. Project velocity predictions before and after learning

19

Software Project and Quality Modelling Using Bayesian Networks

the number of defects found and the number of
defects fixed in future iterations. At this point the
user can analyze various scenarios which differ in
effort, process and people quality, or other known
factors possible in future iterations.

We perform model validation using a semi-

randomly generated dataset. We set point values
for prior residual defects and values of process
factor multipliers. Values for process factors were
generated randomly and then manually adjusted
in some iterations to more realistically reflect
the testing and fixing process. The effectiveness

Figure 10. Cumulative probability distribution of functionality delivered in iteration 8

Figure 11. Scrum burndown chart, before and after learning

20

Software Project and Quality Modelling Using Bayesian Networks

of the testing and fixing process increases over
time as the process becomes more mature and the
software under test becomes better understood.
We estimated values for defects found, fixed and
inserted using the values of process factors and
the relationships as incorporated by the model.
We used these generated datasets in the model
validation stage and treated them as if they were
observed values. In the validation stage we tested
how fast the model can learn the number of re-
sidual defects and the values of process factors’
multipliers.

We tested the model using 30 testing and fixing
iterations. First we used a single learning iteration
with 29 iterations where values of defects found
and fixed were predicted. This was followed by 2
iterations for learning and 28 for prediction, and
so on. Figure 13 illustrates the values of relative

errors in predicted total number of defects found
and defects fixed as estimated after a different
number of learning iterations. This relative error
is defined as illustrated on Equation 2.

relative error
total predicted total actual

total actual
=

-

(2)

These results confirm that after only 5 learning
iterations, the model predicts the total number of
defects found to within a 0.16 relative error of the
actual value and predicts total number of defects
fixed to within a 0.30 relative error of the actual
value. Predictions then become less accurate be-
cause of higher fluctuations in actual number of
defects found in the dataset. But from 8 learning

Figure 12. The structure of the LMITFD

21

Software Project and Quality Modelling Using Bayesian Networks

iterations the accuracy again increases (relative
error decreases). These results show that the
model is capable of learning its parameters after
very few iterations and then generates predictions
with reasonable accuracy.

One of the most important advantages of such
models is the high potential for performing various
types of what-if analyses. After the model learns
its parameters, we can set as observations different
values for future process factors to see how they
influence predicted number of defects found. For
example let us analyze model predictions in two
scenarios when fixing process and people qual-
ity is ‘very low’ or ‘very high’. Values of other
process factors are the actual values in iterations
used for prediction. We use 5 learning iterations
and the remaining 25 for prediction. Figure 14
illustrates the model’s predictions for this case.
We can observe that, as we could expect, with
lower fixing process and people quality, fewer
defects are likely to be fixed in future iterations.
These differences are very high, confirming that
the model updated its multipliers and residual
defects to reflect the fact that qualitative process
factors have a strong influence on defects found
and defects fixed.

We can see that, although we have only
modified our observations of fixing process and
people quality, the predicted values of defects

found are also different in these two scenarios.
The reason is the following. Lower fixing process
and people quality with fixing effort unchanged
leads to increased number of defects inserted as
a result of imperfect fixing. Higher number of
defects inserted causes more residual defects in
subsequent iterations. Higher number of residual
defects in turn causes there to be more defects
found – the more residual defects the easier it is
to find them.

Another issue which may be surprising in the
beginning is the fact that predicted number of
defects fixed in the late iterations is lower both
with ‘very low’ and ‘very high’ fixing process and
people quality compared with the scenario with
the original fixing process and people quality. But
there is also an explanation for such predictions.
With ‘very low’ fixing process and people quality
it is simply not possible to fix more defects without
assigning significantly more fixing effort. On the
other hand, with ‘very high’ fixing process and
people quality defects which were found earlier
were also fixed earlier. So in these late iterations
there are fewer defects still to be fixed.

Figure 13. Relative errors in predictions for total number of defects found and defects fixed depending
on number of iterations used to learn the model

22

Software Project and Quality Modelling Using Bayesian Networks

references

Abdel-Hamid, T. (1989). The dynamics of
software projects staffing: A system dynamics
based simulation approach. IEEE Transac-
tions on Software Engineering, 15(2), 109–119.
doi:10.1109/32.21738

Abrahamsson, P., & Koskela, J. (2004). Extreme
programming: A survey of empirical data from
a controlled case study. In Proceedings 2004
International Symposium on Empirical Software
Engineering, 2004. (pp. 73-82). Washington, DC:
IEEE Computer Society.

Agena Ltd. (2008). Bayesian Network and simula-
tion software for risk analysis and decision sup-
port. Retrieved July 9, 2008, from http://www.
agena.co.uk/

Agile Manifesto. (2008). Manifesto for agile
software development. Retrieved July 18, 2008,
from http://www.agilemanifesto.org/

Ahmed, A., Fraz, M. M., & Zahid, F. A. (2003).
Some results of experimentation with extreme
programming paradigm. In 7th International Multi
Topic Conference, INMIC 2003, (pp. 387-390).

Beck, K. (1999). Extreme programming explained:
Embrace change. Reading, MA: Addison-Wesley
Professional.

Bibi, S., & Stamelos, I. (2004). Software pro-
cess modeling with Bayesian belief networks. In
10th International Software Metrics Symposium
Chicago.

Boehm, B. (1981). Software engineering econom-
ics. Englewood Cliffs, NJ: Prentice-Hall.

Figure 14. Predictions from LMITFD with very high and very low fixing process and people quality
after 5 iterations used to learn the model

23

Software Project and Quality Modelling Using Bayesian Networks

Briand, L. C., El Emam, K., Surmann, D., Wiec-
zorek, I., & Maxwell, K. D. (1999). An assessment
and comparison of common software cost estima-
tion modeling techniques. In 21st International
Conference on Software Engineering, ICSE 1999,
(pp. 313-322).

Chulani, S., & Boehm, B. (1999). Modeling
software defect introduction and removal: CO-
QUALMO (COnstructive QUALity MOdel), (Tech.
Rep. USC-CSE-99-510). University of Southern
California, Center for Software Engineering, Los
Angeles, CA.

Fenton, N., Neil, M., Marsh, W., Hearty, P.,
Marquez, D., Krause, P., & Mishra, R. (2007a,
January). Predicting software defects in varying
development lifecycles using Bayesian nets. In-
formation and Software Technology, 49(1), 32–43.
doi:10.1016/j.infsof.2006.09.001

Fenton, N., Neil, M., Marsh, W., Hearty, P.,
Radlinski, L., & Krause, P. (2007b). Project data
incorporating qualitative facts for improved soft-
ware defect prediction. In Proceedings of the Third
international Workshop on Predictor Models in
Software Engineering, International Conference
on Software Engineering (May 20 - 26, 2007).
Washington, DC: IEEE Computer Society.

Fenton, N. E., Marsh, W., Neil, M., Cates, P.,
Forey, S., & Tailor, T. (2004). Making resource
decisions for software projects. In Proceedings
of 26th International Conference on Software
Engineering (ICSE 2004), Edinburgh, United
Kingdom, May 2004, IEEE Computer Society,
(pp. 397-406).

Fenton, N. E., & Neil, M. (1999). A critique of
software defect prediction models. IEEE Transac-
tions on Software Engineering, 25(5), 675–689.
doi:10.1109/32.815326

Fenton, N. E., Neil, M., & Caballero, J. G. (2007).
Using ranked nodes to model qualitative judg-
ments in Bayesian Networks. IEEE Transactions
on Knowledge and Data Engineering, 19(10),
1420–1432. doi:10.1109/TKDE.2007.1073

Finnie, G. R., Wittig, G. E., & Desharnais, J. M.
(1997). A comparison of software effort estima-
tion techniques: Using function points with neural
networks, case-based reasoning and regression
models. Journal of Systems and Software, 39(3),
281–289. doi:10.1016/S0164-1212(97)00055-1

Glass, R. L. (2006). The Standish report:
Does it really describe a software crisis?
Communications of the ACM, 49(8), 15–16.
doi:10.1145/1145287.1145301

Hearty, P., Fenton, N., Marquez, D., & Neil, M. (in
press). Predicting project velocity in XP using a
learning dynamic Bayesian Network model. IEEE
Transactions on Software Engineering.

ISBSG. (2005). Estimating, Benchmarking &
Research Suite Release 9. Hawthorn, Australia:
International Software Benchmarking Standards
Group.

Jeffries, R., Anderson, A., & Hendrickson, C.
(2000). Extreme programming installed. Reading,
MA: Addison-Wesley Professional.

Jensen, F. (2001). Bayesian Networks and decision
graphs, New York: Springer-Verlag.

Jones, C. (1986) Programmer productivity. New
York: McGraw Hill.

Jones, C. (1999). Software sizing. IEE Review,
45(4), 165–167. doi:10.1049/ir:19990406

Jones, C. (2002). Software quality in 2002: A
survey of the state of the art. Software Productiv-
ity Research.

Jones, C. (2003). Variations in software devel-
opment practices. IEEE Software, 20(6), 22–27.
doi:10.1109/MS.2003.1241362

24

Software Project and Quality Modelling Using Bayesian Networks

Kemerer, C. F. (1987). An empirical valida-
tion of software cost estimation models. Com-
munications of the ACM, 30(5), 416–429.
doi:10.1145/22899.22906

Lauritzen, S. L., & Spiegelhalter, D. J. (1988).
Local computations with probabilities on graphical
structures and their application to expert systems
(with discussion). Journal of the Royal Statisti-
cal Society. Series B. Methodological, 50(2),
157–224.

Lepar, V., & Shenoy, P. P. (1998). A comparison
of Lauritzen-Spiegelhalter, Hugin, and Shenoy-
Shafer architectures for computing marginals of
probability distributions. In G. Cooper & S. Moral
(Ed.), Proceedings of the 14th Conference on Un-
certainty in Artificial Intelligence, (pp. 328-337).
San Francisco: Morgan Kaufmann.

Molokken, K., & Jorgensen, M. (2003). A review
of software surveys on software effort estimation.
In 2003 International Symposium on Empirical
Software Engineering (pp. 223-230). Washington,
DC: IEEE press.

Murphy, K. P. (2002). Dynamic Bayesian Net-
works: Representation, inference and learning.
PhD thesis, UC Berkeley, Berkeley, CA.

Neil, M. (1992). Statistical modelling of software
metrics. Ph.D. dissertation, South Bank Univer-
sity, London.

Neil, M., & Fenton, P. (2005). Improved software
defect prediction. In 10th European Software En-
gineering Process Group Conference, London.

Neil, M., Krause, P., & Fenton, N. E. (2003).
Software quality prediction using Bayesian Net-
works. In T. M. Khoshgoftaar, (Ed.) Software
Engineering with Computational Intelligence.
Amsterdam: Kluwer.

Radliński,	Ł.,	Fenton,	N.,	&	Marquez,	D.	(in	press,	
2008a). Estimating productivity and defect rates
based on environmental factors. In Information
Systems Architecture and Technology.	Wrocław,	
Poland: Oficyna Wydawnicza Politechniki
Wrocławskiej.

Radliński,	Ł.,	Fenton,	N.,	&	Neil,	M.	(in	press,	
2008b). A Learning Bayesian Net for Predicting
Number of Software Defects Found in a Sequence
of Testing. Polish Journal of Environmental
Studies.

Radliński,	Ł.,	Fenton,	N.,	Neil,	M.,	&	Marquez,	
D. (2007). Improved decision-making for software
managers using Bayesian Networks. In Proceed-
ings of 11th IASTED International Conference
Software Engineering and Applications (SEA),
Cambridge, MA, (pp. 13-19).

Sassenburg, J. A. (2006). Design of a methodol-
ogy to support software release decisions (Do the
numbers really matter?), PhD Thesis, University
of Groningen.

Schwaber, K., & Beedle, M. (2002). Agile software
development with SCRUM. Upper Saddle River,
NJ: Prentice Hall.

Shepperd, M., & Schofield, C. (1997). Estimat-
ing software project effort using analogies. IEEE
Transactions on Software Engineering, 23(11),
736–743. doi:10.1109/32.637387

Srinivasan, K., & Fisher, D. (1995). Machine
learning approaches to estimating software de-
velopment effort. IEEE Transactions on Software
Engineering, 21(2). doi:10.1109/32.345828

Stamelos, I., Angelis, L., Dimou, P., & Sakellaris,
E. (2003). On the use of Bayesian Belief Networks
for the prediction of software productivity. Infor-
mation and Software Technology, 45(1), 51–60.
doi:10.1016/S0950-5849(02)00163-5

25

Software Project and Quality Modelling Using Bayesian Networks

Standish Group International. (1995). The Chaos
Report. Retrieved July 9, 2008, from net.educause.
edu/ir/library/pdf/NCP08083B.pdf

Sutherland, J. (2004). Agile development: Les-
sons learned from the first scrum. Retrieved July
9, 2008, from http://jeffsutherland.com/Scrum/
FirstScrum2004.pdf.

Takeuchi, H., & Nonaka, I. (1986). The new new
product development game. Harvard Business
Review, Jan-Feb.

Wang, H., Peng, F., Zhang, C., & Pietschker, A.
(2006). Software project level estimation model
framework based on Bayesian Belief Networks.
In Sixth International Conference on Quality
Software.

Williams, L., Shukla, A., & Anton, A. I. (2004).
An initial exploration of the relationship between
pair programming and Brooks’ law. In Agile De-
velopment Conference, 2004, (pp. 11-20), Agile
Development Conference.

Wooff, D. A., Goldstein, M., & Coolen, F. P.
A. (2002). Bayesian graphical models for soft-
ware testing. IEEE Transactions on Software
Engineering, 28(5), 510–525. doi:10.1109/
TSE.2002.1000453

