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Abstract--Causal models (Bayesian networks) have been used with some success to provide software managers with 
improved risk assessment and quality assurance methods. It is possible to provide more intuitive and accurate predictions 
of key project attributes such as effort and defects because they take account of causal (process) factors. To date these 
methods have largely been restricted to projects using traditional development approaches such as waterfall or spiral. Yet 
agile software development methods, such as Extreme Programming, are becoming increasingly popular alternatives and 
have just as great a need for accurate predictions and risk assessment. We present a novel Bayesian Net model that can 
provide improved effort predictions and risk assessment in an Extreme Programming environment. The model successfully 
reproduces real world characteristics of XP Project Velocity, is capable of considerable extension, and uses data to learn 
key parameters.

Index Terms— extreme programming, Bayesian nets, causal models. 

1. INTRODUCTION

In [12], Fenton and Neil explain the rationale behind creating causal models of the software 

development process using Bayesian Nets (BN). BNs offer the advantage of being able to reason 

in the presence of uncertainty, prior assumptions and incomplete data, and can include expert 

judgment in the models. They allow causal relationships to be expressed in a way that is both 

quantitative and intuitive. In software engineering, where data is often sparse or of uncertain 

quality, BNs provide the ideal tool for expressing the complex relationships between the software 

development process and the products that result.

Fenton, Neil, and others have gone on to develop a series of BN models, culminating in the 

AID tool [15], the MODIST models [16], and the extensive trials of revised models at Philips 
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[17]. Those models were used to provide improved methods of risk assessment for project 

managers, with special emphasis on defect predictions and effort prediction. Several other groups 

have also researched the use of BN based software process models. Wooff, Goldstein, and 

Coolen [13] have developed BNs modeling the software test process while Bibi and Stamelos [5]

have shown how BNs can be constructed to model IBM’s Rational Unified Process.

While these models can be adapted to agile development processes, they are not specifically 

targeted at such environments. Agile methods, such as Extreme Programming (XP) [1], are 

characterized by highly iterative approaches to software development. If each iteration is treated 

as if it were a mini-project in its own right, then existing models would quickly result in BNs 

which are unmanageable and computationally infeasible. What is needed is an extremely small 

core model that can be extended as needed.

In XP development, the emphasis is on producing working code through iteration and 

adaptation. Data collection and subsequent metric information are likely to be extremely limited 

and varied. Any model of an XP development environment must recognize this and not be tied to 

a specific set of practices.

One metric that is always available in XP, however, is Project Velocity (PV). PV is a measure 

of team productivity and is central to any XP project. Roughly speaking it can be thought of as 

"productive effort per iteration". The exact definition of PV is given in section 2.2. 

The iterative nature of XP means that PV data is collected early on in the project. A key 

requirement of XP is fast feedback, therefore we aim to incorporate this data into the model, 

enabling it to learn key parameters and increase the confidence of predictions for subsequent 

iterations.

We therefore aim to produce a model that satisfies the following requirements.
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1. It must be able to monitor and predict PV, taking into account the impact of relevant 

process factors.

2. The core model must be very small. This enables it to be replicated multiple times in order 

to represent the multiple iterations of an agile development environment.

3. It must be possible to adapt the model to handle different types of data for different 

environments. In particular, the model should be capable of including all the key practices 

of XP.

4. Many projects report low initial productivity, gradually rising on subsequent iterations [18], 

[19] and [10]. The model should be capable of replicating this empirical behavior.

5. The model must learn, either as a result of observations or as a result of expert judgment 

entered as evidence.

6. It must give useful and clear advice to managers.

The model discussed here has been implemented using the AgenaRisk toolset [7]. This was 

due, amongst other things, to the ease with which dynamic models can be constructed and the 

availability of a wide range of built in conditional probability functions.

Section 2 gives a brief overview of the main ideas in XP that are relevant to this model. Section 

3 gives some background on Bayesian Nets. Section 4 describes the main iterative part of the 

model and the model used to set the initial conditions. Section 5 gives some results of the 

model’s behavior. Finally, Section 6 provides some conclusions and indications of future work.

2. EXTREME PROGRAMMING

Extreme Programming (XP) is an approach to software development that consists of a 

collection of values, principles and practices as outlined by Kent Beck, Ward Cunningham and 

Ron Jeffries [1][2]. These include most notably: pair programming, collective code ownership, 
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frequent integration, onsite customer input, unit testing, and refactoring. XP emphasizes a 

lightweight, often informal approach. There are no large-scale requirements, analysis and design 

phases. Instead, the customer and development team agree a System Metaphor that summarizes 

the aims of the project, and a series of User Stories (described in Section 2.1) which concisely 

define the requirements.

XP is a highly iterative approach. Beck recommends iterations of a fixed, one week duration 

[1] (p.46). Each iteration should deliver a usable version of the system, updated to include the 

user stories allocated to that iteration. The effort required to deliver the user stories is what 

characterizes the PV (described in Section 2.2). The notion of misdirected effort is described in 

Section 2.3, while in Section 2.4 we define some key process factors that are used in the 

subsequent models.

2.1. User Stories

User stories are the main unit of work in XP. They are written by the customer who assigns a 

priority to each user story. The allocation of user stories to an iteration is done by the customer 

on the basis of the user stories’ priorities. The customer also defines the acceptance tests that a 

user story must pass. This provides a clear definition of what constitutes completed work.

Developers assign the effort that they believe is required for them to design, code and test the 

user story. Since these are personalized estimates, they already include allowances for the 

productivity of individual team members.

Efforts are estimated using a unit called Ideal Engineering Days (IEDs). An IED is a day 

devoted entirely to user story completion, free from overheads and distractions. It includes 

detailed design, coding, unit testing and acceptance testing. It excludes all other effort that can 

consume developers’ time, including but not limited to administrative tasks, mentoring, support  
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and learning.

We denote the estimated effort for the jth user story in iteration i by Ui
j.

Example: Suppose that there are 8 user stories in total for a project prioritized as shown in 

Table 1. Suppose that in the first iteration the developers feel they will have a total of 5 IEDs 

available. Then they will plan to complete the first three user stories US1, US2 and US3 in 

iteration one.

Table 1 Estimating user stories

User Story Priority Ideal Engineering Days Iteration
US1 1 U1

1 = 2 1

US2 2 U1
2 = 1

US3 3 U1
3 = 2

US4 4 U2
1 = 3 2

US5 5 U2
2 = 2

US6 6 U3
1 = 4 3

US7 7 U3
2 = 1

US8 8 U4
1 = 1 4

2.2. Project Velocity

Once iteration i is complete, the estimates for the completed user stories are added together. 

This is the project velocity Vi for iteration i. 

∑=
ij

j
ii UV

incompleted
Eq.  1

It is important to emphasize this is an estimate of how many IEDs the team thought it would 

take to complete the work. It is not the number of actual person-days taken, nor is it the calendar 

time taken. Thus, in the previous example, if the first three user stories really were completed in 

iteration 1 then V1 = 5. 
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Assuming that the next iteration, i + 1, is the same length, the customer selects the highest 

priority uncompleted user stories whose estimated IEDs sum to Vi. These user stories are then 

scheduled for iteration i + 1. The work scheduled for iteration i + 1 therefore has the same 

estimated ideal effort as the estimates for the actual work completed in iteration i. Expressed 

more concisely: we can expect to be as productive in the next iteration as we were in the last. So, 

using the example shown in Table 1 we have V1 = 5, and so we would schedule tasks US4 and 

US5 for iteration 2 since the estimated IEDs required for these two user stories is 5. If it turns out 

that in schedule 2 we only manage to complete US4 then V2 = 3.

Note that the actual time taken to complete a user story is not used here. To illustrate why it is 

unnecessary, let us suppose that the developers working on US1, US2 and US3 had carefully 

filled in time sheets and determined that the time spent on those stories was not the 5 days that 

was estimated, but actually took 6 IEDs, i.e. there was a bias, b1, in their estimates. (Note that the 

use of the word “bias” here is not intended in the statistical sense of a biased estimator).

If A1
j are the actual efforts taken then:

∑∑
∑

==

j

j

j

j
j

j

A

V

A

U

b
1

1

1

1

1

Eq.  2

In this case, b1 is 5/6. A project manager might assume that the remaining tasks have been 

underestimated by the same amount and multiply them by 6/5 to compensate. US4 and US5 

would then have new estimates of 3.6 and 2.4 respectively. The manager knows that the team did

6 actual IEDs work in iteration 1 and, all things remaining equal, are likely to do 6 actual IEDs in 

iteration 2, so he schedules tasks whose updated estimates add to 6. This would result in US4 and 

US5 being scheduled for the next release - exactly the same as we had before (except that there is 
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now a lot more time tracking and form filling being done). 

This scheduling mechanism assumes that the ratio of effort (people × working days) to PV 

remains constant. This assumption can be justified by examining the two possible estimation 

scenarios.

1. User story estimates are being consistently overestimated or underestimated. This 

consistency ensures that any bias in the estimates for the previous iteration will be repeated 

in the current iteration.

2. If there is no consistent bias in the effort estimations, i.e. there is as much overestimation 

as underestimation, then these inaccuracies will even themselves out over multiple 

iterations. This further assumes that teams are able to schedule additional work in an 

iteration when the effort of existing tasks has been over-estimated and slack time is 

available.

If the next set of user story estimates do not sum to exactly Vi then various options are possible.

• One of the user stories can be broken down further. In fact, this happens anyway in 

XP. Each user story is broken down into development tasks as a result of a short 

design stage. This level of granularity is not included in this model.

• An alternative user story can be selected, although this breaks the prioritization 

guidelines in XP.

• Stories with estimates slightly less than Vi can be chosen.

It is recognized that in real world projects there are dependencies between iterations. Efficient 

implementation sometimes demands that the order of work differ from the customer’s desired 

prioritization. There are also rework tasks which arise when work in a previous iteration must be 

revisited. None of this is explicitly included in this model. Inter-iteration dependencies are 
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simply subsumed within other, more general, overheads.

The introduction of pair programming has no effect on how these calculations are performed. If 

the developers in our example are paired then the number of user stories completed in iteration 

one might decrease, say to a set of user stories whose estimates totaled 3 IEDs instead of 5. User 

stories adding up to 3 IEDs are then scheduled for the next iteration. Similarly, the extent to 

which user stories are complete serially or in parallel has no effect on the model.

2.3. Misdirected Effort

To help express the relationship between successive values of V, we introduce the concept of 

Misdirected Effort, M. Misdirected effort is effort which does not result in completed user 

stories. This includes both development and non-development activity (such as administrative 

tasks). 

All user stories scheduled for inclusion in an iteration, which fail their acceptance tests, form 

part of the misdirected effort. This can happen for several reasons.

1. Software defects which are missed during unit testing may be serious enough to cause the 

acceptance tests to fail. This can be caused by: poor development, poor unit testing, good 

acceptance testing.

2. The developers can have misunderstood the requirements. Poor quality and insufficient 

quantity of customer input and feedback might increase the probability of this occurring. 

3. Underestimation of the effort required to complete a user story can mean that development 

tasks are not completed on schedule.

Misdirected effort is expected to be larger at the start of an XP project. Examples of this can be 

seen in, [18], [19] and [10]. Some of the reasons for this are unique to XP, others are common to 
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all software development.

• Developers may only recently have been formed into a team and may need time to 

learn each others’ capabilities and strengths.

• The development environment may not be fully defined or there may be overheads 

associated with developers learning to make the best use of the tools available.

• Domain knowledge may be sparse. This might be particularly true in an XP 

environment where there is no comprehensive written requirements to read.

• Developers new to XP may take time to become comfortable with some XP 

practices such as pair programming.

This latter effect has been reported, for example, by Williams, Kessler, Cunningham, and 

Jeffries [20], and Cockburn and Williams [21], where an initial 60% drop in programmer 

productivity quickly recovered to only a 15% drop. This adjustment period is referred to as Pair 

Jelling. This is consistent with work reported by Nosek [9] which showed a 50% drop in 

productivity but only over short, one-off assignments. 

Strictly speaking, misdirected effort consists of three distinct types of component.

1. Scheduled development tasks which were not completed. These must be carried over into 

the next iteration.

2. Fixed administrative overheads.

3. Overheads which scale with the length of an iteration.

Two of these three components are not dependent on the length of an iteration, one is. In order 

to simplify the model, we restrict ourselves to fixed length iterations.
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2.4. Process factors

The preceding analysis splits available effort into PV and Misdirected Effort. Some way is 

needed to control the amount of effort allocated to these two values. In this model, there is a 

single controlling factor which we call Process Effectiveness, e. This is a real number in the 

range [0,1] which represents the proportion of the available effort that translates into the PV. A 

Process Effectiveness of one means that all available effort becomes part of the PV and there is 

zero Misdirected Effort.

The Process Effectiveness is in turn controlled by two further parameters: Effectiveness Limit, 

l, and Process Improvement, r. The Process Improvement is the amount by which the Process 

Effectiveness increases from one XP iteration to the next. The name arises from the fact that we 

expect the Process Effectiveness to generally improve from one iteration to the next, or at least, 

not get any worse. However, to allow for failing projects, the Process Improvement can also take 

on negative values.

The Effectiveness Limit recognizes the fact that there are often limits to how productive a team 

of people can be. There will always be some necessary overheads which prevent some of the 

available effort being translated into PV. Effectiveness Limit is therefore the maximum value 

which the model allows Process Effectiveness to take.

Note that all of this relies on minimal assumptions: effort either contributes to delivered 

functionality, or it does not. The ratio between productive effort and total effort exists whether 

we call it Process Effectiveness or not. This ratio varies between iterations and has a limit, even 

if the limit is unity. As the core model contains variables based only on these factors, it too is 

based upon minimal assumptions.
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3. BAYESIAN NET MODEL

A Bayesian Net (BN) is a directed acyclic graph (such as the one shown in Fig. 1), where the 

nodes represent random variables and the directed arcs define causal influences or functional 

relationships. Nodes without parents are defined through their prior probability distributions. 

Nodes with parents are defined through Conditional Probability Distributions (CPDs). 

li-1

ri-1

ei-1

bi-1

Ei Ai

Vibi

li

ri ei

= bi Ai

= ei Ei

= min(ri + ei-1, li)

Fig.  1.  Project velocity model.

Table 2 summarizes the model variables. Measures of effort are denoted by capital letters. All 

other variables use lower case letters. Subscripts are used to denote a specific XP iteration. For 

example V2 denotes the PV in iteration 2. Where the iteration is not important, we drop the 

subscript and refer to V, for example, as the PV. 

When the value of a variable has been measured, it can be entered as data in the corresponding 

node. The rules of Bayesian probability are then applied to propagate consistently the impact of 

the evidence on the probabilities of the variables of interest. More information on Bayesian Nets 

and suitable propagation algorithms can be found in [4] and [11].

When we wish to distinguish between a model prediction and a measured value, we will use an 

underscore to denote the measurement. So if V3 is the predicted value for the PV at iteration 

three, then V3 is the measured value.
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Table 2 Symbol definitions

Symbol Meaning

di Number of working days in iteration i. di = 0, 1, 2, ... This is an integer value. 
pi Number of team members in iteration i. This can be fractional if one or more people 

do not work full time on the project. ei ∈ [1, ∞). 
si Productive effort to date. si = si-1 + Vi = ΣVi, si ∈ [0,∞).
Ei Iteration effort in man-days. Ei = pi × di, Ei ∈ [0,∞).
Ui

j Estimated effort of jth user story in iteration i. Ui
j ∈ [0,∞).

Ai Actual productive effort in iteration i. Ai = Ei × ei, Ai ∈ [0,∞).
Vi Project Velocity in iteration i. ∑=

j

j
ii UV , Vi ∈ [0,∞).

bi Estimation bias. bi =  Vi / Ai, bi ∈ [0,∞).
Mi Misdirected effort in iteration i. This is effort which did not result in completed user 

stories. Ei = Vi + Mi, Mi ∈ [0,∞).
fi Load Factor in iteration i. fi = Ei / Vi, fi ∈ [1,5]. Used to estimate timescales. The 

upper limit is arbitrary.
ei Process effectiveness in iteration i. Vi = Ei × ei, ei ∈ [0,1]. 
li Effectiveness limit. The maximum value that the ei can take, li ∈ [0,1].
ri Process improvement. ei = min (ei-1 + ri , li) , ri ∈ [-1,1].

Not all of the variables shown in Table 2 are shown in Fig. 1. Several of the variables are 

included only to make the definitions of others more rigorous (d, p and M). Some exist to relate 

the model to XP concepts (f and U), and others to relate the model to management concepts (s).

Before presenting the model in detail, we need to discuss a few preliminaries about Dynamic 

Bayesian Nets.

3.1. Dynamic Bayesian Networks

Dynamic Bayesian Nets (DBN) extend BNs by adding a temporal dimension to the model. 

Formally, a DBN is a temporal model representing a dynamic system, i.e. it is the system being 

modeled which is changing over time, not the structure of the network [22]. A DBN consists of a 

sequence of identical Bayesian Nets, , 1,2,...t t =Z , where each tZ represents a snapshot of the 
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process being modeled at time t. We refer to each tZ  as a timeslice. For XP, where the software 

production process is split into a series of discrete iterations, this is a particularly apt approach.

The models presented here are all first order Markov. This means that the conditional 

probabilities of nodes in tZ  depend only on the distributions in tZ  and 1t−Z . The first order 

Markov property reduces the number of dependencies, making it computationally feasible to 

construct models with larger numbers of timeslices. Consistent propagation is achieved using 

standard Junction Tree algorithms [11].

Nodes that contain links between two timeslices are referred to as link nodes. Fig. 1 shows a 

single timeslice tZ , t =1,2…., but with the link nodes from the previous timeslice shown lightly 

shaded. The link nodes to the next timeslice are shaded black. Fig. 2 shows the same model, this 

time “rolled out” as a three iteration DBN (link nodes are shaded).

l1

r1

e1

b1

E1 A1

V1

l2

r2

e2

b2

E2 A2

V2

l3

r3

e3

b3

E3 A3

V3

Fig.  2 Model as a DBN
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3.2. Parameter Learning

The process effectiveness limit (li) , rate of process improvement (ri) and bias (bi) are the key 

parameters in this model. Between them they control the process effectiveness, which in turn 

controls the misdirected effort and the PV. It is important that the model is capable of adjusting 

these parameters as a result of entering data about the project. In particular, the model must 

respond to observations of the PV. 

4. MODEL DESCRIPTION

We describe a single timeslice by breaking it down into distinct fragments. The model is then 

constructed by linking timeslices together. A special initial timeslice is used to create the initial 

prior probability distributions.

4.1. Iteration Model

The BN shown in Fig. 1 is used as a single iteration model for PV. The model is best thought 

of as comprising three distinct fragments. 

Fragment 1 controls the Productive Effort. A single variable, Process Effectiveness (ei), is 

assumed to determine the Productive Effort. High Process Effectiveness means a high Productive 

Effort and a correspondingly high PV. Process Effectiveness increases or decreases based on the 

value of the Process Improvement (ri). It is constrained to the range [0, li].

li-1

ri-1

ei-1

li

ri ei

Fig.  3 Fragment 1 - Process effectiveness nodes
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The CPD of li is a function of li-1. In this case li is set equal to li-1. The process effectiveness 

limit (li) is really a single variable which is global to all timeslices. Copying it between timeslices 

allows us to preserve the first order Markov property. Similarly ri is just a copy of ri-1.

Fragment 2 contains the "effort" nodes (Fig. 4). It combines the total Iteration Effort (Ei) with 

the process effectiveness (ei) to create the actual Productive Effort (Ai). Misdirected Effort (Mi) is 

not shown, but it is simply the difference between Ei and Ai. Note that, although Ai is not required 

by the XP methodology, we need it in this model for reasons that will be explained below.

Ei Ai

Fig.  4 Fragment 2 - Effort nodes

Fragment 3 holds the project velocity (Fig. 5). PV can either be predicted by the model (Vi), or 

once an iteration is completed, it can be entered as evidence (Vi) and used to learn the model 

parameters. The bias, bi, allows for any consistent bias in the team’s effort estimation. If their 

was no bias then the productive effort A would be the same as the PV and there would be no need 

to distinguish between the two. 

bi-1 Vibi

Fig.  5 Fragment 3 - Project Velocity

4.2. Setting the initial conditions

An initial timeslice, Iteration 0 (shown in Fig. 6), is used to set the initial model conditions. 

For iteration 0, the prior distributions of the input effectiveness limit (l0), process improvement 

(r0) and process effectiveness (e0) are all set to be normal distributions, with variances of 0.3 and 
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means of 0.8, 0.2 and 0.3 respectively. These values are based on a controlled case study by 

Abrahamsson and Koskela [19], where process effectiveness varied between 0.4 and 0.75. We 

have simply extended this range slightly and chosen r0 so that the lowest to highest transition can 

take place within four iterations.

The prior of the estimation bias (b0) is set to a log normal distribution with a mean of 

approximately 1.0, and a variance of 0.1.

Evidence is entered in all of the Ei nodes. 

l1

r1

e1

b1

E1 A1

V1

l0

r0

e0

b0

Fig.  6.  Initial Velocity model

5. MODEL BEHAVIOR

Fig. 7 shows the predicted values of the PV for a project with 50 hours of effort available in 

each iteration. The central dotted line is the mean, with the outer dotted lines showing +/- one 

standard deviation. The solid line is the median value. This is based solely on the model’s initial 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) <

17

conditions.

The Process Effectiveness increases with each iteration by an amount equal to the Process 

Improvement. It flattens out as it begins to hit the Effectiveness Limit. As can be see from the 

graph, this leads to the PV starting fairly low and gradually increasing with each iteration. Being 

able to model and predict this type of behavior was one of the main objectives of the core model.

Fig.  7.  Project velocity values – median, mean, mean ± 1 SD

This is our “Baseline” scenario, with no PV evidence entered into the model. By entering PV 

evidence, we can construct various alternative scenarios and compare the learned parameters and 

predicted values of future PV. The values shown in Table 3 were used to construct three such 

scenarios, all based on 50 hours of available effort per iteration. No values were entered for V9 or 

V10, allowing the model to predict these values. These represent projects that are respectively 

failing, performing as expected, or progressing with great success. We refer to these as the 

“Failing”, “Average” and “Success” scenarios respectfully.
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Table 3 - PV values for three scenarios

Scenario\PV V1 V2 V3 V4 V5 V6 V7 V8

Failing 2 3 3 4 4 3 4 4
Average 20 25 27 28 28 29 30 31
Successful 200 205 210 215 219 223 225 227

5.1. Parameter Learning in Different Scenarios

Fig. 8 shows the resulting distributions of the bias node, b10. There are four distributions, one 

for each scenario. Three of the scenarios have mean values close to one, although both the 

Failing and Average scenarios have reduced variances compared to the baseline. This is expected 

from scenarios where evidence has been entered. 

Success
Mean 4.3
Var    0.016

Average
Mean 0.90
Var    0.001

Baseline
Mean 1.05
Var    0.1

Failing
Mean 0.64
Var    0.03

Fig.  8 - Bias distribution, iteration 10

The Baseline scenario predicted values for V1 to V8 in the range 18-30. However the Success 

scenario entered evidence in the range 200-227. These values indicate that the project team has 

done 200-227 estimated IEDs in a single iteration with only 50 man-days of effort. Clearly this 

can only come about if their estimates are significantly biased, and indeed, the model suggests 
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that the bias in this case has a mean value of 4.3. This only accounts for part of the high PV 

values however. The remainder is accounted for by an increased effectiveness limit (Fig. 9) 

which allows a greater process effectiveness.

Success

Average

Baseline

Failing

Fig.  9 – Effectiveness Limit, median, 5 iterations

Success

Average

Baseline

Failing

Fig.  10 - Process Improvement, median, 5 iterations

As we might expect, the Failing scenario shows a poor effectiveness limit and a very small 

improvement in process effectiveness (Fig. 10). Surprisingly, the success scenario shows an 
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even worse process improvement. However, this is because the model is forced to assume a very 

high process effectiveness in the initial iterations. The values provided are so far outside the 

normally expected range that the model is continually trying to compensate by bringing the 

process effectiveness back down again. By iteration 6 the process improvement finally begins to 

stabilize.

Both the Effectiveness Limit (Fig. 9) and the Process Improvement (Fig. 10) change as 

evidence is entered in the first eight iterations. The model therefore learns as new evidence is 

entered and changes its predictions accordingly.

Fig. 11 shows the behavior of the Bias node, bi, in the Average scenario. The central dotted 

line, which is almost co-incident with the solid line, shows the mean and median values 

respectively. The outer dotted lines show the mean ± 1 standard deviation (SD). The SD gets 

smaller as more evidence is entered into the model. This illustrates that, not only does the model 

learn the values of its parameters, but the uncertainty in those values decreases as more evidence 

becomes available.

Fig.  11. Bias, Average scenario,  median, mean ± 1 SD
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5.2. Indicator Nodes

Indicator nodes are nodes with a single parent and no children. They are often used to provide 

evidence for variables that are themselves unobservable. Indicator nodes are one of the main 

mechanisms used to introduce XP practices into the model.

An indicator node for the Effectiveness Limit is shown in Fig. 12: the “Collective ownership” 

node. This is the extent to which collective code ownership is practiced. It is a ranked node, 

consisting of five discrete values ranging from Very Low to Very High. The probability of these 

five values is derived from a truncated normal distribution whose mean is li, and whose variance 

is arbitrarily set to 0.1. This distribution ensures that a high degree of collective ownership leads 

to a high effectiveness limit. The variance determines the strength of the relationship.

li-1

ri-1

ei-1

li

ri ei

Collective
ownership

Fig.  12 The "Collective Ownership" indicator node

With no evidence, the node plays little part in the model, and its parent, li, remains constant 

from one iteration to the next (the “Baseline” scenario). However, when we set the value of 

“Collective ownership” in each iteration to "Very High" (the “High” scenario) then the situation 

changes. The evidence back propagates to li. Because of the learning mechanism described 

above, the effect is cumulative and the mean value increases across iterations. The difference is 
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shown in Fig. 13. 

Values entered into this node are examples of expert judgment. The ease with which expert 

judgment can be combined with objective evidence and prior assumptions is one of the benefits 

of the Bayesian Network approach to modeling.

Two other scenarios are also shown, one where the Collective Ownership node is always set to 

“Very Low” (the “Low” scenario) and a slightly more realistic case (the “Mix” scenario). In the 

Mix scenario, Collective Ownership starts off “Very Low”. However management realize that 

there is a problem and take steps to improve collective ownership. By iteration 4 Collective 

Ownership improves to “Medium” and by iteration 6 it achieves a “High” value.

High

Mix

Baseline

Low

Fig.  13.  Effectiveness Limit with and without indicator node evidence

The extent to which XP practices are implemented can therefore have a dramatic effect on the 

model parameters, which in turn propagates through to the model’s predictions. Fig. 14 shows a 

slightly modified version of the PV fragment of the model. This includes an additional link node, 

si, which acts as the cumulative sum of the PV to date.
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bi-1 Vibi

si-1 si = si-1 + Vi

Fig.  14. Project Velocity summed to date.

Plots of si for the four scenarios are shown in Fig. 15. If the total estimate to complete the 

entire project is, say, 200 IEDs, then we can immediately read off from the graph how long it will 

take to complete the project for the four scenarios. The High scenario will complete in just over 6 

iterations and the Baseline in just over 7. The Mix and Low scenarios will not complete within 

10 iterations.

High

Mix

Baseline

Low

Fig.  15 Sum PV to date

The model can also quantify the uncertainty involved in completing 200 IEDs of user stories 

within 10 iterations. Fig. 16 shows the cumulative distribution functions for the si node in 

iteration 10. The vertical line allows us to read off the probability of completing up to 200 IEDs 

by the end of the tenth iteration. For the “High” scenario, there is only a 1% chance of 
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completing less than 200 IEDs, i.e. there is a 99% chance of completing 200 IEDs or more.

H igh  99%

M ix  25 %

B aselin e 9 0%

L ow  5 %

Fig.  16 Iteration 10 cumulative distributions, Sum PV to date

We have shown how the XP practice of Collective Ownership can be used as an indicator of 

the Effectiveness Limit. There will of course be many more factors that can be used as indicators 

of this parameter. Examples include the team’s experience (both management and development) 

and the resources they have at their disposal. These, together with other XP practices, are obvious 

candidates for additional indicator nodes. 

Similarly, other XP practices and environmental factors can be used as indicators of the 

process improvement, r i. For example, the extent to which misperceptions about requirements 

are speedily corrected will depend on the strength of the relationship with the customer. An 

authoritative on-site customer voice should therefore be a strong indicator of a high r i. 

However, some XP practices cannot be included in the model at this stage. The quality of unit 

testing, for example, will need to be incorporated in future defect prediction models.
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6. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to produce a relatively simple BN model that correctly 

reproduces known empirical behavior in XP Project Velocity. This model is able to learn from 

both observations of the PV itself as well as from expert judgment entered via indicator nodes. 

The model is flexible in that a large number of indicator nodes and causal influences can be 

appended to the core model. These enable XP practices to be easily included.

The model has already been extended to reproduce the mentoring overhead of assimilating 

additional team members. This closely follows the model of Williams, Sukla and Anton[10]. 

This is an important aspect of the "Brooks’ factor", i.e. the tendency for larger teams to be less 

productive [6]. 

A similar approach can be used to create a defects prediction model, with the effort model as 

one of its primary inputs. This allows a family of models to be constructed which represent a 

wide variety of XP environments and which can be used to model either effort alone, effort plus 

defects, or cost versus time trade-offs. Each will be able to cope with varying size project teams.
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