
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

1

Abstract--Causal models (Bayesian networks) have been used with some success to provide software managers with
improved risk assessment and quality assurance methods. It is possible to provide more intuitive and accurate predictions
of key project attributes such as effort and defects because they take account of causal (process) factors. To date these
methods have largely been restricted to projects using traditional development approaches such as waterfall or spiral. Yet
agile software development methods, such as Extreme Programming, are becoming increasingly popular alternatives and
have just as great a need for accurate predictions and risk assessment. We present a novel Bayesian Net model that can
provide improved effort predictions and risk assessment in an Extreme Programming environment. The model successfully
reproduces real world characteristics of XP Project Velocity, is capable of considerable extension, and uses data to learn
key parameters.

Index Terms— extreme programming, Bayesian nets, causal models.

1. INTRODUCTION

In [12], Fenton and Neil explain the rationale behind creating causal models of the software

development process using Bayesian Nets (BN). BNs offer the advantage of being able to reason

in the presence of uncertainty, prior assumptions and incomplete data, and can include expert

judgment in the models. They allow causal relationships to be expressed in a way that is both

quantitative and intuitive. In software engineering, where data is often sparse or of uncertain

quality, BNs provide the ideal tool for expressing the complex relationships between the software

development process and the products that result.

Fenton, Neil, and others have gone on to develop a series of BN models, culminating in the

AID tool [15], the MODIST models [16], and the extensive trials of revised models at Philips

Manuscript received August 9, 2006. This research is funded through eXdecide (EPSRC Grant Reference: EP/C005406/1) and an associated
CASE award from Agena Ltd.

Peter Hearty and David Marquez are with Queen Mary, University of London, UK (+44 20 7882 7896, e-mail: hearty@dcs.qmul.ac.uk,
marquezd@dcs.qmul.ac.uk).

Norman Fenton is with Queen Mary, University of London, UK (+44 20 7882 7860, e-mail: norman@dcs.qmul.ac.uk). He is CEO of Agena
Ltd.

Martin Neil is with Queen Mary, University of London, UK (+44 20 7882 5221, e-mail: martin@dcs.qmul.ac.uk). He is CTO of Agena Ltd.

Improved prediction in Extreme Programming
Projects using Bayesian Networks

Peter Hearty, Norman Fenton, David Marquez, Martin Neil

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

2

[17]. Those models were used to provide improved methods of risk assessment for project

managers, with special emphasis on defect predictions and effort prediction. Several other groups

have also researched the use of BN based software process models. Wooff, Goldstein, and

Coolen [13] have developed BNs modeling the software test process while Bibi and Stamelos [5]

have shown how BNs can be constructed to model IBM’s Rational Unified Process.

While these models can be adapted to agile development processes, they are not specifically

targeted at such environments. Agile methods, such as Extreme Programming (XP) [1], are

characterized by highly iterative approaches to software development. If each iteration is treated

as if it were a mini-project in its own right, then existing models would quickly result in BNs

which are unmanageable and computationally infeasible. What is needed is an extremely small

core model that can be extended as needed.

In XP development, the emphasis is on producing working code through iteration and

adaptation. Data collection and subsequent metric information are likely to be extremely limited

and varied. Any model of an XP development environment must recognize this and not be tied to

a specific set of practices.

One metric that is always available in XP, however, is Project Velocity (PV). PV is a measure

of team productivity and is central to any XP project. Roughly speaking it can be thought of as

"productive effort per iteration". The exact definition of PV is given in section 2.2.

The iterative nature of XP means that PV data is collected early on in the project. A key

requirement of XP is fast feedback, therefore we aim to incorporate this data into the model,

enabling it to learn key parameters and increase the confidence of predictions for subsequent

iterations.

We therefore aim to produce a model that satisfies the following requirements.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

3

1. It must be able to monitor and predict PV, taking into account the impact of relevant

process factors.

2. The core model must be very small. This enables it to be replicated multiple times in order

to represent the multiple iterations of an agile development environment.

3. It must be possible to adapt the model to handle different types of data for different

environments. In particular, the model should be capable of including all the key practices

of XP.

4. Many projects report low initial productivity, gradually rising on subsequent iterations [18],

[19] and [10]. The model should be capable of replicating this empirical behavior.

5. The model must learn, either as a result of observations or as a result of expert judgment

entered as evidence.

6. It must give useful and clear advice to managers.

The model discussed here has been implemented using the AgenaRisk toolset [7]. This was

due, amongst other things, to the ease with which dynamic models can be constructed and the

availability of a wide range of built in conditional probability functions.

Section 2 gives a brief overview of the main ideas in XP that are relevant to this model. Section

3 gives some background on Bayesian Nets. Section 4 describes the main iterative part of the

model and the model used to set the initial conditions. Section 5 gives some results of the

model’s behavior. Finally, Section 6 provides some conclusions and indications of future work.

2. EXTREME PROGRAMMING

Extreme Programming (XP) is an approach to software development that consists of a

collection of values, principles and practices as outlined by Kent Beck, Ward Cunningham and

Ron Jeffries [1][2]. These include most notably: pair programming, collective code ownership,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

4

frequent integration, onsite customer input, unit testing, and refactoring. XP emphasizes a

lightweight, often informal approach. There are no large-scale requirements, analysis and design

phases. Instead, the customer and development team agree a System Metaphor that summarizes

the aims of the project, and a series of User Stories (described in Section 2.1) which concisely

define the requirements.

XP is a highly iterative approach. Beck recommends iterations of a fixed, one week duration

[1] (p.46). Each iteration should deliver a usable version of the system, updated to include the

user stories allocated to that iteration. The effort required to deliver the user stories is what

characterizes the PV (described in Section 2.2). The notion of misdirected effort is described in

Section 2.3, while in Section 2.4 we define some key process factors that are used in the

subsequent models.

2.1. User Stories

User stories are the main unit of work in XP. They are written by the customer who assigns a

priority to each user story. The allocation of user stories to an iteration is done by the customer

on the basis of the user stories’ priorities. The customer also defines the acceptance tests that a

user story must pass. This provides a clear definition of what constitutes completed work.

Developers assign the effort that they believe is required for them to design, code and test the

user story. Since these are personalized estimates, they already include allowances for the

productivity of individual team members.

Efforts are estimated using a unit called Ideal Engineering Days (IEDs). An IED is a day

devoted entirely to user story completion, free from overheads and distractions. It includes

detailed design, coding, unit testing and acceptance testing. It excludes all other effort that can

consume developers’ time, including but not limited to administrative tasks, mentoring, support

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

5

and learning.

We denote the estimated effort for the jth user story in iteration i by Ui
j.

Example: Suppose that there are 8 user stories in total for a project prioritized as shown in

Table 1. Suppose that in the first iteration the developers feel they will have a total of 5 IEDs

available. Then they will plan to complete the first three user stories US1, US2 and US3 in

iteration one.

Table 1 Estimating user stories

User Story Priority Ideal Engineering Days Iteration
US1 1 U1

1 = 2 1

US2 2 U1
2 = 1

US3 3 U1
3 = 2

US4 4 U2
1 = 3 2

US5 5 U2
2 = 2

US6 6 U3
1 = 4 3

US7 7 U3
2 = 1

US8 8 U4
1 = 1 4

2.2. Project Velocity

Once iteration i is complete, the estimates for the completed user stories are added together.

This is the project velocity Vi for iteration i.

∑=
ij

j
ii UV

incompleted
Eq. 1

It is important to emphasize this is an estimate of how many IEDs the team thought it would

take to complete the work. It is not the number of actual person-days taken, nor is it the calendar

time taken. Thus, in the previous example, if the first three user stories really were completed in

iteration 1 then V1 = 5.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

6

Assuming that the next iteration, i + 1, is the same length, the customer selects the highest

priority uncompleted user stories whose estimated IEDs sum to Vi. These user stories are then

scheduled for iteration i + 1. The work scheduled for iteration i + 1 therefore has the same

estimated ideal effort as the estimates for the actual work completed in iteration i. Expressed

more concisely: we can expect to be as productive in the next iteration as we were in the last. So,

using the example shown in Table 1 we have V1 = 5, and so we would schedule tasks US4 and

US5 for iteration 2 since the estimated IEDs required for these two user stories is 5. If it turns out

that in schedule 2 we only manage to complete US4 then V2 = 3.

Note that the actual time taken to complete a user story is not used here. To illustrate why it is

unnecessary, let us suppose that the developers working on US1, US2 and US3 had carefully

filled in time sheets and determined that the time spent on those stories was not the 5 days that

was estimated, but actually took 6 IEDs, i.e. there was a bias, b1, in their estimates. (Note that the

use of the word “bias” here is not intended in the statistical sense of a biased estimator).

If A1
j are the actual efforts taken then:

∑∑
∑

==

j

j

j

j
j

j

A

V

A

U

b
1

1

1

1

1

Eq. 2

In this case, b1 is 5/6. A project manager might assume that the remaining tasks have been

underestimated by the same amount and multiply them by 6/5 to compensate. US4 and US5

would then have new estimates of 3.6 and 2.4 respectively. The manager knows that the team did

6 actual IEDs work in iteration 1 and, all things remaining equal, are likely to do 6 actual IEDs in

iteration 2, so he schedules tasks whose updated estimates add to 6. This would result in US4 and

US5 being scheduled for the next release - exactly the same as we had before (except that there is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

7

now a lot more time tracking and form filling being done).

This scheduling mechanism assumes that the ratio of effort (people × working days) to PV

remains constant. This assumption can be justified by examining the two possible estimation

scenarios.

1. User story estimates are being consistently overestimated or underestimated. This

consistency ensures that any bias in the estimates for the previous iteration will be repeated

in the current iteration.

2. If there is no consistent bias in the effort estimations, i.e. there is as much overestimation

as underestimation, then these inaccuracies will even themselves out over multiple

iterations. This further assumes that teams are able to schedule additional work in an

iteration when the effort of existing tasks has been over-estimated and slack time is

available.

If the next set of user story estimates do not sum to exactly Vi then various options are possible.

• One of the user stories can be broken down further. In fact, this happens anyway in

XP. Each user story is broken down into development tasks as a result of a short

design stage. This level of granularity is not included in this model.

• An alternative user story can be selected, although this breaks the prioritization

guidelines in XP.

• Stories with estimates slightly less than Vi can be chosen.

It is recognized that in real world projects there are dependencies between iterations. Efficient

implementation sometimes demands that the order of work differ from the customer’s desired

prioritization. There are also rework tasks which arise when work in a previous iteration must be

revisited. None of this is explicitly included in this model. Inter-iteration dependencies are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

8

simply subsumed within other, more general, overheads.

The introduction of pair programming has no effect on how these calculations are performed. If

the developers in our example are paired then the number of user stories completed in iteration

one might decrease, say to a set of user stories whose estimates totaled 3 IEDs instead of 5. User

stories adding up to 3 IEDs are then scheduled for the next iteration. Similarly, the extent to

which user stories are complete serially or in parallel has no effect on the model.

2.3. Misdirected Effort

To help express the relationship between successive values of V, we introduce the concept of

Misdirected Effort, M. Misdirected effort is effort which does not result in completed user

stories. This includes both development and non-development activity (such as administrative

tasks).

All user stories scheduled for inclusion in an iteration, which fail their acceptance tests, form

part of the misdirected effort. This can happen for several reasons.

1. Software defects which are missed during unit testing may be serious enough to cause the

acceptance tests to fail. This can be caused by: poor development, poor unit testing, good

acceptance testing.

2. The developers can have misunderstood the requirements. Poor quality and insufficient

quantity of customer input and feedback might increase the probability of this occurring.

3. Underestimation of the effort required to complete a user story can mean that development

tasks are not completed on schedule.

Misdirected effort is expected to be larger at the start of an XP project. Examples of this can be

seen in, [18], [19] and [10]. Some of the reasons for this are unique to XP, others are common to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

9

all software development.

• Developers may only recently have been formed into a team and may need time to

learn each others’ capabilities and strengths.

• The development environment may not be fully defined or there may be overheads

associated with developers learning to make the best use of the tools available.

• Domain knowledge may be sparse. This might be particularly true in an XP

environment where there is no comprehensive written requirements to read.

• Developers new to XP may take time to become comfortable with some XP

practices such as pair programming.

This latter effect has been reported, for example, by Williams, Kessler, Cunningham, and

Jeffries [20], and Cockburn and Williams [21], where an initial 60% drop in programmer

productivity quickly recovered to only a 15% drop. This adjustment period is referred to as Pair

Jelling. This is consistent with work reported by Nosek [9] which showed a 50% drop in

productivity but only over short, one-off assignments.

Strictly speaking, misdirected effort consists of three distinct types of component.

1. Scheduled development tasks which were not completed. These must be carried over into

the next iteration.

2. Fixed administrative overheads.

3. Overheads which scale with the length of an iteration.

Two of these three components are not dependent on the length of an iteration, one is. In order

to simplify the model, we restrict ourselves to fixed length iterations.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

10

2.4. Process factors

The preceding analysis splits available effort into PV and Misdirected Effort. Some way is

needed to control the amount of effort allocated to these two values. In this model, there is a

single controlling factor which we call Process Effectiveness, e. This is a real number in the

range [0,1] which represents the proportion of the available effort that translates into the PV. A

Process Effectiveness of one means that all available effort becomes part of the PV and there is

zero Misdirected Effort.

The Process Effectiveness is in turn controlled by two further parameters: Effectiveness Limit,

l, and Process Improvement, r. The Process Improvement is the amount by which the Process

Effectiveness increases from one XP iteration to the next. The name arises from the fact that we

expect the Process Effectiveness to generally improve from one iteration to the next, or at least,

not get any worse. However, to allow for failing projects, the Process Improvement can also take

on negative values.

The Effectiveness Limit recognizes the fact that there are often limits to how productive a team

of people can be. There will always be some necessary overheads which prevent some of the

available effort being translated into PV. Effectiveness Limit is therefore the maximum value

which the model allows Process Effectiveness to take.

Note that all of this relies on minimal assumptions: effort either contributes to delivered

functionality, or it does not. The ratio between productive effort and total effort exists whether

we call it Process Effectiveness or not. This ratio varies between iterations and has a limit, even

if the limit is unity. As the core model contains variables based only on these factors, it too is

based upon minimal assumptions.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

11

3. BAYESIAN NET MODEL

A Bayesian Net (BN) is a directed acyclic graph (such as the one shown in Fig. 1), where the

nodes represent random variables and the directed arcs define causal influences or functional

relationships. Nodes without parents are defined through their prior probability distributions.

Nodes with parents are defined through Conditional Probability Distributions (CPDs).

li-1

ri-1

ei-1

bi-1

Ei Ai

Vibi

li

ri ei

= bi Ai

= ei Ei

= min(ri + ei-1, li)

Fig. 1. Project velocity model.

Table 2 summarizes the model variables. Measures of effort are denoted by capital letters. All

other variables use lower case letters. Subscripts are used to denote a specific XP iteration. For

example V2 denotes the PV in iteration 2. Where the iteration is not important, we drop the

subscript and refer to V, for example, as the PV.

When the value of a variable has been measured, it can be entered as data in the corresponding

node. The rules of Bayesian probability are then applied to propagate consistently the impact of

the evidence on the probabilities of the variables of interest. More information on Bayesian Nets

and suitable propagation algorithms can be found in [4] and [11].

When we wish to distinguish between a model prediction and a measured value, we will use an

underscore to denote the measurement. So if V3 is the predicted value for the PV at iteration

three, then V3 is the measured value.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

12

Table 2 Symbol definitions

Symbol Meaning

di Number of working days in iteration i. di = 0, 1, 2, ... This is an integer value.
pi Number of team members in iteration i. This can be fractional if one or more people

do not work full time on the project. ei ∈ [1, ∞).
si Productive effort to date. si = si-1 + Vi = ΣVi, si ∈ [0,∞).
Ei Iteration effort in man-days. Ei = pi × di, Ei ∈ [0,∞).
Ui

j Estimated effort of jth user story in iteration i. Ui
j ∈ [0,∞).

Ai Actual productive effort in iteration i. Ai = Ei × ei, Ai ∈ [0,∞).
Vi Project Velocity in iteration i. ∑=

j

j
ii UV , Vi ∈ [0,∞).

bi Estimation bias. bi = Vi / Ai, bi ∈ [0,∞).
Mi Misdirected effort in iteration i. This is effort which did not result in completed user

stories. Ei = Vi + Mi, Mi ∈ [0,∞).
fi Load Factor in iteration i. fi = Ei / Vi, fi ∈ [1,5]. Used to estimate timescales. The

upper limit is arbitrary.
ei Process effectiveness in iteration i. Vi = Ei × ei, ei ∈ [0,1].
li Effectiveness limit. The maximum value that the ei can take, li ∈ [0,1].
ri Process improvement. ei = min (ei-1 + ri , li) , ri ∈ [-1,1].

Not all of the variables shown in Table 2 are shown in Fig. 1. Several of the variables are

included only to make the definitions of others more rigorous (d, p and M). Some exist to relate

the model to XP concepts (f and U), and others to relate the model to management concepts (s).

Before presenting the model in detail, we need to discuss a few preliminaries about Dynamic

Bayesian Nets.

3.1. Dynamic Bayesian Networks

Dynamic Bayesian Nets (DBN) extend BNs by adding a temporal dimension to the model.

Formally, a DBN is a temporal model representing a dynamic system, i.e. it is the system being

modeled which is changing over time, not the structure of the network [22]. A DBN consists of a

sequence of identical Bayesian Nets, , 1,2,...t t =Z , where each tZ represents a snapshot of the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

13

process being modeled at time t. We refer to each tZ as a timeslice. For XP, where the software

production process is split into a series of discrete iterations, this is a particularly apt approach.

The models presented here are all first order Markov. This means that the conditional

probabilities of nodes in tZ depend only on the distributions in tZ and 1t−Z . The first order

Markov property reduces the number of dependencies, making it computationally feasible to

construct models with larger numbers of timeslices. Consistent propagation is achieved using

standard Junction Tree algorithms [11].

Nodes that contain links between two timeslices are referred to as link nodes. Fig. 1 shows a

single timeslice tZ , t =1,2…., but with the link nodes from the previous timeslice shown lightly

shaded. The link nodes to the next timeslice are shaded black. Fig. 2 shows the same model, this

time “rolled out” as a three iteration DBN (link nodes are shaded).

l1

r1

e1

b1

E1 A1

V1

l2

r2

e2

b2

E2 A2

V2

l3

r3

e3

b3

E3 A3

V3

Fig. 2 Model as a DBN

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

14

3.2. Parameter Learning

The process effectiveness limit (li) , rate of process improvement (ri) and bias (bi) are the key

parameters in this model. Between them they control the process effectiveness, which in turn

controls the misdirected effort and the PV. It is important that the model is capable of adjusting

these parameters as a result of entering data about the project. In particular, the model must

respond to observations of the PV.

4. MODEL DESCRIPTION

We describe a single timeslice by breaking it down into distinct fragments. The model is then

constructed by linking timeslices together. A special initial timeslice is used to create the initial

prior probability distributions.

4.1. Iteration Model

The BN shown in Fig. 1 is used as a single iteration model for PV. The model is best thought

of as comprising three distinct fragments.

Fragment 1 controls the Productive Effort. A single variable, Process Effectiveness (ei), is

assumed to determine the Productive Effort. High Process Effectiveness means a high Productive

Effort and a correspondingly high PV. Process Effectiveness increases or decreases based on the

value of the Process Improvement (ri). It is constrained to the range [0, li].

li-1

ri-1

ei-1

li

ri ei

Fig. 3 Fragment 1 - Process effectiveness nodes

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

15

The CPD of li is a function of li-1. In this case li is set equal to li-1. The process effectiveness

limit (li) is really a single variable which is global to all timeslices. Copying it between timeslices

allows us to preserve the first order Markov property. Similarly ri is just a copy of ri-1.

Fragment 2 contains the "effort" nodes (Fig. 4). It combines the total Iteration Effort (Ei) with

the process effectiveness (ei) to create the actual Productive Effort (Ai). Misdirected Effort (Mi) is

not shown, but it is simply the difference between Ei and Ai. Note that, although Ai is not required

by the XP methodology, we need it in this model for reasons that will be explained below.

Ei Ai

Fig. 4 Fragment 2 - Effort nodes

Fragment 3 holds the project velocity (Fig. 5). PV can either be predicted by the model (Vi), or

once an iteration is completed, it can be entered as evidence (Vi) and used to learn the model

parameters. The bias, bi, allows for any consistent bias in the team’s effort estimation. If their

was no bias then the productive effort A would be the same as the PV and there would be no need

to distinguish between the two.

bi-1 Vibi

Fig. 5 Fragment 3 - Project Velocity

4.2. Setting the initial conditions

An initial timeslice, Iteration 0 (shown in Fig. 6), is used to set the initial model conditions.

For iteration 0, the prior distributions of the input effectiveness limit (l0), process improvement

(r0) and process effectiveness (e0) are all set to be normal distributions, with variances of 0.3 and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

16

means of 0.8, 0.2 and 0.3 respectively. These values are based on a controlled case study by

Abrahamsson and Koskela [19], where process effectiveness varied between 0.4 and 0.75. We

have simply extended this range slightly and chosen r0 so that the lowest to highest transition can

take place within four iterations.

The prior of the estimation bias (b0) is set to a log normal distribution with a mean of

approximately 1.0, and a variance of 0.1.

Evidence is entered in all of the Ei nodes.

l1

r1

e1

b1

E1 A1

V1

l0

r0

e0

b0

Fig. 6. Initial Velocity model

5. MODEL BEHAVIOR

Fig. 7 shows the predicted values of the PV for a project with 50 hours of effort available in

each iteration. The central dotted line is the mean, with the outer dotted lines showing +/- one

standard deviation. The solid line is the median value. This is based solely on the model’s initial

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

17

conditions.

The Process Effectiveness increases with each iteration by an amount equal to the Process

Improvement. It flattens out as it begins to hit the Effectiveness Limit. As can be see from the

graph, this leads to the PV starting fairly low and gradually increasing with each iteration. Being

able to model and predict this type of behavior was one of the main objectives of the core model.

Fig. 7. Project velocity values – median, mean, mean ± 1 SD

This is our “Baseline” scenario, with no PV evidence entered into the model. By entering PV

evidence, we can construct various alternative scenarios and compare the learned parameters and

predicted values of future PV. The values shown in Table 3 were used to construct three such

scenarios, all based on 50 hours of available effort per iteration. No values were entered for V9 or

V10, allowing the model to predict these values. These represent projects that are respectively

failing, performing as expected, or progressing with great success. We refer to these as the

“Failing”, “Average” and “Success” scenarios respectfully.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

18

Table 3 - PV values for three scenarios

Scenario\PV V1 V2 V3 V4 V5 V6 V7 V8

Failing 2 3 3 4 4 3 4 4
Average 20 25 27 28 28 29 30 31
Successful 200 205 210 215 219 223 225 227

5.1. Parameter Learning in Different Scenarios

Fig. 8 shows the resulting distributions of the bias node, b10. There are four distributions, one

for each scenario. Three of the scenarios have mean values close to one, although both the

Failing and Average scenarios have reduced variances compared to the baseline. This is expected

from scenarios where evidence has been entered.

Success
Mean 4.3
Var 0.016

Average
Mean 0.90
Var 0.001

Baseline
Mean 1.05
Var 0.1

Failing
Mean 0.64
Var 0.03

Fig. 8 - Bias distribution, iteration 10

The Baseline scenario predicted values for V1 to V8 in the range 18-30. However the Success

scenario entered evidence in the range 200-227. These values indicate that the project team has

done 200-227 estimated IEDs in a single iteration with only 50 man-days of effort. Clearly this

can only come about if their estimates are significantly biased, and indeed, the model suggests

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

19

that the bias in this case has a mean value of 4.3. This only accounts for part of the high PV

values however. The remainder is accounted for by an increased effectiveness limit (Fig. 9)

which allows a greater process effectiveness.

Success

Average

Baseline

Failing

Fig. 9 – Effectiveness Limit, median, 5 iterations

Success

Average

Baseline

Failing

Fig. 10 - Process Improvement, median, 5 iterations

As we might expect, the Failing scenario shows a poor effectiveness limit and a very small

improvement in process effectiveness (Fig. 10). Surprisingly, the success scenario shows an

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

20

even worse process improvement. However, this is because the model is forced to assume a very

high process effectiveness in the initial iterations. The values provided are so far outside the

normally expected range that the model is continually trying to compensate by bringing the

process effectiveness back down again. By iteration 6 the process improvement finally begins to

stabilize.

Both the Effectiveness Limit (Fig. 9) and the Process Improvement (Fig. 10) change as

evidence is entered in the first eight iterations. The model therefore learns as new evidence is

entered and changes its predictions accordingly.

Fig. 11 shows the behavior of the Bias node, bi, in the Average scenario. The central dotted

line, which is almost co-incident with the solid line, shows the mean and median values

respectively. The outer dotted lines show the mean ± 1 standard deviation (SD). The SD gets

smaller as more evidence is entered into the model. This illustrates that, not only does the model

learn the values of its parameters, but the uncertainty in those values decreases as more evidence

becomes available.

Fig. 11. Bias, Average scenario, median, mean ± 1 SD

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

21

5.2. Indicator Nodes

Indicator nodes are nodes with a single parent and no children. They are often used to provide

evidence for variables that are themselves unobservable. Indicator nodes are one of the main

mechanisms used to introduce XP practices into the model.

An indicator node for the Effectiveness Limit is shown in Fig. 12: the “Collective ownership”

node. This is the extent to which collective code ownership is practiced. It is a ranked node,

consisting of five discrete values ranging from Very Low to Very High. The probability of these

five values is derived from a truncated normal distribution whose mean is li, and whose variance

is arbitrarily set to 0.1. This distribution ensures that a high degree of collective ownership leads

to a high effectiveness limit. The variance determines the strength of the relationship.

li-1

ri-1

ei-1

li

ri ei

Collective
ownership

Fig. 12 The "Collective Ownership" indicator node

With no evidence, the node plays little part in the model, and its parent, li, remains constant

from one iteration to the next (the “Baseline” scenario). However, when we set the value of

“Collective ownership” in each iteration to "Very High" (the “High” scenario) then the situation

changes. The evidence back propagates to li. Because of the learning mechanism described

above, the effect is cumulative and the mean value increases across iterations. The difference is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

22

shown in Fig. 13.

Values entered into this node are examples of expert judgment. The ease with which expert

judgment can be combined with objective evidence and prior assumptions is one of the benefits

of the Bayesian Network approach to modeling.

Two other scenarios are also shown, one where the Collective Ownership node is always set to

“Very Low” (the “Low” scenario) and a slightly more realistic case (the “Mix” scenario). In the

Mix scenario, Collective Ownership starts off “Very Low”. However management realize that

there is a problem and take steps to improve collective ownership. By iteration 4 Collective

Ownership improves to “Medium” and by iteration 6 it achieves a “High” value.

High

Mix

Baseline

Low

Fig. 13. Effectiveness Limit with and without indicator node evidence

The extent to which XP practices are implemented can therefore have a dramatic effect on the

model parameters, which in turn propagates through to the model’s predictions. Fig. 14 shows a

slightly modified version of the PV fragment of the model. This includes an additional link node,

si, which acts as the cumulative sum of the PV to date.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

23

bi-1 Vibi

si-1 si = si-1 + Vi

Fig. 14. Project Velocity summed to date.

Plots of si for the four scenarios are shown in Fig. 15. If the total estimate to complete the

entire project is, say, 200 IEDs, then we can immediately read off from the graph how long it will

take to complete the project for the four scenarios. The High scenario will complete in just over 6

iterations and the Baseline in just over 7. The Mix and Low scenarios will not complete within

10 iterations.

High

Mix

Baseline

Low

Fig. 15 Sum PV to date

The model can also quantify the uncertainty involved in completing 200 IEDs of user stories

within 10 iterations. Fig. 16 shows the cumulative distribution functions for the si node in

iteration 10. The vertical line allows us to read off the probability of completing up to 200 IEDs

by the end of the tenth iteration. For the “High” scenario, there is only a 1% chance of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

24

completing less than 200 IEDs, i.e. there is a 99% chance of completing 200 IEDs or more.

H igh 99%

M ix 25 %

B aselin e 9 0%

L ow 5 %

Fig. 16 Iteration 10 cumulative distributions, Sum PV to date

We have shown how the XP practice of Collective Ownership can be used as an indicator of

the Effectiveness Limit. There will of course be many more factors that can be used as indicators

of this parameter. Examples include the team’s experience (both management and development)

and the resources they have at their disposal. These, together with other XP practices, are obvious

candidates for additional indicator nodes.

Similarly, other XP practices and environmental factors can be used as indicators of the

process improvement, r i. For example, the extent to which misperceptions about requirements

are speedily corrected will depend on the strength of the relationship with the customer. An

authoritative on-site customer voice should therefore be a strong indicator of a high r i.

However, some XP practices cannot be included in the model at this stage. The quality of unit

testing, for example, will need to be incorporated in future defect prediction models.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

25

6. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to produce a relatively simple BN model that correctly

reproduces known empirical behavior in XP Project Velocity. This model is able to learn from

both observations of the PV itself as well as from expert judgment entered via indicator nodes.

The model is flexible in that a large number of indicator nodes and causal influences can be

appended to the core model. These enable XP practices to be easily included.

The model has already been extended to reproduce the mentoring overhead of assimilating

additional team members. This closely follows the model of Williams, Sukla and Anton[10].

This is an important aspect of the "Brooks’ factor", i.e. the tendency for larger teams to be less

productive [6].

A similar approach can be used to create a defects prediction model, with the effort model as

one of its primary inputs. This allows a family of models to be constructed which represent a

wide variety of XP environments and which can be used to model either effort alone, effort plus

defects, or cost versus time trade-offs. Each will be able to cope with varying size project teams.

REFERENCES

[1] Extreme Programming Explained Embrace Change, Kent Beck, Cynthia Andres, Addison-Wesley Professional; 2 edition (November 16,
2004)

[2] Extreme Programming Installed, Ron Jeffries, Ann Anderson, Chet Hendrickson, Addison-Wesley Professional ; 1st edition.
[3] Beck K, Fowler M, Planning Extreme Programming, Addison-Wesley, 2001
[4] Jensen, Bayesian Networks and Decision Graphs, Springer-Verlag, New York, 2001.
[5] S.Bibi, I.Stamelos, Software Process modeling with Bayesian belief Networks, 10th International Software Metrics Symposium Chicago,

September 2004.
[6] Brooks FP, The Mythical Man-Month: essays on software engineering, 2nd edition, Addison Wesley, 1995.
[7] AgenaRisk User Manual, Agena Limited, www.agenarisk.com.
[8] Neil M, Tailor M, Marquez D, Inference in Hybrid Bayesian Networks using dynamic discretisation (awaiting publication).
[9] Nosek JT, The case for collaborative programming, Communications of the ACM, Volume 41, Issue 3 (March 1998) Pages: 105 - 108
[10] Williams L, Shukla A, Antón AI, An Initial Exploration of the Relationship Between Pair Programming and Brooks’ Law, Proceedings of

the Agile Development Conference (ADC’04)
[11] Lauritzen, S. L. and Spiegelhalter, D. J. Local computations with probabilities on graphical structures and their application to expert

systems (with discussion). J.R. Statistical Soc. Series B, 50, no. 2, pp. 157-224, 1988

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

26

[12] N. E. Fenton, and M. Neil, "A Critique of Software Defect Prediction Models," IEEE Transactions on Software Engineering, 25(4):675-
689, September 1999.

[13] Wooff D.A., Goldstein M., Coolen F.P.A., Bayesian Graphical Models for Software Testing, IEEE Transactions on Software Engineering,
Vol 28, Issue 5, pp. 510-525

[14] Kozlov A.V., and Koller D. 1997. Nonuniform dynamic discretization in hybrid networks, in D. Geiger and P.P. Shenoy (eds.), Uncertainty
in Artificial Intelligence, 13: 314–325.

[15] Neil, M., Krause, P., Fenton, N. E., Software Quality Prediction Using Bayesian Networks in Software Engineering with Computational
Intelligence, (Ed Khoshgoftaar TM), Kluwer, ISBN 1-4020-7427-1, Chapter 6, 2003

[16] Fenton, N. E., Marsh, W., Neil, M., Cates, P., Forey, S. and Tailor, T. Making Resource Decisions for Software Projects. In Proceedings of
26th International Conference on Software Engineering (ICSE 2004), (Edinburgh, United Kingdom, May 2004) IEEE Computer Society
2004, ISBN 0-7695-2163-0, 397-406

[17] Neil, M. and Fenton P. Improved Software Defect Prediction. 10th European SEPG, London, 2005.
[18] Ahmed, A.; Fraz, M.M.; Zahid, F.A., Some results of experimentation with extreme programming paradigm, 7th International Multi Topic

Conference, INMIC 2003. Page(s): 387- 390
[19] Abrahamsson P, Koskela J, Extreme Programming: A Survey of Empirical Data from a Controlled Case Study, 2004 International

Symposium on Empirical Software Engineering (ISESE'04), pp. 73-82
[20] Williams L, Kessler RR, Cunningham W, Jeffries R, Strengthening the Case for Pair Programming, IEEE Software, July/August 2000 (Vol.

17, No. 4) pp. 19-25
[21] Cockburn A, Williams L, The Costs and Benefits of Pair Programming, Proceedings of the First International Conference on Extreme

Programming and Flexible Processes in Software Engineering, XP2000, June 2000 Cagliari, Sardinia, Italy
[22] K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC Berkeley, 2002.

Peter Hearty is a Ph.D. student at Queen Mary, University of London. He gained a B.Sc. in Mathematics and Physics from the University of
Stirling in 1982. He worked as a programmer, analyst and designer for various commercial organizations before founding his own database
company in 1997.

Norman Fenton is a professor of computing at Queen Mary, University of London, and CEO of Agena, which specializes in risk management
for critical systems. His research interests include software metrics, formal methods, empirical software engineering, software standards, and
safety-critical systems: recent projects focused on using Bayesian belief nets and multicriteria decision aid for risk assessment. He has a BSc
from the University of London and an MSc and PhD from Sheffield University, all in mathematics. Contact him at Queen Mary, Univ. of
London, Mile End Rd., London E1 4NS, UK; norman@agena.co.uk.

David Marquez is a Research Assistant for the RADAR (Risk Assessment and Decision Analysis) Group, at the Department of Computer
Science, Queen Mary, University of London. Before joining academia he worked as a Senior Researcher in the Oil industry, developing and
applying mathematical and statistical models in reservoir characterisation problems. His research interests include Bayesian statistical modelling,
Bayesian Networks, Space-State models, and statistical pattern recognition. He has a PhD in mathematic from the University of Marne-La-Valle,
France.

Martin Neil is a Reader in "Systems Risk" at the Department of Computer Science, Queen Mary, University of London, where he teaches
decision and risk analysis and software engineering. Martin is also a joint founder and Chief Technology Officer of Agena Ltd, who develop and
distribute AgenaRisk, a software product for modelling risk and uncertainty. His interests cover Bayesian modelling and/or risk quantification in
diverse areas: operational risk in finance, systems and design reliability (including software), project risk, decision support, simulation, AI and
personalization, and statistical learning. Martin earned a BSc in Mathematics, a PhD in Statistics and Software Metrics and is a Chartered
Engineer.

	INTRODUCTION
	Extreme Programming
	User Stories
	Project Velocity
	Misdirected Effort
	Process factors

	Bayesian Net Model
	Dynamic Bayesian Networks
	Parameter Learning

	Model Description
	Iteration Model
	Setting the initial conditions

	Model Behavior
	Parameter Learning in Different Scenarios
	Indicator Nodes

	Conclusions and Future Work

