Spector's Bar Recursion as a Product of Selection Functions

Paulo Oliva

Queen Mary, University of London, UK

Gentzen Centenary Coimbra, 12 September 2009

Outline

Outline

2 Generalised Games

Generalised quantifiers

$$\phi : (X \to R) \to R$$

Generalised quantifiers

$$\phi : (X \to R) \to R$$

For instance

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Limit	lim	:	$(\mathbb{N} \to R) \to R$
Fixed point operator	fix_X	:	$(X \to X) \to X$

・ロト ・御ト ・ヨト ・ヨト ・ヨ

4 / 22

Generalised quantifiers

$$\phi: (X \to R) \to R \qquad (\equiv K_R X)$$

For instance

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Limit	lim	:	$(\mathbb{N} \to R) \to R$
Fixed point operator	fix_X	:	$(X \to X) \to X$

(日) (部) (E) (E) (E)

4 / 22

Definition (Product of Generalised Quantifiers)

Given $\phi: K_R X$ and $\psi: K_R Y$ define $\phi \otimes \psi: K_R (X \times Y)$

$$(\phi \otimes \psi)(p) :\stackrel{R}{\equiv} \phi(\lambda x^{X}.\psi(\lambda y^{Y}.p(x,y)))$$

where $p: X \times Y \to R$.

Definition (Product of Generalised Quantifiers)

Given $\phi: K_R X$ and $\psi: K_R Y$ define $\phi \otimes \psi: K_R (X \times Y)$

$$(\phi \otimes \psi)(p) :\stackrel{R}{\equiv} \phi(\lambda x^X.\psi(\lambda y^Y.p(x,y)))$$

where $p: X \times Y \to R$.

For instance

$$(\exists_X \otimes \forall_Y)(p^{X \times Y \to \mathbb{B}}) \stackrel{\mathbb{B}}{\equiv} \exists x^X \forall y^Y p(x, y)$$
$$(\sup \otimes \int)(p^{[0,1]^2 \to \mathbb{R}}) \stackrel{\mathbb{R}}{\equiv} \sup_x \int_0^1 p(x, y) dy$$

5/22

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that

$$\int_0^1 p = p(a)$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that

$$\int_0^1 p = p(a)$$

Theorem (Witness Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

$$\exists x^X p(x) \iff p(a)$$

・ロト ・回ト ・ヨト ・ヨト

(similar to Hilbert's ε -term).

Let $J_R X :\equiv (X \to R) \to X$.

Let
$$J_R X :\equiv (X \to R) \to X$$
.

Definition (Selection Functions)

 ε : $J_R X$ is called a **selection function** for ϕ : $K_R X$ if

$$\phi(p)=p(\varepsilon p)$$

holds for all $p: X \to R$.

Let
$$J_R X :\equiv (X \to R) \to X$$
.

Definition (Selection Functions)

 $\varepsilon \colon J_R X$ is called a **selection function** for $\phi \colon K_R X$ if

$$\phi(p) = p(\varepsilon p)$$

holds for all $p: X \to R$.

Definition (Attainable Quantifiers)

A generalised quantifier $\phi: K_R X$ is called **attainable** if it has a selection function $\varepsilon: J_R X$.

The Mapping $(\overline{\cdot})$: $J_R \mapsto K_R$

Every element

$$\varepsilon$$
 : $J_R X$

is a selection function for the (attainable) quantifier

$$\overline{\varepsilon}p :\stackrel{R}{:=} p(\varepsilon p).$$

The Mapping
$$(\overline{\cdot}) : J_R \mapsto K_R$$

Every element

 ε : $J_R X$

is a selection function for the (attainable) quantifier

$$\overline{\varepsilon}p :\stackrel{R}{:=} p(\varepsilon p).$$

We define a product of selection functions such that

$$\overline{\varepsilon\otimes\delta}=\overline{\varepsilon}\otimes\overline{\delta}$$

Definition (Product of Selection Functions)

Given $\varepsilon \colon J_R X$ and $\delta \colon J_R Y$ define $\varepsilon \otimes \delta \colon J_R(X \times Y)$ as

$$(\varepsilon \otimes \delta)(p^{X \times Y \to R}) \stackrel{X \times Y}{:=} (a, b(a))$$

$$a := \varepsilon(\lambda x.p(x,b(x)))$$

$$b(x) := \delta(\lambda y.p(x,y)).$$

Quantifier Elimination

Suppose $\exists p = p(\varepsilon p)$ and $\forall p = p(\delta p)$.

Quantifier Elimination

Suppose
$$\exists p = p(\varepsilon p)$$
 and $\forall p = p(\delta p)$. Then
 $\exists x \forall y \ p(x, y) = \exists x \ p(x, b(x))$

$$b(x) = \delta(\lambda y.p(x,y))$$

Quantifier Elimination

Suppose
$$\exists p = p(\varepsilon p)$$
 and $\forall p = p(\delta p)$. Then
 $\exists x \forall y \ p(x, y) = \exists x \ p(x, b(x))$
 $= p(a, b(a))$

$$\begin{aligned} b(x) &= \delta(\lambda y.p(x,y)) \\ a &= \varepsilon(\lambda x.p(x,b(x))). \end{aligned}$$

Quantifier Elimination

Suppose
$$\exists p = p(\varepsilon p)$$
 and $\forall p = p(\delta p)$. Then
 $\exists x \forall y \ p(x, y) = \exists x \ p(x, b(x))$
 $= p(a, b(a))$

$$\begin{split} b(x) &= \delta(\lambda y.p(x,y))\\ a &= \varepsilon(\lambda x.p(x,b(x))).\\ \end{split}$$
 In fact, $(\varepsilon\otimes\delta)(p) = (a,b(a)).$

Main Theorem

Theorem

$$\overline{\varepsilon\otimes\delta}=\overline{\varepsilon}\otimes\overline{\delta}$$

Main Theorem

Theorem

 $\overline{\varepsilon\otimes\delta}=\overline{\varepsilon}\otimes\overline{\delta}$

Proof.

Let
$$a = \varepsilon(\lambda x.q(x,b(x)))$$
 and $b(x) = \delta(\lambda y.q(x,y))$. Then
 $(\overline{\varepsilon} \otimes \overline{\delta})(q) = \overline{\varepsilon}(\lambda x.\overline{\delta}(\lambda y.q(x,y)))$
 $= \overline{\varepsilon}(\lambda x.q(x,b(x)))$
 $= q(a,b(a))$
 $= q((\varepsilon \otimes \delta)(q))$
 $= (\overline{\varepsilon \otimes \delta})(q).$

 $11 \, / \, 22$

3

・ロン ・雪 と ・ ヨ と ・ ヨ と

Outline

 X_i

Finite Games (n rounds)

$$R$$

$$q \colon \prod_{i=0}^{n-1} X_i \to R$$

$$\phi_i \colon (X_i \to R) \to R$$

available **moves** at round *i* set of **possible outcomes outcome function** round *i* **outcome quantifier**

37

Finite Games (n rounds)

$$X_i$$

$$R$$

$$q: \prod_{i=0}^{n-1} X_i \to R$$

$$\phi_i: (X_i \to R) \to R$$

available **moves** at round *i* set of **possible outcomes outcome function** round *i* **outcome quantifier**

Definition (Optimal outcome and moves)

For
$$\vec{x} \equiv x_0, \ldots, x_{k-1}$$
 call

$$w_{\vec{x}} := \bigotimes_{i=k}^{n-1} (\phi_i)(q_{\vec{x}})$$

the **optimal outcome** of sub-game x_0, \ldots, x_{k-1} .

13/22

Finite Games (n rounds)

$$X_i$$

$$R$$

$$q: \prod_{i=0}^{n-1} X_i \to R$$

$$\phi_i: (X_i \to R) \to R$$

available **moves** at round *i* set of **possible outcomes outcome function** round *i* **outcome quantifier**

イロト イポト イヨト イヨト

Definition (Optimal outcome and moves)

For
$$\vec{x} \equiv x_0, \ldots, x_{k-1}$$
 call

$$w_{\vec{x}} := \bigotimes_{i=k}^{n-1} (\phi_i)(q_{\vec{x}})$$

the **optimal outcome** of sub-game x_0, \ldots, x_{k-1} . Move a_k is an **optimal move** at round k if $w_{\vec{x}} = w_{\vec{x}*a_k}$.

Finite Games (n rounds)

Theorem

If ϕ_k are attainable (with selection functions ε_k) then

(i)
$$\vec{a}_{\vec{x}} := \bigotimes_{i=k}^{n-1} (\varepsilon_i)(q)$$

is an optimal play starting from x_0, \ldots, x_{k-1} .

Finite Games (n rounds)

Theorem

If ϕ_k are attainable (with selection functions ε_k) then

(i)
$$\vec{a}_{\vec{x}} := \bigotimes_{i=k}^{n-1} (\varepsilon_i)(q)$$

is an optimal play starting from x_0, \ldots, x_{k-1} .

(ii) next_k(
$$x_0, \ldots, x_{k-1}$$
) := $\varepsilon_k(\lambda x_k . w_{\vec{x} * x_k})$
is an optimal strategy for round k.

Finite Games (n rounds)

Theorem

If ϕ_k are attainable (with selection functions ε_k) then (i) $\vec{a}_{\vec{x}} := \bigotimes_{i=k}^{n-1} (\varepsilon_i)(q)$ is an **optimal play** starting from x_0, \ldots, x_{k-1} . (ii) $\operatorname{next}_k(x_0,\ldots,x_{k-1}) := \varepsilon_k(\lambda x_k.w_{\vec{x}*x_k})$ is an **optimal strategy** for round k. (iii) Let $p_k := \lambda x_k . w_{a_0, \dots, a_{k-1} * x_k}$. Then $a_k = \varepsilon_k(p_k)$ and $p_k(a_k) = p_i(a_i) = q(\vec{a}).$

Infinite Games

X_i	available moves at round i
R	set of possible outcomes
$q\colon \prod_{i=0}^{\infty} X_i \to R$	outcome function
$\phi_i \colon (X_i \to R) \to R$	round <i>i</i> outcome quantifier

Definition (Optimal outcome and moves)

For
$$\vec{x} \equiv x_0, \ldots, x_{k-1}$$
 call

$$w_{\vec{x}} := \bigotimes_{i=k}^{\infty} (\phi_i)(q_{\vec{x}})$$

the **optimal outcome** of sub-game x_0, \ldots, x_{k-1} . Move a_k is an **optimal move** at round k if $w_{\vec{a}} = w_{\vec{a}*a_k}$.

・ロト ・回ト ・ヨト ・ヨト

Infinite Games

X_i	available moves at round i
R	set of possible outcomes
$q\colon \prod_{i=0}^{\infty} X_i \to R$	outcome function
$\phi_i \colon (X_i \to R) \to R$	round <i>i</i> outcome quantifier

Definition (Optimal outcome and moves)

For
$$\vec{x} \equiv x_0, \ldots, x_{k-1}$$
 call

$$w_{\vec{x}} := \bigotimes_{i=k}^{\infty} (\phi_i)(q_{\vec{x}})$$

the **optimal outcome** of sub-game x_0, \ldots, x_{k-1} . Move a_k is an **optimal move** at round k if $w_{\vec{a}} = w_{\vec{a}*a_k}$.

・ロト ・回ト ・ヨト ・ヨト

Infinite Games

Theorem

If ϕ_k are attainable (with selection functions ε_k) then

(i)
$$\alpha_{\vec{x}} := \bigotimes_{i=k}^{\infty} (\varepsilon_i)(q)$$

is an optimal play starting from x_0, \ldots, x_{k-1} .

Infinite Games

Theorem

If φ_k are attainable (with selection functions ε_k) then
(i) α_x := ⊗[∞]_{i=k}(ε_i)(q) is an optimal play starting from x₀,..., x_{k-1}.
(ii) next_k(x₀,..., x_{k-1}) := ε_k(λx_k.w_{x*x_k}) is an optimal strategy for round k.

(ロ)、(局)、(注)、(注)、(注)、(注)、(16/22)

Infinite Games

Theorem

If ϕ_k are attainable (with selection functions ε_k) then (i) $\alpha_{\vec{x}} := \bigotimes_{i=k}^{\infty} (\varepsilon_i)(q)$ is an **optimal play** starting from x_0, \ldots, x_{k-1} . (ii) $\operatorname{next}_k(x_0,\ldots,x_{k-1}) := \varepsilon_k(\lambda x_k.w_{\vec{x}*x_k})$ is an **optimal strategy** for round k. (iii) Let $p_k := \lambda x_k . w_{\overline{\alpha}k * x_k}$. We have, for all k, $\alpha(k) = \varepsilon_k(p_k)$ and $p_k(\alpha(k)) = q(\alpha)$

In Other Words...

Theorem

Given

$$k_k : (X_k \to R) \to X_k$$

 $q : \Pi_{i=0}^{\infty} X_i \to R$

we have, for all n,

$$\begin{aligned} \alpha(n) &= \varepsilon_n(p_n) \\ p_n(\alpha(n)) &= q(\alpha) \end{aligned}$$

where $\alpha := \bigotimes_{i=0}^{\infty} (\varepsilon)(q)$ and $p_n := \lambda x. w_{\overline{\alpha}n * x}$.

ε

In Other Words...

Theorem

Given

$$k_k : (X_k \to R) \to X_k$$

 $q : \Pi_{i=0}^{\infty} X_i \to R$

we have, for all n,

$$\alpha(n) = \varepsilon_n(p_n)$$

 $p_n(\alpha(n)) = q(\alpha)$

where $\alpha := \bigotimes_{i=0}^{\infty} (\varepsilon)(q)$ and $p_n := \lambda x. w_{\overline{\alpha}n*x}$.

ε

Except that infinite products might not be defined! *R* might not be discrete.

The Good News

Spector's Problem

Given $\omega, \varepsilon_{(\cdot)}$ and q find $n, \alpha, p_{(\cdot)}$ satisfying

$$n \qquad \stackrel{\mathbb{N}}{=} \qquad \omega(\alpha)$$
$$\alpha(n) \qquad \stackrel{X_n}{=} \qquad \varepsilon_n(p_n)$$
$$p_n(\alpha(n)) \qquad \stackrel{R}{=} \qquad q(\alpha)$$

Spector's Problem

Given $\omega, \varepsilon_{(\cdot)}$ and q find $n, \alpha, p_{(\cdot)}$ satisfying

$$n \qquad \stackrel{\mathbb{N}}{\leq} \qquad \omega(\alpha)$$
$$\alpha(n) \qquad \stackrel{\mathbb{X}_n}{=} \qquad \varepsilon_n(p_n)$$
$$p_n(\alpha(n)) \qquad \stackrel{\mathbb{R}}{=} \qquad q(\alpha)$$

Good News. We don't need to play optimally forever.

Outline

Selection Functions

2 Generalised Games

Conditional iteration

Iterated product

$$\bigotimes_{k}(\varepsilon) = \varepsilon_{k} \otimes (\bigotimes_{k+1}(\varepsilon))$$

in general fails if R not discrete (even assuming continuity).

Conditional iteration

Iterated product

$$\bigotimes_{k}(\varepsilon) = \varepsilon_{k} \otimes (\bigotimes_{k+1}(\varepsilon))$$

in general fails if R not discrete (even assuming continuity). **Spector's solution**

$$\bigotimes_{s}(\varepsilon)(q) \stackrel{\prod_{i=|s|}^{\infty}X_{i}}{=} \begin{cases} \mathbf{0} & \text{if } \omega_{s}(\mathbf{0}) < |s| \\ (\varepsilon_{|s|} \otimes \lambda x. \bigotimes_{s*x}(\varepsilon))(q) & \text{otherwise.} \end{cases}$$

イロン イボン イモン イモン 一日

Spector's Oversight (?)

In finding the solution (a product of selection functions)

$$\bigotimes_{s}(\varepsilon)(q) \stackrel{\prod_{i=k}^{\infty} X_{i}}{=} \begin{cases} \mathbf{0} & \text{if } \omega_{s}(\mathbf{0}) < |s| \\ (\varepsilon_{|s|} \otimes \lambda x. \bigotimes_{s * x} (\varepsilon))(q) & \text{otherwise.} \end{cases}$$

Spector's Oversight (?)

In finding the solution (a product of selection functions)

$$\bigotimes_{s}(\varepsilon)(q) \stackrel{\Pi_{i=k}^{\infty}X_{i}}{=} \begin{cases} \mathbf{0} & \text{if } \omega_{s}(\mathbf{0}) < |s| \\ (\varepsilon_{|s|} \otimes \lambda x. \bigotimes_{s \ast x}(\varepsilon))(q) & \text{otherwise.} \end{cases}$$

Spector generalises recusion scheme as product of quantifiers!

$$\bigotimes_{s}(\phi)(q) \stackrel{R}{=} \left\{ \begin{array}{ll} g(\mathbf{0}) & \text{if } \omega_{s}(\mathbf{0}) < |s| \\ (\phi_{|s|} \otimes \lambda x. \bigotimes_{s*x}(\phi))(q) & \text{otherwise.} \end{array} \right.$$

Spector's Oversight (?)

In finding the solution (a product of selection functions)

$$\bigotimes_{s}(\varepsilon)(q) \stackrel{\prod_{i=k}^{\infty} X_{i}}{=} \begin{cases} \mathbf{0} & \text{if } \omega_{s}(\mathbf{0}) < |s| \\ (\varepsilon_{|s|} \otimes \lambda x. \bigotimes_{s * x} (\varepsilon))(q) & \text{otherwise.} \end{cases}$$

Spector generalises recusion scheme as product of quantifiers!

$$\bigotimes_{s}(\phi)(q) \stackrel{R}{=} \left\{ \begin{array}{ll} g(\mathbf{0}) & \text{if } \omega_{s}(\mathbf{0}) < |s| \\ \phi_{|s|}(\lambda x. \bigotimes_{s*x}(\phi)(q_{x})) & \text{otherwise.} \end{array} \right.$$

For more information

M. Escardo and P. Oliva

Selection functions, bar recursion and backward induction *Submitted*, July 2009

M. Escardo and P. Oliva

Instances of bar recursion as iterated products of selection functions and quantifiers

In preparation

