Spector's Bar Recursion as a Product of Selection Functions

Paulo Oliva
Queen Mary, University of London, UK

Gentzen Centenary
Coimbra, 12 September 2009

Outline

(1) Selection Functions
(2) Generalised Games
(3) Spector's Solution

Outline

(1) Selection Functions
(2) Generalised Games
(3) Spector's Solution

迹

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

For instance

Operation	$\phi:$	$(X \rightarrow R) \rightarrow R$
Quantifiers	$\forall_{X}, \exists_{X}:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
Integration	$\int_{0}^{1}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Supremum	$\sup _{[0,1]}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Limit	$\lim :$	$(\mathbb{N} \rightarrow R) \rightarrow R$
Fixed point operator	fix_{X}	$:$
		$(X \rightarrow X) \rightarrow X$

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R \quad\left(\equiv K_{R} X\right)
$$

For instance

Operation	$\phi:$	$(X \rightarrow R) \rightarrow R$
Quantifiers	$\forall_{X}, \exists_{X}:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
Integration	$\int_{0}^{1}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Supremum	$\sup _{[0,1]}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Limit	$\lim :$	$(\mathbb{N} \rightarrow R) \rightarrow R$
Fixed point operator	fix_{X}	$:$
		$(X \rightarrow X) \rightarrow X$

Definition (Product of Generalised Quantifiers)

Given $\phi: K_{R} X$ and $\psi: K_{R} Y$ define $\phi \otimes \psi: K_{R}(X \times Y)$

$$
(\phi \otimes \psi)(p): \stackrel{R}{\equiv} \phi\left(\lambda x^{X} . \psi\left(\lambda y^{Y} . p(x, y)\right)\right)
$$

where $p: X \times Y \rightarrow R$.

Definition (Product of Generalised Quantifiers)

Given $\phi: K_{R} X$ and $\psi: K_{R} Y$ define $\phi \otimes \psi: K_{R}(X \times Y)$

$$
(\phi \otimes \psi)(p): \stackrel{R}{=} \phi\left(\lambda x^{X} \cdot \psi\left(\lambda y^{Y} \cdot p(x, y)\right)\right)
$$

where $p: X \times Y \rightarrow R$.

For instance

$$
\begin{array}{ll}
\left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) & \stackrel{\mathbb{R}}{=} \exists x^{X} \forall y^{Y} p(x, y) \\
\left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right) & \stackrel{\mathbb{R}}{=} \sup _{x} \int_{0}^{1} p(x, y) d y
\end{array}
$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\int_{0}^{1} p=p(a)
$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\int_{0}^{1} p=p(a)
$$

Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
\exists x^{X} p(x) \Leftrightarrow p(a)
$$

(similar to Hilbert's ε-term).

Let $J_{R} X: \equiv(X \rightarrow R) \rightarrow X$.

Let $J_{R} X: \equiv(X \rightarrow R) \rightarrow X$.

Definition (Selection Functions)

$\varepsilon: J_{R} X$ is called a selection function for $\phi: K_{R} X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$.

$$
\text { Let } J_{R} X: \equiv(X \rightarrow R) \rightarrow X \text {. }
$$

Definition (Selection Functions)

$\varepsilon: J_{R} X$ is called a selection function for $\phi: K_{R} X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$.

Definition (Attainable Quantifiers)

A generalised quantifier $\phi: K_{R} X$ is called attainable if it has a selection function $\varepsilon: J_{R} X$.

The Mapping $(\cdot): J_{R} \mapsto K_{R}$

Every element

$$
\varepsilon: \quad J_{R} X
$$

is a selection function for the (attainable) quantifier

$$
\bar{\varepsilon} p: \frac{R}{=} p(\varepsilon p) .
$$

The Mapping $(\cdot): J_{R} \mapsto K_{R}$

Every element

$$
\varepsilon: \quad J_{R} X
$$

is a selection function for the (attainable) quantifier

$$
\bar{\varepsilon} p: \frac{R}{=} p(\varepsilon p)
$$

We define a product of selection functions such that

$$
\overline{\varepsilon \otimes \delta}=\bar{\varepsilon} \otimes \bar{\delta}
$$

Definition (Product of Selection Functions)

Given $\varepsilon: J_{R} X$ and $\delta: J_{R} Y$ define $\varepsilon \otimes \delta: J_{R}(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where

$$
\begin{aligned}
& a:=\varepsilon(\lambda x \cdot p(x, b(x))) \\
& b(x):=\delta(\lambda y \cdot p(x, y)) .
\end{aligned}
$$

Quantifier Elimination

Suppose $\exists p=p(\varepsilon p)$ and $\forall p=p(\delta p)$.

Quantifier Elimination

Suppose $\exists p=p(\varepsilon p)$ and $\forall p=p(\delta p)$. Then

$$
\exists x \forall y p(x, y)=\exists x p(x, b(x))
$$

where

$$
b(x)=\delta(\lambda y \cdot p(x, y))
$$

Quantifier Elimination

Suppose $\exists p=p(\varepsilon p)$ and $\forall p=p(\delta p)$. Then

$$
\begin{aligned}
\exists x \forall y p(x, y) & =\exists x p(x, b(x)) \\
& =p(a, b(a))
\end{aligned}
$$

where

$$
\begin{aligned}
b(x) & =\delta(\lambda y \cdot p(x, y)) \\
a & =\varepsilon(\lambda x \cdot p(x, b(x)))
\end{aligned}
$$

Quantifier Elimination

Suppose $\exists p=p(\varepsilon p)$ and $\forall p=p(\delta p)$. Then

$$
\begin{aligned}
\exists x \forall y p(x, y) & =\exists x p(x, b(x)) \\
& =p(a, b(a))
\end{aligned}
$$

where

$$
\begin{aligned}
b(x) & =\delta(\lambda y \cdot p(x, y)) \\
a & =\varepsilon(\lambda x \cdot p(x, b(x))) .
\end{aligned}
$$

In fact, $(\varepsilon \otimes \delta)(p)=(a, b(a))$.

Main Theorem

Theorem
 $\overline{\varepsilon \otimes \delta}=\bar{\varepsilon} \otimes \bar{\delta}$

Main Theorem

Theorem

```
\overline { \varepsilon \otimes \delta } = \overline { \varepsilon } \otimes \overline { \delta }
```


Proof.

Let $a=\varepsilon(\lambda x \cdot q(x, b(x)))$ and $b(x)=\delta(\lambda y \cdot q(x, y))$. Then

$$
\begin{aligned}
(\bar{\varepsilon} \otimes \bar{\delta})(q) & =\bar{\varepsilon}(\lambda x \cdot \bar{\delta}(\lambda y \cdot q(x, y))) \\
& =\bar{\varepsilon}(\lambda x \cdot q(x, b(x))) \\
& =q(a, b(a)) \\
& =q((\varepsilon \otimes \delta)(q)) \\
& =(\overline{\varepsilon \otimes \delta})(q) .
\end{aligned}
$$

Outline

(1) Selection Functions

(2) Generalised Games

(3) Spector's Solution

Finite Games (n rounds)

X_{i}	available moves at round i
R	set of possible outcomes
$q: \prod_{i=0}^{n-1} X_{i} \rightarrow R$	outcome function
$\phi_{i}:\left(X_{i} \rightarrow R\right) \rightarrow R$	round i outcome quantifier

Finite Games (n rounds)

$$
\begin{aligned}
& X_{i} \\
& R \\
& q: \Pi_{i=0}^{n-1} X_{i} \rightarrow R \\
& \phi_{i}:\left(X_{i} \rightarrow R\right) \rightarrow R
\end{aligned}
$$

available moves at round i set of possible outcomes outcome function round i outcome quantifier

Definition (Optimal outcome and moves)
For $\vec{x} \equiv x_{0}, \ldots, x_{k-1}$ call

$$
w_{\vec{x}}:=\bigotimes_{i=k}^{n-1}\left(\phi_{i}\right)\left(q_{\vec{x}}\right)
$$

the optimal outcome of sub-game x_{0}, \ldots, x_{k-1}.

Finite Games (n rounds)

$$
\begin{aligned}
& X_{i} \\
& R \\
& q: \Pi_{i=0}^{n-1} X_{i} \rightarrow R \\
& \phi_{i}:\left(X_{i} \rightarrow R\right) \rightarrow R
\end{aligned}
$$

available moves at round i set of possible outcomes outcome function round i outcome quantifier

Definition (Optimal outcome and moves)
For $\vec{x} \equiv x_{0}, \ldots, x_{k-1}$ call

$$
w_{\vec{x}}:=\bigotimes_{i=k}^{n-1}\left(\phi_{i}\right)\left(q_{\vec{x}}\right)
$$

the optimal outcome of sub-game x_{0}, \ldots, x_{k-1}.
Move a_{k} is an optimal move at round k if $w_{\vec{x}}=w_{\vec{x} * a_{k}}$.

Finite Games (n rounds)

Theorem

If ϕ_{k} are attainable (with selection functions ε_{k}) then
(i) $\vec{a}_{\vec{x}}:=\bigotimes_{i=k}^{n-1}\left(\varepsilon_{i}\right)(q)$
is an optimal play starting from x_{0}, \ldots, x_{k-1}.

Finite Games (n rounds)

Theorem

If ϕ_{k} are attainable (with selection functions ε_{k}) then
(i) $\vec{a}_{\vec{x}}:=\bigotimes_{i=k}^{n-1}\left(\varepsilon_{i}\right)(q)$
is an optimal play starting from x_{0}, \ldots, x_{k-1}.
(ii) $\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right):=\varepsilon_{k}\left(\lambda x_{k} \cdot w_{\vec{x} * x_{k}}\right)$ is an optimal strategy for round k.

Finite Games (n rounds)

Theorem

If ϕ_{k} are attainable (with selection functions ε_{k}) then
(i) $\vec{a}_{\vec{x}}:=\bigotimes_{i=k}^{n-1}\left(\varepsilon_{i}\right)(q)$
is an optimal play starting from x_{0}, \ldots, x_{k-1}.
(ii) $\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right):=\varepsilon_{k}\left(\lambda x_{k} \cdot w_{\vec{x} * x_{k}}\right)$
is an optimal strategy for round k.
(iii) Let $p_{k}:=\lambda x_{k} \cdot w_{a_{0}, \ldots, a_{k-1} * x_{k}}$. Then

$$
a_{k}=\varepsilon_{k}\left(p_{k}\right) \quad \text { and } \quad p_{k}\left(a_{k}\right)=p_{j}\left(a_{j}\right)=q(\vec{a}) .
$$

Infinite Games

X_{i}	available moves at round i
R	set of possible outcomes
$q: \prod_{i=0}^{\infty} X_{i} \rightarrow R$	outcome function
$\phi_{i}:\left(X_{i} \rightarrow R\right) \rightarrow R$	round i outcome quantifier

Definition (Optimal outcome and moves)

For $\vec{x} \equiv x_{0}, \ldots, x_{k-1}$ call

$$
w_{\vec{x}}:=\bigotimes_{i=k}^{\infty}\left(\phi_{i}\right)\left(q_{\vec{x}}\right)
$$

the optimal outcome of sub-game x_{0}, \ldots, x_{k-1}.
Move a_{k} is an optimal move at round k if $w_{\vec{a}}=w_{\vec{a} * a_{k}}$.
$15 / 22$

Infinite Games

X_{i}	available moves at round i
R	set of possible outcomes
$q: \prod_{i=0}^{\infty} X_{i} \rightarrow R$	outcome function
$\phi_{i}:\left(X_{i} \rightarrow R\right) \rightarrow R$	round i outcome quantifier

Definition (Optimal outcome and moves)

For $\vec{x} \equiv x_{0}, \ldots, x_{k-1}$ call

$$
w_{\vec{x}}:=\bigotimes_{i=k}^{\infty}\left(\phi_{i}\right)\left(q_{\vec{x}}\right)
$$

the optimal outcome of sub-game x_{0}, \ldots, x_{k-1}.
Move a_{k} is an optimal move at round k if $w_{\vec{a}}=w_{\vec{a} * a_{k}}$.
$15 / 22$

Infinite Games

Theorem

If ϕ_{k} are attainable (with selection functions ε_{k}) then
(i) $\alpha_{\vec{x}}:=\bigotimes_{i=k}^{\infty}\left(\varepsilon_{i}\right)(q)$
is an optimal play starting from x_{0}, \ldots, x_{k-1}.

Infinite Games

Theorem

If ϕ_{k} are attainable (with selection functions ε_{k}) then
(i) $\alpha_{\vec{x}}:=\bigotimes_{i=k}^{\infty}\left(\varepsilon_{i}\right)(q)$
is an optimal play starting from x_{0}, \ldots, x_{k-1}.
(ii) $\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right):=\varepsilon_{k}\left(\lambda x_{k} \cdot w_{\vec{x} * x_{k}}\right)$ is an optimal strategy for round k.

Infinite Games

Theorem

If ϕ_{k} are attainable (with selection functions ε_{k}) then
(i) $\alpha_{\vec{x}}:=\bigotimes_{i=k}^{\infty}\left(\varepsilon_{i}\right)(q)$
is an optimal play starting from x_{0}, \ldots, x_{k-1}.
(ii) $\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right):=\varepsilon_{k}\left(\lambda x_{k} \cdot w_{\vec{x} * x_{k}}\right)$
is an optimal strategy for round k.
(iii) Let $p_{k}:=\lambda x_{k} \cdot w_{\bar{\alpha} k * x_{k}}$. We have, for all k,

$$
\alpha(k)=\varepsilon_{k}\left(p_{k}\right) \quad \text { and } \quad p_{k}(\alpha(k))=q(\alpha)
$$

In Other Words...

Theorem

Given

$$
\begin{aligned}
\varepsilon_{k} & : \quad\left(X_{k} \rightarrow R\right) \rightarrow X_{k} \\
q & : \prod_{i=0}^{\infty} X_{i} \rightarrow R
\end{aligned}
$$

we have, for all n,

$$
\begin{array}{ll}
\alpha(n) & =\varepsilon_{n}\left(p_{n}\right) \\
p_{n}(\alpha(n)) & =q(\alpha)
\end{array}
$$

where $\alpha:=\bigotimes_{i=0}^{\infty}(\varepsilon)(q)$ and $p_{n}:=\lambda x . w_{\bar{\alpha} n * x}$.

In Other Words...

Theorem

Given

$$
\begin{aligned}
\varepsilon_{k} & : \quad\left(X_{k} \rightarrow R\right) \rightarrow X_{k} \\
q & : \quad \prod_{i=0}^{\infty} X_{i} \rightarrow R
\end{aligned}
$$

we have, for all n,

$$
\begin{array}{ll}
\alpha(n) & =\varepsilon_{n}\left(p_{n}\right) \\
p_{n}(\alpha(n)) & =q(\alpha)
\end{array}
$$

where $\alpha:=\bigotimes_{i=0}^{\infty}(\varepsilon)(q)$ and $p_{n}:=\lambda x . w_{\bar{\alpha} n * x}$.
Except that infinite products might not be defined! R might not be discrete.

The Good News

Spector's Problem

Given $\omega, \varepsilon_{(\cdot)}$ and q find $n, \alpha, p_{(\cdot)}$ satisfying

$$
\begin{array}{lll}
n & \stackrel{\mathbb{N}}{=} & \omega(\alpha) \\
\alpha(n) & \stackrel{X_{n}}{=} & \varepsilon_{n}\left(p_{n}\right) \\
p_{n}(\alpha(n)) & \stackrel{R}{=} & q(\alpha)
\end{array}
$$

The Good News

Spector's Problem

Given $\omega, \varepsilon_{(\cdot)}$ and q find $n, \alpha, p_{(\cdot)}$ satisfying

$$
\begin{array}{lrl}
n & \stackrel{\mathbb{N}}{\leq} & \omega(\alpha) \\
\alpha(n) & \stackrel{X_{n}}{=} & \varepsilon_{n}\left(p_{n}\right) \\
p_{n}(\alpha(n)) & \stackrel{R}{=} & q(\alpha)
\end{array}
$$

Good News. We don't need to play optimally forever.

Outline

(1) Selection Functions

(2) Generalised Games
(3) Spector's Solution

Conditional iteration

Iterated product

$$
\bigotimes(\varepsilon)=\varepsilon_{k} \otimes(\bigotimes(\varepsilon))
$$

in general fails if R not discrete (even assuming continuity).

Conditional iteration

Iterated product

$$
\bigotimes_{k}(\varepsilon)=\varepsilon_{k} \otimes\left(\bigotimes_{k+1}(\varepsilon)\right)
$$

in general fails if R not discrete (even assuming continuity).
Spector's solution

$$
\bigotimes_{s}(\varepsilon)(q) \stackrel{\Pi_{i=|s|}^{\infty} X_{i}}{=} \begin{cases}\mathbf{0} & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \left(\varepsilon_{|s|} \otimes \lambda x \cdot \bigotimes_{s * x}(\varepsilon)\right)(q) & \text { otherwise. }\end{cases}
$$

Spector's Oversight (?)

In finding the solution (a product of selection functions)

$$
\bigotimes_{s}(\varepsilon)(q){ }^{\Pi_{i=\underline{\underline{k}}}^{\infty} X_{i}} \begin{cases}0 & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \left(\varepsilon_{|s|} \otimes \lambda x . \bigotimes_{s * x}^{\bigotimes}(\varepsilon)\right)(q) & \text { otherwise. }\end{cases}
$$

Spector's Oversight (?)

In finding the solution (a product of selection functions)

$$
\bigotimes_{s}(\varepsilon)(q)^{\underline{\Pi_{i=1}^{\infty}} x_{i} X_{i}} \begin{cases}0 & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \left(\varepsilon_{|s|} \otimes \lambda x \cdot \bigotimes_{s * x}(\varepsilon)\right)(q) & \text { otherwise. }\end{cases}
$$

Spector generalises recusion scheme as product of quantifiers!

$$
\bigotimes_{s}(\phi)(q) \stackrel{R}{=} \begin{cases}g(\mathbf{0}) & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \left(\phi_{|s|} \otimes \lambda x . \otimes_{s * x}(\phi)\right)(q) & \text { otherwise } .\end{cases}
$$

Spector's Oversight (?)

In finding the solution (a product of selection functions)

$$
\bigotimes_{s}(\varepsilon)(q)^{\underline{\Pi_{i=k}^{\infty}} X_{i}} \begin{cases}0 & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \left(\varepsilon_{|s|} \otimes \lambda x \cdot \bigotimes_{s * x}^{\bigotimes}(\varepsilon)\right)(q) & \text { otherwise. }\end{cases}
$$

Spector generalises recusion scheme as product of quantifiers!

$$
\bigotimes_{s}(\phi)(q) \stackrel{R}{=} \begin{cases}g(\mathbf{0}) & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \phi_{|s|}\left(\lambda x . \bigotimes_{s * x}(\phi)\left(q_{x}\right)\right) & \text { otherwise. }\end{cases}
$$

For more information

M. Escardo and P. OlivaSelection functions, bar recursion and backward induction
Submitted, July 2009
-
M. Escardo and P. Oliva

Instances of bar recursion as iterated products of selection functions and quantifiers
In preparation

