Sequential Games and Optimal Strategies

Paulo Oliva (based on joint work with M. Escardó)

Queen Mary, University of London, UK

Logic Colloquium Paris, 25 July 2010

イロン イヨン イヨン イヨン

1/44

Single-player Games

SUDOKU 数独 Time: 19:09								
8		4		2	9	4		6
2	5	7	4	1	4		9	7
9			1	5	8		3	4
5	2	6	7	7		2	1	3
4		6		9		7		8
1		3	2	4 3	4 3	7		5
	9	2	3		4	5	3 7	6
3 7	6				1	3	2	1
3 7	1	4	7		9	4	3 7	2

Two-player Games

Two players: Black and White

Two-player Games

Two players: Black and White

Possible outcomes:

- Black wins
- White wins
- Draw

Two-player Games

Two players: Black and White

Possible outcomes:

- Black wins
- White wins
- Draw

Strategy: Choice of move at round k given previous moves

Two players: John and Julia

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

- John gets N% of the cake (John's payoff)
- Julia gets (100 N)% of the cake (Julia's payoff)

4/44

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

- John gets N% of the cake (John's payoff)
- Julia gets (100 N)% of the cake (Julia's payoff)

Best strategy for John is to split cake into half

It is not a "winning strategy" but it is an **optimal strategy** It maximises his payoff

Number of Player vs Number of Rounds

Number of players is not essential

It is important what the "goal" at each round is

Rounds with "same goal" mean played by "same player"

Number of Player vs Number of Rounds

Number of players is not essential

It is important what the "goal" at each round is

Rounds with "same goal" mean played by "same player"

How to describe the goal at a particular round?

Number of Player vs Number of Rounds

Number of players is not essential

It is important what the "goal" at each round is

Rounds with "same goal" mean played by "same player"

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

5/44

Instead, the goal should be described as

a choice of outcome from each set of possible outcomes

As in...

Q: How much would you like to play for your flight?

As in...

Q: How much would you like to play for your flight? A: As little as possible!

Target function

If R = set of outcomes and X = set of possible moves then

$$\phi \in (X \to R) \to R$$

describes the desired outcome $\phi p \in R$ given that the outcome

of the game $px \in R$ for each move $x \in X$ is given.

Target function

If R = set of outcomes and X = set of possible moves then

$$\phi \in (X \to R) \to R$$

describes the desired outcome $\phi p \in R$ given that the outcome

of the game $px \in R$ for each move $x \in X$ is given.

In the example:

φ

- X = possible flights
- R = real number
- $X \rightarrow R = price of each flight$
 - = minimal value functional

イロト イポト イヨト イヨト

Outline

2 Sequential Games – Fixed Length

Sequential Games – Unbounded Length

Outline

2 Sequential Games – Fixed Length

Sequential Games – Unbounded Length

Selection Functions

Generalised quantifiers

$$\phi : (X \to R) \to R$$

- Selection Functions

Generalised quantifiers

$$\phi : \ (X \to R) \to R$$

For instance

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Double negation	$\neg \neg X$:	$(X \to \bot) \to \bot$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Limit	lim	:	$(\mathbb{N} \to R) \to R$
Fixed point operator	fix_X	:	$(X \to X) \to X$

・ロ・ ・ 部・ ・ ほ・ ・ ほ・

æ

10/44

- Selection Functions

Generalised quantifiers

$$\phi: (X \to R) \to R \qquad (\equiv K_R X)$$

For instance

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Double negation	$\neg \neg X$:	$(X \to \bot) \to \bot$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Limit	lim	:	$(\mathbb{N} \to R) \to R$
Fixed point operator	fix_X	:	$(X \to X) \to X$

・ロ・ ・ 部・ ・ ほ・ ・ ほ・

æ

10/44

 $\exists x^X \forall y^Y p(x,y)$

$$\exists x^X \forall y^Y p(x,y) \qquad \stackrel{\mathbb{B}}{\equiv} \quad (\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}})$$

$$\exists x^X \forall y^Y p(x,y) \quad \stackrel{\mathbb{B}}{\equiv} \quad (\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}}) \\ \sup_x \int_0^1 p(x,y) dy \quad \stackrel{\mathbb{R}}{\equiv} \quad (\sup \otimes \int) (p^{[0,1]^2 \to \mathbb{R}})$$

$$\exists x^X \forall y^Y p(x,y) \stackrel{\mathbb{B}}{\equiv} (\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}})$$

$$\sup_x \int_0^1 p(x,y) dy \quad \equiv \quad (\sup \otimes \int) (p^{[0,1]^2 \to \mathbb{R}})$$

Definition (Product of Generalised Quantifiers)

Given $\phi \colon KX$ and $\psi \colon KY$ define $\phi \otimes \psi \colon K(X \times Y)$

$$(\phi \otimes \psi)(p) :\stackrel{R}{=} \phi(\lambda x^{X} . \psi(\lambda y^{Y} . p(x, y)))$$

where $p: X \times Y \to R$.

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that

$$\int_0^1 p = p(a)$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that $\int_{0}^{1} p = p(a)$

Theorem (Maximum Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that $\sup p = p(a)$

Theorem (Witness Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

$$\exists x^X p(x) \iff p(a)$$

(similar to Hilbert's ε -term).

Theorem (Witness Theorem)

For any $p \colon X \to \mathbb{B}$ there is a point $a \in X$ such that

 $\exists x^X p(x) \iff p(a)$

(similar to Hilbert's ε -term).

Theorem (Counter-example Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

 $\forall x^X p(x) \iff p(a)$

13/44

(a is counter-example to p if one exists).

Let $JX \equiv (X \to R) \to X$.

- Selection Functions

Let
$$JX \equiv (X \to R) \to X$$
.

Definition (Selection Functions)

 ε : JX is called a **selection function** for ϕ : KX if

$$\phi(p) = p(\varepsilon p)$$

holds for all $p: X \to R$.

Let
$$JX \equiv (X \to R) \to X$$
.

Definition (Selection Functions)

 ε : JX is called a **selection function** for ϕ : KX if

$$\phi(p) = p(\varepsilon p)$$

イロン イヨン イヨン イヨン

14/44

holds for all $p: X \to R$.

Definition (Attainable Quantifiers)

A generalised quantifier $\phi \colon KX$ is called **attainable**

if it has a selection function ε : JX.

For Instance

• $\sup\colon K_{\mathbb{R}}[0,1]$ is an attainable quantifier as $\sup(p) = p(\mathrm{argsup}(p))$

where $\operatorname{argsup}: J_{\mathbb{R}}[0,1].$

For Instance

• sup: $K_{\mathbb{R}}[0,1]$ is an attainable quantifier as $\sup(p) = p(\operatorname{argsup}(p))$ where $\operatorname{argsup}: J_{\mathbb{R}}[0,1].$

イロン イヨン イヨン イヨン

15 / 44

• fix: $K_X X$ is an attainable quantifier as

$$\mathsf{fix}(p) = p(\mathsf{fix}(p))$$
 where fix: $J_X X \ (= K_X X).$

- Selection Functions

Selection Functions and Generalised Quantifiers

Every selection function $\varepsilon \colon JX$ defines a quantifier $\overline{\varepsilon} \colon KX$

$$\overline{\varepsilon}(p) = p(\varepsilon(p))$$

- Selection Functions

Selection Functions and Generalised Quantifiers

Not all quantifiers are attainable, e.g. $R=\{0,1\}$

$$\phi(p) = 0$$

- Selection Functions

Selection Functions and Generalised Quantifiers

Different ε might define same ϕ , e.g. X = [0, 1] and $R = \mathbb{R}$

$$\varepsilon_{0}(p) = \mu x. \sup p = p(x)$$

$$\varepsilon_{1}(p) = \nu x. \sup p = p(x)$$

$$\varepsilon_{1}(p) = \nu x. \sup p = p(x)$$

$$\varepsilon_{1}(p) = \nu x. \sup p = p(x)$$

Quantifier Elimination

Suppose

$$\exists x q(x) = q(\varepsilon q) \forall y q(y) = q(\delta q).$$

Quantifier Elimination

Suppose

$$\exists x q(x) = q(\varepsilon q) \forall y q(y) = q(\delta q).$$

Then

$$\exists x \forall y \ p(x,y) = \exists x \ p(x,b(x))$$

$$b(x) = \delta(\lambda y.p(x,y))$$

Quantifier Elimination

Suppose

$$\exists x q(x) = q(\varepsilon q) \forall y q(y) = q(\delta q).$$

Then

$$\exists x \forall y \ p(x, y) = \exists x \ p(x, b(x))$$
$$= p(a, b(a))$$

where

$$b(x) = \delta(\lambda y.p(x,y))$$

$$a = \varepsilon(\lambda x.p(x,b(x))).$$

・ロン ・回 と ・ ヨン ・ ヨン

æ

- Selection Functions

Quantifier Elimination

Suppose $\exists x q(x) = q(\varepsilon q) \\ \forall y q(y) = q(\delta q).$ Then $(\exists_X \otimes \forall_Y)(p) = \exists x p(x, b(x)) \\ = p(a, b(a))$

where

$$b(x) = \delta(\lambda y.p(x,y))$$

$$a = \varepsilon(\lambda x.p(x,b(x))).$$

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Given $\varepsilon : JX$ and $\delta : JY$ define $\varepsilon \otimes \delta : J(X \times Y)$ as $(\varepsilon \otimes \delta)(p^{X \times Y \to R}) \stackrel{X \times Y}{:=} (,)$

Given $\varepsilon : JX$ and $\delta : JY$ define $\varepsilon \otimes \delta : J(X \times Y)$ as $(\varepsilon \otimes \delta)(p^{X \times Y \to R}) \stackrel{X \times Y}{:=} (, b())$

$$b(x) := \delta(\lambda y.p(x,y)).$$

Given $\varepsilon \colon JX$ and $\delta \colon JY$ define $\varepsilon \otimes \delta \colon J(X \times Y)$ as

$$(\varepsilon \otimes \delta)(p^{X \times Y \to R}) \stackrel{X \times Y}{:=} (a, b(a))$$

$$a := \varepsilon(\lambda x.p(x,b(x)))$$

$$b(x) := \delta(\lambda y.p(x,y)).$$

Given $\varepsilon \colon JX$ and $\delta \colon JY$ define $\varepsilon \otimes \delta \colon J(X \times Y)$ as

$$(\varepsilon \otimes \delta)(p^{X \times Y \to R}) \stackrel{X \times Y}{:=} (a, b(a))$$

where

$$a := \varepsilon(\lambda x.p(x,b(x)))$$

$$b(x) := \delta(\lambda y.p(x,y)).$$

Theorem

$$\overline{\varepsilon}\otimes\overline{\delta}=\overline{\varepsilon\otimes\delta}$$

- Selection Functions

Iterated Product of Selection Functions

Finite iteration

$$\bigotimes_{i=k}^{n} \varepsilon_{i} \stackrel{J \amalg X_{i}}{=} \varepsilon_{k} \otimes \left(\bigotimes_{i=k+1}^{n} \varepsilon_{i}\right)$$

Iterated Product of Selection Functions

Infinite iteration (*R* discrete, $R^{\Pi X_i}$ continuous)

$$\bigotimes_{i=k}^{\infty} \varepsilon_i \stackrel{J \amalg X_i}{=} \varepsilon_k \otimes \left(\bigotimes_{i=k+1}^{\infty} \varepsilon_i \right)$$

Iterated Product of Selection Functions

Infinite iteration I (R discrete, $R^{\Pi X_i}$ continuous)

$$\bigotimes_{i=k}^{\infty} \varepsilon_i \stackrel{J \amalg X_i}{=} \varepsilon_k \otimes \left(\bigotimes_{i=k+1}^{\infty} \varepsilon_i\right)$$

Infinite iteration II ($l: R \to \mathbb{N}, \mathbb{N}^{\Pi X_i}$ continuous)

$$\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)(q) \stackrel{\Pi X_{i}}{=} \begin{cases} \mathbf{c} & \text{if } k < l(q(\mathbf{c})) \\ \left(\varepsilon_{k} \otimes \left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)\right)(q) & \text{otherwise} \end{cases}$$

Iterated Product of Selection Functions

Infinite iteration I (R discrete, $R^{\Pi X_i}$ continuous) = MBR

$$\bigotimes_{i=k}^{\infty} \varepsilon_i \stackrel{J \amalg X_i}{=} \varepsilon_k \otimes \left(\bigotimes_{i=k+1}^{\infty} \varepsilon_i \right)$$

Infinite iteration II $(l: R \to \mathbb{N}, \mathbb{N}^{\Pi X_i} \text{ continuous}) = \mathsf{SBR}$

$$\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)(q) \stackrel{\Pi X_{i}}{=} \begin{cases} \mathbf{c} & \text{if } k < l(q(\mathbf{c})) \\ \left(\varepsilon_{k} \otimes \left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)\right)(q) & \text{otherwise} \end{cases}$$

Outline

2 Sequential Games – Fixed Length

Finite Games (n rounds)

Definition (A tuple $(R, (X_i)_{i < n}, (\phi_i)_{i < n}, q)$ where)

- R is the set of **possible outcomes**
- X_i is the set of **available moves** at round i
- $\phi_i : K_R X_i$ is the **goal quantifier** for round *i*
- $q: \prod_{i=0}^{n-1} X_i \to R$ is the outcome function

Finite Games (*n* rounds)

Definition (A tuple $(R, (X_i)_{i < n}, (\phi_i)_{i < n}, q)$ where)

- R is the set of **possible outcomes**
- X_i is the set of **available moves** at round i
- $\phi_i : K_R X_i$ is the **goal quantifier** for round *i*
- $q: \prod_{i=0}^{n-1} X_i \to R$ is the outcome function

Definition (Strategy)

Family of mappings

$$\mathsf{next}_k \colon \prod_{i=0}^{k-1} X_i \to X_k$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}} = b_k^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$b_i^{\vec{a}} = \mathsf{next}_i(\vec{a}, b_k^{\vec{a}}, \dots, b_{i-1}^{\vec{a}}).$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}} = b_k^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$b_i^{\vec{a}} = \mathsf{next}_i(\vec{a}, b_k^{\vec{a}}, \dots, b_{i-1}^{\vec{a}}).$$

Definition (Optimal Strategy)

Strategy next_k is **optimal** if for any partial play \vec{a}

$$q(\vec{a}, \mathbf{b}^{\vec{a}}) = \phi_k(\lambda x_k. q(\vec{a}, x_k, \mathbf{b}^{\vec{a}, x_k})).$$

Example (Nash Equilibrium with common payoff)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Sets of moves Payoff \mathbb{R} Maximal value function Payoff function $q: \prod_{i=0}^{n-1} X_i \to \mathbb{R}$

Example (Nash Equilibrium with common payoff)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Sets of moves Payoff \mathbb{R} Maximal value function Payoff function $q: \prod_{i=0}^{n-1} X_i \to \mathbb{R}$

Optimal strategy

 $\mathsf{next}_k(x_0,\ldots,x_{k-1}) = \operatorname{argsup}_{x_k} \operatorname{sup}_{x_{k+1}} \ldots \operatorname{sup}_{x_{n-1}} q(\vec{x})$

Example (Satisfiability)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Booleans \mathbb{B} Boolean \mathbb{B} Existential quantifier $\exists : K_{\mathbb{B}}\mathbb{B}$ Formula $q(x_0, \dots, x_{n-1})$

Example (Satisfiability)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Booleans \mathbb{B} Boolean \mathbb{B} Existential quantifier $\exists : K_{\mathbb{B}}\mathbb{B}$ Formula $q(x_0, \ldots, x_{n-1})$

Optimal strategy

next_k $(x_0, \dots, x_{k-1}) = x_k$ such that $\exists x_{k+1} \dots \exists x_{n-1}q(\vec{x})$ (if possible)

Theorem (Main Theorem for Finite Games)

If ϕ_k are attainable with selection functions ε_k then

$$\mathsf{next}_k(x_0,\ldots,x_{k-1}) \stackrel{X_k}{=} \left(\left(\bigotimes_{i=k}^{n-1} \varepsilon_i \right) (q_{x_0,\ldots,x_{k-1}}) \right)_0$$

is an **optimal strategy** for the game $(R, (X_i)_{i < n}, (\phi_i)_{i < n}, q)$. Moreover,

$$\vec{a} = \left(\bigotimes_{i=0}^{n-1} \varepsilon_i\right) (q)$$

is the strategic play.

Nash equilibrium (sequential games)

Backward Induction

Let $q: \prod_{i=1}^{n} X_i \to \mathbb{R}^n$ be a payoff function $\operatorname{argmax}_i(p) \{ [\operatorname{argmax}_i: (X_i \to \mathbb{R}^n) \to X_i]$ return $x \in X_i$ such that p(x) has maximal *i*-coordinate }

Backward Induction

Let $q: \prod_{i=1}^{n} X_i \to \mathbb{R}^n$ be a payoff function $\operatorname{argmax}_i(p) \{ [\operatorname{argmax}_i: (X_i \to \mathbb{R}^n) \to X_i]$ return $x \in X_i$ such that p(x) has maximal *i*-coordinate }

$$\begin{array}{ll} \operatorname{sol}_i(x_1, \dots, x_{i-1}) \left\{ & [\operatorname{sol}_i \colon \Pi_{k=1}^{i-1} X_k \to \Pi_{k=i}^n X_k] \\ \text{if } i = n+1 \text{ return } \left\langle \right. \right\rangle \\ \text{else} \\ & y := \operatorname{argmax}_i(\lambda x.q(\operatorname{sol}_{i+1}(x_1, \dots, x_{i-1}, x))) \\ \text{ return } y * \operatorname{sol}_{i+1}(x_1, \dots, x_{i-1}, y) \\ \end{array} \right\}$$

Backward Induction

Let $q: \prod_{i=1}^{n} X_i \to \mathbb{R}^n$ be a payoff function $\operatorname{argmax}_i(p) \{ [\operatorname{argmax}_i: (X_i \to \mathbb{R}^n) \to X_i]$ return $x \in X_i$ such that p(x) has maximal *i*-coordinate }

$$\begin{array}{ll} \operatorname{sol}_{i}(x_{1}, \ldots, x_{i-1}) \left\{ & \left[\operatorname{sol}_{i} \colon \Pi_{k=1}^{i-1} X_{k} \to \Pi_{k=i}^{n} X_{k} \right] \\ \text{if } i = n+1 \text{ return } \left\langle \right\rangle \\ \text{else} \\ & y := \operatorname{argmax}_{i}(\lambda x.q(\operatorname{sol}_{i+1}(x_{1}, \ldots, x_{i-1}, x))) \\ & \operatorname{return } y * \operatorname{sol}_{i+1}(x_{1}, \ldots, x_{i-1}, y) \\ \end{array} \right\} \\ \left\langle x_{1}, \ldots, x_{n} \right\rangle := \operatorname{sol}_{1}(\) \end{array}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・
Backward Induction

Payoff function $q: \prod_{i=1}^{n} X_i \to \mathbb{R}^n$ Each selection function

$$\operatorname{argmax}_i \colon (X_i \to \mathbb{R}^n) \to X_i$$

finds a point where the argument is $\ensuremath{\textit{i}}\xspace$ -maximal

Product

$$\mathsf{sol}_1(\) = \left(\bigotimes_{i=1}^n \operatorname{argmax}_i\right)(q)$$

calculates a strategy profile in Nash equilibrium.

Backtracking

 $\mathsf{good}\colon X\times Y\to \mathbb{B}$

Backtracking

 $\mathsf{good} \colon X \times Y \to \mathbb{B}$

Backtracking

 $\mathsf{good}\colon X\times Y\to \mathbb{B}$

Backtracking

 $\mathsf{good}\colon X\times Y\to \mathbb{B}$

For Instance – Eight Queens Problem

$$\begin{array}{l} \varepsilon(p) \ \{ \\ \mbox{ for } (i:=1; i\leq 8; i{++}) \ \mbox{do} \\ \mbox{ if } p(i) \ \mbox{return } i \\ \mbox{ return } 1 \\ \} \end{array}$$

$$\varepsilon \colon (8 \to \mathbb{B}) \to 8$$
]

For Instance – Eight Queens Problem

$$\begin{array}{ll} \varepsilon(p) \left\{ & \left[\varepsilon \colon (8 \to \mathbb{B}) \to 8 \right] \right. \\ & \text{for } (i := 1; i \leq 8; i + +) \text{ do} \\ & \text{ if } p(i) \text{ return } i \\ & \text{ return } 1 \end{array} \right\} \\ \\ & \text{sol}_i(x_1, \dots, x_{i-1}) \left\{ & \left[\text{ sol}_i \colon 8^{i-1} \to 8^{9-i} \right] \\ & \text{ if } i > 8 \text{ return } \left\langle \right\rangle \\ & \text{ else} \\ & y := \varepsilon(\lambda x_i \cdot \text{good}(\text{sol}_{i+1}(x_1, \dots, x_i))) \\ & \text{ return } y * \text{sol}_{i+1}(x_1, \dots, x_{i-1}, y) \\ \end{array} \right\}$$

For Instance – Eight Queens Problem

$$\begin{split} \varepsilon(p) \left\{ & \left[\varepsilon : (8 \to \mathbb{B}) \to 8 \right] \\ \text{for } (i := 1; i \leq 8; i++) \text{ do} \\ & \text{if } p(i) \text{ return } i \\ & \text{return } 1 \\ \right\} \\ & \text{sol}_i(x_1, \dots, x_{i-1}) \left\{ & \left[\text{ sol}_i : 8^{i-1} \to 8^{9-i} \right] \\ & \text{if } i > 8 \text{ return } \langle \rangle \\ & \text{else} \\ & y := \varepsilon(\lambda x_i.\text{good}(\text{sol}_{i+1}(x_1, \dots, x_i))) \\ & \text{return } y * \text{sol}_{i+1}(x_1, \dots, x_{i-1}, y) \\ \right\} \\ & \left\{ x_1, \dots, x_8 \right\} := \text{sol}_1() \end{split}$$

31 / 44

For Instance – Eight Queens Problem

good: $8^8 \rightarrow \mathbb{B}$ checks if argument is solution to 8QP.

For Instance – Eight Queens Problem

good: $8^8 \to \mathbb{B}$ checks if argument is solution to 8QP. Selection function

 $\varepsilon \colon (8 \to \mathbb{B}) \to 8$

finds argument $\varepsilon_i p \in 8$ such that $p(\varepsilon_i p)$ holds

For Instance – Eight Queens Problem

good: $8^8 \to \mathbb{B}$ checks if argument is solution to 8QP. Selection function

 $\varepsilon \colon (8 \to \mathbb{B}) \to 8$

finds argument $\varepsilon_i p \in 8$ such that $p(\varepsilon_i p)$ holds

$$\mathsf{sol}_1(\) = \left(\bigotimes_{i=1}^8 arepsilon_i
ight) (\mathsf{good})$$

32 / 44

calculates a solution to 8 queen problem.

Classical Arithmetic

Finite product interprets **bounded collection**

Classical Arithmetic

Finite product interprets **bounded collection**

E.g. consider the infinite PHP

$$\forall c^{\mathbb{N} \to n} \exists b^n \forall i \exists j (j \ge i \land c(j) = b)$$

Classical Arithmetic

Finite product interprets **bounded collection**

E.g. consider the infinite PHP

$$\forall c^{\mathbb{N} \to n} \exists b^n \forall i \exists j (j \ge i \land c(j) = b)$$

Equivalent (dialectica) to

$$\forall c^{\mathbb{N} \to n}, \forall \varepsilon^{J_{\mathbb{N}} \mathbb{N}} \exists b^n, p^{\mathbb{N} \to \mathbb{N}} (\overline{\varepsilon}_b p \ge \varepsilon_b p \land c(\overline{\varepsilon}_b p) = b)$$

Classical Arithmetic

Finite product interprets bounded collection

E.g. consider the infinite PHP

$$\forall c^{\mathbb{N} \to n} \exists b^n \forall i \exists j (j \ge i \land c(j) = b)$$

Equivalent (dialectica) to

$$\forall c^{\mathbb{N} \to n}, \forall \varepsilon^{J_{\mathbb{N}} \mathbb{N}} \exists b^n, p^{\mathbb{N} \to \mathbb{N}} (\overline{\varepsilon}_b p \ge \varepsilon_b p \land c(\overline{\varepsilon}_b p) = b)$$

Witnessed by

$$b = c(\overline{\left(\bigotimes_{i=0}^{n-1}\varepsilon_i\right)}(\max))$$

Outline

Sequential Games – Unbounded Length

Finite but Unbounded Games

Finite but Unbounded Games

Example (Chess)

Moves X_i Outcomes RGoal quantifier ϕ_{2i} Goal quantifier ϕ_{2i+1} Outcome function q Valid chess moves White, black, draw, e.g. $\{-1, 0, 1\}$ Maximisation function Minimisation function Adjudication on a given play α

Finite but Unbounded Games

Example (Chess)

Moves X_i
Outcomes R
Goal quantifier ϕ_{2i}
Goal quantifier ϕ_{2i+1}
Outcome function q

Valid chess moves White, black, draw, e.g. $\{-1,0,1\}$ Maximisation function Minimisation function Adjudication on a given play α

35 / 44

The game is drawn, upon a correct claim by the player having the move, if

- a. he writes on his scoresheet, and declares to the arbiter his intention to make a move which shall result in the last 50 moves having been made by each player without the movement of any pawn and without the capture of any piece, or
- b. the last 50 consecutive moves have been made by each player without the movement of any pawn and without the capture of any piece.

With this rule, it can be shown that the game is finite, assuming that given the option to call for a draw, at least one player will do so.

Finite but Unbounded Games

Definition (Tuple $(R, (X_i)_{i \in \mathbb{N}}, (\phi_i)_{i \in \mathbb{N}}, q)$ where...)

- R is the set of possible **discrete** outcomes
- X_i is the set of available moves X_i at round $i \in \mathbb{N}$
- $\phi_i \colon K_R X_i$ are goal quantifiers for round $i \in \mathbb{N}$
- $q: \prod_{i=0}^{\infty} X_i \to R$ is a **continous** outcome function

Optimal Strategies

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\beta^{\vec{a}} = \beta^{\vec{a}}(k), \beta^{\vec{a}}(k+1), \ldots$ where

$$\beta^{\vec{a}}(i) = \mathsf{next}_i(\vec{a}, \beta^{\vec{a}}(k), \dots, \beta^{\vec{a}}(i-1)).$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\beta^{\vec{a}} = \beta^{\vec{a}}(k), \beta^{\vec{a}}(k+1), \ldots$ where

$$\beta^{\vec{a}}(i) = \mathsf{next}_i(\vec{a}, \beta^{\vec{a}}(k), \dots, \beta^{\vec{a}}(i-1)).$$

Definition (Optimal Strategy)

Strategy next_k is **optimal** if for any partial play \vec{a}

$$q(\vec{a}*\beta^{\vec{a}}) = \phi_k(\lambda x_k.q(\vec{a}*x_k*\beta^{\vec{a},x_k})).$$

Finite but Unbounded Games

Theorem (Main Theorem for Finite but Unbounded Games)

If ϕ_k are attainable with selection functions ε_k then

$$\mathsf{next}_k(x_0,\ldots,x_{k-1}) \stackrel{X_k}{=} \left(\left(\bigotimes_{i=k}^{\infty} \varepsilon_i \right) (q_{x_0,\ldots,x_{k-1}}) \right)_0$$

is an **optimal strategy** for the game $(R, (X_i)_{i \in \mathbb{N}}, (\phi_i)_{i \in \mathbb{N}}, q)$. Moreover,

$$\alpha = \left(\bigotimes_{i=0}^{\infty} \varepsilon_i\right)(q)$$

38 / 44

is the strategic play.

Classical Analysis

Mathematical analysis is based on comprehension

$$\exists f^{\mathbb{N}\to\mathbb{B}}\forall n^{\mathbb{N}}(fn\leftrightarrow A_n).$$

Classical Analysis

Mathematical analysis is based on comprehension

$$\exists f^{\mathbb{N}\to\mathbb{B}}\forall n^{\mathbb{N}}(fn\leftrightarrow A_n).$$

Comprehension follows classically from countable choice

$$\forall n^{\mathbb{N}} \exists b^{\mathbb{B}} A_n(b) \to \exists f^{\mathbb{N} \to \mathbb{B}} \forall n^{\mathbb{N}} A_n(fn).$$

Classical Analysis

Mathematical analysis is based on comprehension

$$\exists f^{\mathbb{N}\to\mathbb{B}}\forall n^{\mathbb{N}}(fn\leftrightarrow A_n).$$

Comprehension follows classically from countable choice

$$\forall n^{\mathbb{N}} \exists b^{\mathbb{B}} A_n(b) \to \exists f^{\mathbb{N} \to \mathbb{B}} \forall n^{\mathbb{N}} A_n(fn).$$

Countable choice is classically computational up to \mathbf{DNS}

$$\forall n^{\mathbb{N}} \neg \neg A_n \to \neg \neg \forall n^{\mathbb{N}} A_n$$

Double negation shift

The double negation shift \mathbf{DNS}

$$\forall n \neg \neg A_n \to \neg \neg \forall n A_n$$

corresponds to the type

$$\Pi_n K_\perp A_n \to K_\perp \Pi_n A_n.$$

Double negation shift

The double negation shift \mathbf{DNS}

$$\forall n \neg \neg A_n \to \neg \neg \forall n A_n$$

corresponds to the type

$$\Pi_n K_\perp A_n \to K_\perp \Pi_n A_n.$$

If $\bot \to A_n$, this is equivalent to

$$\Pi_n J_\perp A_n \to J_\perp \Pi_n A_n.$$

Double negation shift

The double negation shift \mathbf{DNS}

$$\forall n \neg \neg A_n \to \neg \neg \forall n A_n$$

corresponds to the type

$$\Pi_n K_\perp A_n \to K_\perp \Pi_n A_n.$$

If $\bot \to A_n$, this is equivalent to

$$\Pi_n J_\perp A_n \to J_\perp \Pi_n A_n.$$

The type of the **countable product** of selection functions!

Not a coincidence!

Modified bar recursion is equivalent to

$$\bigotimes_{i=k}^{\infty} \varepsilon_i \stackrel{J \amalg X_i}{=} \varepsilon_k \otimes \left(\bigotimes_{i=k+1}^{\infty} \varepsilon_i\right)$$

Spector's bar recursion is equivalent to

$$\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right) (q) \stackrel{\Pi X_{i}}{=} \begin{cases} \mathbf{c} & \text{if } k < l(q(\mathbf{c})) \\ \left(\varepsilon_{k} \otimes \left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)\right) (q) & \text{otherwise} \end{cases}$$

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies
- Product of sel. fct. = bar recursion

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies
- Product of sel. fct. = bar recursion
- New "negative translation" based on J strong monad

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies
- Product of sel. fct. = bar recursion
- New "negative translation" based on J strong monad
- Functional interpretations (proof mining)

Theorems \mapsto games Proofs \mapsto winning strategies

A Few Open Questions

Equivalent notion for simultaneous games Logic: Branching quantifiers GT: Standard Nash equilibrium

- Equivalent notion for simultaneous games Logic: Branching quantifiers GT: Standard Nash equilibrium
- 2. Relation to **BBC functional** Berardi, Bezem, Coquand 1998

- Equivalent notion for simultaneous games Logic: Branching quantifiers GT: Standard Nash equilibrium
- 2. Relation to **BBC functional** Berardi, Bezem, Coquand 1998
- 3. Approximately attainable quantifiers Family ε_n approximates a selection function

- Equivalent notion for simultaneous games Logic: Branching quantifiers GT: Standard Nash equilibrium
- 2. Relation to **BBC functional** Berardi, Bezem, Coquand 1998
- 3. Approximately attainable quantifiers Family ε_n approximates a selection function
- 4. Is product of selection functions equivalent to product of quantifiers?

- Equivalent notion for simultaneous games Logic: Branching quantifiers GT: Standard Nash equilibrium
- 2. Relation to **BBC functional** Berardi, Bezem, Coquand 1998
- 3. Approximately attainable quantifiers Family ε_n approximates a selection function
- 4. Is product of selection functions equivalent to product of quantifiers?

43 / 44

5. Other places where \bigotimes appear?

References

M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction *MSCS*, 20(2):127-168, 2010

📄 M. Escardó and P. Oliva

The Peirce translation and the double negation shift *LNCS*, *CiE*'2010

M. Escardó and P. Oliva

Computational interpretations of analysis via products of selection functions

LNCS, CiE'2010

