Sequential Games and Optimal Strategies

Paulo Oliva

(based on joint work with M. Escardó)

Queen Mary, University of London, UK

Logic Colloquium
Paris, 25 July 2010

Single－player Games

SUDOKU 数独 Time： $\begin{array}{r}\text { HARD } \\ \text { H：09 }\end{array}$

8		4		2	9	4		6
2	5	7	4	1	4		9	7
9			1	5	8		3	4
5	2	6	7	7		2	1	3
4		6		9		7		8
1	1	3	2	4^{3}	4	3	7	
	9	2	3		4	5	${ }^{3}$	6
${ }^{3}$	6	5			1	3	2	1
${ }^{3}$	1	4	7		9	4	7	2

Two-player Games

Two players: Black and White

Two-player Games

Two players: Black and White
Possible outcomes:

- Black wins
- White wins
- Draw

Two-player Games

Two players: Black and White
Possible outcomes:

- Black wins
- White wins
- Draw

Strategy: Choice of move at round k given previous moves

Another Game

Two players: John and Julia

Another Game

Two players: John and Julia
John splits a cake. Julia chooses one of the two pieces

Another Game

Two players: John and Julia
John splits a cake. Julia chooses one of the two pieces
Possible outcomes:

- John gets N\% of the cake (John's payoff)
- Julia gets $(100-N) \%$ of the cake (Julia's payoff)

Another Game

Two players: John and Julia
John splits a cake. Julia chooses one of the two pieces
Possible outcomes:

- John gets $N \%$ of the cake (John's payoff)
- Julia gets $(100-N) \%$ of the cake (Julia's payoff)

Best strategy for John is to split cake into half
It is not a "winning strategy" but it is an optimal strategy
It maximises his payoff

Number of Player vs Number of Rounds

Number of players is not essential
It is important what the "goal" at each round is
Rounds with "same goal" mean played by "same player"

Number of Player vs Number of Rounds

Number of players is not essential
It is important what the "goal" at each round is
Rounds with "same goal" mean played by "same player"
How to describe the goal at a particular round?

Number of Player vs Number of Rounds

Number of players is not essential
It is important what the "goal" at each round is
Rounds with "same goal" mean played by "same player"
How to describe the goal at a particular round?
You could say: The goal is to win!
But maybe this is not possible (or might not even make sense)
Instead, the goal should be described as
a choice of outcome from each set of possible outcomes

Q: How much would you like to play for your flight?

Q: How much would you like to play for your flight? A: As little as possible!

Target function

If $R=$ set of outcomes and $X=$ set of possible moves then

$$
\phi \in(X \rightarrow R) \rightarrow R
$$

describes the desired outcome $\phi p \in R$ given that the outcome of the game $p x \in R$ for each move $x \in X$ is given.

Target function

If $R=$ set of outcomes and $X=$ set of possible moves then

$$
\phi \in(X \rightarrow R) \rightarrow R
$$

describes the desired outcome $\phi p \in R$ given that the outcome of the game $p x \in R$ for each move $x \in X$ is given.

In the example:

$$
\begin{array}{ll}
X & =\text { possible flights } \\
R & =\text { real number } \\
X \rightarrow R & =\text { price of each flight } \\
\phi & =\text { minimal value functional }
\end{array}
$$

Outline

(1) Selection Functions
(2) Sequential Games - Fixed Length
(3) Sequential Games - Unbounded Length

Outline

（1）Selection Functions

（2）Sequential Games－Fixed Length

（3）Sequential Games－Unbounded Length

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

For instance

Operation	ϕ	$:$	$(X \rightarrow R) \rightarrow R$
Quantifiers	\forall_{X}, \exists_{X}	$:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
Double negation	$\neg \neg X$	$:$	$(X \rightarrow \perp) \rightarrow \perp$
Integration	\int_{0}^{1}	$:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Supremum	$\sup _{[0,1]}$	$:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Limit	\lim	$:$	$(\mathbb{N} \rightarrow R) \rightarrow R$
Fixed point operator	fix $_{X}$	$:$	$(X \rightarrow X) \rightarrow X$

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R \quad\left(\equiv K_{R} X\right)
$$

For instance

Operation	ϕ	$:$	$(X \rightarrow R) \rightarrow R$
Quantifiers	\forall_{X}, \exists_{X}	$:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
Double negation	$\neg \neg X$	$:$	$(X \rightarrow \perp) \rightarrow \perp$
Integration	\int_{0}^{1}	$:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Supremum	$\sup _{[0,1]}$	$:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Limit	\lim	$:$	$(\mathbb{N} \rightarrow R) \rightarrow R$
Fixed point operator	fix $_{X}$	$:$	$(X \rightarrow X) \rightarrow X$

Nested quantifiers \equiv single quantifier on product space

Nested quantifiers \equiv single quantifier on product space

$$
\exists x^{X} \forall y^{Y} p(x, y)
$$

Nested quantifiers \equiv single quantifier on product space

$$
\exists x^{X} \forall y^{Y} p(x, y) \quad \stackrel{\mathbb{B}}{\equiv} \quad\left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right)
$$

Nested quantifiers \equiv single quantifier on product space

$$
\begin{array}{lll}
\exists x^{X} \forall y^{Y} p(x, y) & \stackrel{\mathbb{B}}{=} & \left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) \\
\sup _{x} \int_{0}^{1} p(x, y) d y & \stackrel{\mathbb{R}}{=} & \left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right)
\end{array}
$$

Nested quantifiers \equiv single quantifier on product space

$$
\begin{array}{lll}
\exists x^{X} \forall y^{Y} p(x, y) & \stackrel{\mathbb{B}}{=} & \left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) \\
\sup _{x} \int_{0}^{1} p(x, y) d y & \stackrel{\mathbb{R}}{=} & \left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right)
\end{array}
$$

Definition (Product of Generalised Quantifiers)

Given $\phi: K X$ and $\psi: K Y$ define $\phi \otimes \psi: K(X \times Y)$

$$
(\phi \otimes \psi)(p): \stackrel{R}{=} \phi\left(\lambda x^{X} \cdot \psi\left(\lambda y^{Y} \cdot p(x, y)\right)\right)
$$

where $p: X \times Y \rightarrow R$.

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\int_{0}^{1} p=p(a)
$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\int_{0}^{1} p=p(a)
$$

Theorem (Maximum Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\sup p=p(a)
$$

Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
\exists x^{X} p(x) \Leftrightarrow p(a)
$$

(similar to Hilbert's ε-term).

Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
\exists x^{X} p(x) \Leftrightarrow p(a)
$$

(similar to Hilbert's ε-term).

Theorem (Counter-example Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
\forall x^{X} p(x) \Leftrightarrow p(a)
$$

(a is counter-example to p if one exists).

Let $J X \equiv(X \rightarrow R) \rightarrow X$.

Let $J X \equiv(X \rightarrow R) \rightarrow X$.
Definition (Selection Functions)
$\varepsilon: J X$ is called a selection function for $\phi: K X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$.

$$
\text { Let } J X \equiv(X \rightarrow R) \rightarrow X \text {. }
$$

Definition (Selection Functions)

$\varepsilon: J X$ is called a selection function for $\phi: K X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$.

Definition (Attainable Quantifiers)

A generalised quantifier $\phi: K X$ is called attainable if it has a selection function $\varepsilon: J X$.

For Instance

For Instance

- sup: $K_{\mathbb{R}}[0,1]$ is an attainable quantifier as

$$
\sup (p)=p(\operatorname{argsup}(p))
$$

where argsup: $J_{\mathbb{R}}[0,1]$.

- fix: $K_{X} X$ is an attainable quantifier as

$$
\mathrm{fix}(p)=p(\mathrm{fix}(p))
$$

where fix: $J_{X} X\left(=K_{X} X\right)$.

Selection Functions and Generalised Quantifiers

Every selection function $\varepsilon: J X$ defines a quantifier $\bar{\varepsilon}: K X$

$$
\bar{\varepsilon}(p)=p(\varepsilon(p))
$$

Selection Functions and Generalised Quantifiers

Not all quantifiers are attainable, e.g. $R=\{0,1\}$

$$
\phi(p)=0
$$

Selection Functions and Generalised Quantifiers

Different ε might define same ϕ, e.g. $X=[0,1]$ and $R=\mathbb{R}$

$$
\begin{aligned}
\varepsilon_{0}(p) & =\mu x \cdot \sup p=p(x) \\
\varepsilon_{1}(p) & =\nu x \cdot \sup p=p(x)
\end{aligned}
$$

Quantifier Elimination

Suppose

$$
\begin{aligned}
& \exists x q(x)=q(\varepsilon q) \\
& \forall y q(y)=q(\delta q) .
\end{aligned}
$$

Quantifier Elimination

Suppose

$$
\begin{aligned}
& \exists x q(x)=q(\varepsilon q) \\
& \forall y q(y)=q(\delta q) .
\end{aligned}
$$

Then

$$
\exists x \forall y p(x, y)=\exists x p(x, b(x))
$$

where

$$
b(x)=\delta(\lambda y \cdot p(x, y))
$$

Quantifier Elimination

Suppose

$$
\begin{aligned}
& \exists x q(x)=q(\varepsilon q) \\
& \forall y q(y)=q(\delta q) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\exists x \forall y p(x, y) & =\exists x p(x, b(x)) \\
& =p(a, b(a))
\end{aligned}
$$

where

$$
\begin{aligned}
b(x) & =\delta(\lambda y \cdot p(x, y)) \\
a & =\varepsilon(\lambda x \cdot p(x, b(x)))
\end{aligned}
$$

Quantifier Elimination

Suppose

$$
\begin{aligned}
& \exists x q(x)=q(\varepsilon q) \\
& \forall y q(y)=q(\delta q) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(\exists_{X} \otimes \forall_{Y}\right)(p) & =\exists x p(x, b(x)) \\
& =p(a, b(a))
\end{aligned}
$$

where

$$
\begin{aligned}
b(x) & =\delta(\lambda y \cdot p(x, y)) \\
a & =\varepsilon(\lambda x \cdot p(x, b(x)))
\end{aligned}
$$

Bekič's Lemma

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Bekič's Lemma

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Bekič's Lemma

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Bekič's Lemma

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Bekič's Lemma

Lemma

If X and Y have fixed point operators then so does $X \times Y$.

Definition (Product of Selection Functions)

Given $\varepsilon: J X$ and $\delta: J Y$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(, \quad)
$$

where

Definition (Product of Selection Functions)

Given $\varepsilon: J X$ and $\delta: J Y$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(, b())
$$

where

$$
b(x):=\delta(\lambda y \cdot p(x, y)) .
$$

Definition (Product of Selection Functions)

Given $\varepsilon: J X$ and $\delta: J Y$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where

$$
\begin{aligned}
& a:=\varepsilon(\lambda x \cdot p(x, b(x))) \\
& b(x):=\delta(\lambda y \cdot p(x, y)) .
\end{aligned}
$$

Definition (Product of Selection Functions)

Given $\varepsilon: J X$ and $\delta: J Y$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where

$$
\begin{aligned}
& a:=\varepsilon(\lambda x \cdot p(x, b(x))) \\
& b(x):=\delta(\lambda y \cdot p(x, y)) .
\end{aligned}
$$

Theorem

$\bar{\varepsilon} \otimes \bar{\delta}=\overline{\varepsilon \otimes \delta}$
$19 / 44$

Iterated Product of Selection Functions

Finite iteration

$$
\bigotimes_{i=k}^{n} \varepsilon_{i} \stackrel{J \Pi X_{i}}{=} \varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{n} \varepsilon_{i}\right)
$$

Iterated Product of Selection Functions

Infinite iteration (R discrete, $R^{\Pi X_{i}}$ continuous)

$$
\bigotimes_{i=k}^{\infty} \varepsilon_{i} \stackrel{J \Pi X_{i}}{=} \varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)
$$

Iterated Product of Selection Functions

Infinite iteration \mathbf{I} (R discrete, $R^{\Pi X_{i}}$ continuous)

$$
\bigotimes_{i=k}^{\infty} \varepsilon_{i} \stackrel{J \Pi X_{i}}{=} \varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)
$$

Infinite iteration II ($l: R \rightarrow \mathbb{N}, \mathbb{N}^{\Pi X_{i}}$ continuous)

$$
\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)(q) \stackrel{\Pi X_{i}}{=} \begin{cases}\mathbf{c} & \text { if } k<l(q(\\ \left(\varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)\right)(q) & \text { otherwise }\end{cases}
$$

Iterated Product of Selection Functions

Infinite iteration $\mathbf{I}\left(R\right.$ discrete, $R^{\Pi X_{i}}$ continuous $)=$ MBR

$$
\bigotimes_{i=k}^{\infty} \varepsilon_{i} \stackrel{J \Pi X_{i}}{=} \varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)
$$

Infinite iteration II $\left(l: R \rightarrow \mathbb{N}, \mathbb{N}^{\Pi X_{i}}\right.$ continuous $)=$ SBR

$$
\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)(q) \stackrel{\Pi X_{i}}{=} \begin{cases}\mathbf{c} & \text { if } k<l(q(\\ \left(\varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)\right)(q) & \text { otherwise }\end{cases}
$$

Outline

(1) Selection Functions

(2) Sequential Games - Fixed Length

3 Sequential Games - Unbounded Length

Finite Games (n rounds)

Definition (A tuple $\left(R,\left(X_{i}\right)_{i<n},\left(\phi_{i}\right)_{i<n}, q\right)$ where)

- R is the set of possible outcomes
- X_{i} is the set of available moves at round i
- $\phi_{i}: K_{R} X_{i}$ is the goal quantifier for round i
- $q: \Pi_{i=0}^{n-1} X_{i} \rightarrow R$ is the outcome function

Finite Games (n rounds)

Definition (A tuple $\left(R,\left(X_{i}\right)_{i<n},\left(\phi_{i}\right)_{i<n}, q\right)$ where)

- R is the set of possible outcomes
- X_{i} is the set of available moves at round i
- $\phi_{i}: K_{R} X_{i}$ is the goal quantifier for round i
- $q: \Pi_{i=0}^{n-1} X_{i} \rightarrow R$ is the outcome function

Definition (Strategy)

Family of mappings

$$
\operatorname{next}_{k}: \prod_{i=0}^{k-1} X_{i} \rightarrow X_{k}
$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right) .
$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right) .
$$

Definition (Optimal Strategy)

Strategy next ${ }_{k}$ is optimal if for any partial play \vec{a}

$$
q\left(\vec{a}, \mathbf{b}^{\vec{a}}\right)=\phi_{k}\left(\lambda x_{k} \cdot q\left(\vec{a}, x_{k}, \mathbf{b}^{\vec{a}, x_{k}}\right)\right) .
$$

Examples

Example (Nash Equilibrium with common payoff)
Moves X_{i}
Outcomes R
Goal quantifier ϕ_{i}
Outcome function q
Sets of moves
Payoff \mathbb{R}
Maximal value function
Payoff function $q: \prod_{i=0}^{n-1} X_{i} \rightarrow \mathbb{R}$

Examples

Example (Nash Equilibrium with common payoff)

Moves X_{i}
Outcomes R
Goal quantifier ϕ_{i}
Outcome function q

Sets of moves
Payoff \mathbb{R}
Maximal value function
Payoff function $q: \prod_{i=0}^{n-1} X_{i} \rightarrow \mathbb{R}$

Optimal strategy

$\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right)=\operatorname{argsup}_{x_{k}} \sup _{x_{k+1}} \ldots \sup _{x_{n-1}} q(\vec{x})$

Examples

Example (Satisfiability)

Moves X_{i}
Outcomes R
Goal quantifier ϕ_{i}
Outcome function q

Booleans \mathbb{B}
Boolean \mathbb{B}
Existential quantifier $\exists: K_{\mathbb{B}} \mathbb{B}$
Formula $q\left(x_{0}, \ldots, x_{n-1}\right)$

Examples

Example (Satisfiability)

Moves X_{i}
Outcomes R
Goal quantifier ϕ_{i}
Outcome function q

Booleans \mathbb{B}
Boolean \mathbb{B}
Existential quantifier $\exists: K_{\mathbb{B}} \mathbb{B}$
Formula $q\left(x_{0}, \ldots, x_{n-1}\right)$

Optimal strategy

 $\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right)=x_{k}$ such that $\exists x_{k+1} \ldots \exists x_{n-1} q(\vec{x})$ (if possible)
Theorem (Main Theorem for Finite Games)

If ϕ_{k} are attainable with selection functions ε_{k} then

$$
\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right) \stackrel{X_{k}}{=}\left(\left(\bigotimes_{i=k}^{n-1} \varepsilon_{i}\right)\left(q_{x_{0}, \ldots, x_{k-1}}\right)\right)_{0}
$$

is an optimal strategy for the game $\left(R,\left(X_{i}\right)_{i<n},\left(\phi_{i}\right)_{i<n}, q\right)$.
Moreover,

$$
\vec{a}=\left(\bigotimes_{i=0}^{n-1} \varepsilon_{i}\right)(q)
$$

is the strategic play.
$26 / 44$

Nash equilibrium (sequential games)

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

Nash equilibrium (sequential games)

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

Nash equilibrium (sequential games)

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

Nash equilibrium (sequential games)

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

Backward Induction

Let $q: \prod_{i=1}^{n} X_{i} \rightarrow \mathbb{R}^{n}$ be a payoff function
$\operatorname{argmax}_{i}(p)\left\{\quad\left[\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}\right]\right.$ return $x \in X_{i}$ such that $p(x)$ has maximal i-coordinate \}

Backward Induction

Let $q: \prod_{i=1}^{n} X_{i} \rightarrow \mathbb{R}^{n}$ be a payoff function
$\operatorname{argmax}_{i}(p)\left\{\quad\left[\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}\right]\right.$ return $x \in X_{i}$ such that $p(x)$ has maximal i-coordinate \}

$$
\operatorname{sol}_{i}\left(x_{1}, \ldots, x_{i-1}\right)\left\{\quad\left[\mathrm{so}_{i}: \prod_{k=1}^{i-1} X_{k} \rightarrow \prod_{k=i}^{n} X_{k}\right]\right.
$$

if $i=n+1$ return \rangle else

$$
\begin{aligned}
& y:=\operatorname{argmax}_{i}\left(\lambda x . q\left(\operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i-1}, x\right)\right)\right) \\
& \text { return } y * \operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i-1}, y\right)
\end{aligned}
$$

\}

Backward Induction

Let $q: \Pi_{i=1}^{n} X_{i} \rightarrow \mathbb{R}^{n}$ be a payoff function
$\operatorname{argmax}_{i}(p)\left\{\quad\left[\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}\right]\right.$ return $x \in X_{i}$ such that $p(x)$ has maximal i-coordinate \}

$$
\operatorname{sol}_{i}\left(x_{1}, \ldots, x_{i-1}\right)\left\{\quad\left[\mathrm{so}_{i}: \prod_{k=1}^{i-1} X_{k} \rightarrow \prod_{k=i}^{n} X_{k}\right]\right.
$$

$$
\text { if } i=n+1 \text { return }\rangle
$$

else

$$
\begin{aligned}
& y:=\operatorname{argmax}_{i}\left(\lambda x \cdot q\left(\operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i-1}, x\right)\right)\right) \\
& \text { return } y * \operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i-1}, y\right)
\end{aligned}
$$

\}
$\left\langle x_{1}, \ldots, x_{n}\right\rangle:=\operatorname{sol}_{1}()$

Backward Induction

Payoff function $q: \Pi_{i=1}^{n} X_{i} \rightarrow \mathbb{R}^{n}$
Each selection function

$$
\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}
$$

finds a point where the argument is i-maximal
Product

$$
\operatorname{sol}_{1}()=\left(\bigotimes_{i=1}^{n} \operatorname{argmax}_{i}\right)(q)
$$

calculates a strategy profile in Nash equilibrium.

Se theciety they

Backtracking

good: $X \times Y \rightarrow \mathbb{B}$

Generic algorithm has type $(X \times Y \rightarrow \mathbb{B}) \rightarrow X \times Y$.

Backtracking

good: $X \times Y \rightarrow \mathbb{B}$

Generic algorithm has type $(X \times Y \rightarrow \mathbb{B}) \rightarrow X \times Y$.

Backtracking

good: $X \times Y \rightarrow \mathbb{B}$

Generic algorithm has type $(X \times Y \rightarrow \mathbb{B}) \rightarrow X \times Y$.

Backtracking

good: $X \times Y \rightarrow \mathbb{B}$

Generic algorithm has type $(X \times Y \rightarrow \mathbb{B}) \rightarrow X \times Y$.

For Instance - Eight Queens Problem

$$
\begin{aligned}
& \varepsilon(p)\{(i:=1 ; i \leq 8 ; i++) \text { do } \quad[\varepsilon:(8 \rightarrow \mathbb{B}) \rightarrow 8] \\
& \quad \text { for }(i: p(i) \text { return } i \\
& \text { return 1 } \\
& \}
\end{aligned}
$$

For Instance - Eight Queens Problem

$$
\begin{aligned}
& \varepsilon(p)\{ \\
& \text { for }(i:=1 ; i \leq 8 ; i++) \text { do } \\
& \text { if } p(i) \text { return } i \\
& \text { return } 1 \\
& \text { \} } \\
& \operatorname{sol}_{i}\left(x_{1}, \ldots, x_{i-1}\right)\left\{\quad\left[\operatorname{sol}_{i}: 8^{i-1} \rightarrow 8^{9-i}\right]\right. \\
& \text { if } i>8 \text { return }\rangle \\
& \text { else } \\
& y:=\varepsilon\left(\lambda x_{i} \cdot \operatorname{good}\left(\operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i}\right)\right)\right) \\
& \text { return } y * \operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i-1}, y\right) \\
& \text { \} }
\end{aligned}
$$

For Instance - Eight Queens Problem

$$
\left.\begin{array}{l}
\varepsilon(p)\{\quad[\varepsilon:(8 \rightarrow \mathbb{B}) \rightarrow 8] \\
\quad \text { for }(i:=1 ; i \leq 8 ; i++) \text { do } \\
\quad \text { if } p(i) \text { return } i \\
\text { return } 1
\end{array}\right] \begin{aligned}
& \\
& \operatorname{sol}_{i}\left(x_{1}, \ldots, x_{i-1}\right)\left\{\quad\left[\operatorname{sol}_{i}: 8^{i-1} \rightarrow 8^{9-i}\right]\right. \\
& \quad \text { if } i>8 \text { return }\rangle \\
& \quad \text { else } \\
& \quad y:=\varepsilon\left(\lambda x_{i} . \operatorname{good}^{\left.\left(\operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i}\right)\right)\right)}\right. \\
& \quad \quad \text { return } y * \operatorname{sol}_{i+1}\left(x_{1}, \ldots, x_{i-1}, y\right) \\
& \} \quad\left\langle x_{1}, \ldots, x_{8}\right\rangle:=\operatorname{sol}_{1}()
\end{aligned}
$$

For Instance - Eight Queens Problem

$\operatorname{good}: 8^{8} \rightarrow \mathbb{B}$ checks if argument is solution to $8 Q P$.

For Instance - Eight Queens Problem

good: $8^{8} \rightarrow \mathbb{B}$ checks if argument is solution to $8 Q P$.
Selection function

$$
\varepsilon:(8 \rightarrow \mathbb{B}) \rightarrow 8
$$

finds argument $\varepsilon_{i} p \in 8$ such that $p\left(\varepsilon_{i} p\right)$ holds

For Instance - Eight Queens Problem

good: $8^{8} \rightarrow \mathbb{B}$ checks if argument is solution to 8QP.
Selection function

$$
\varepsilon:(8 \rightarrow \mathbb{B}) \rightarrow 8
$$

finds argument $\varepsilon_{i} p \in 8$ such that $p\left(\varepsilon_{i} p\right)$ holds

$$
\operatorname{sol}_{1}()=\left(\bigotimes_{i=1}^{8} \varepsilon_{i}\right)(\text { good })
$$

calculates a solution to 8 queen problem.

Classical Arithmetic

Finite product interprets bounded collection

Classical Arithmetic

Finite product interprets bounded collection
E.g. consider the infinite PHP

$$
\forall c^{\mathbb{N} \rightarrow n} \exists b^{n} \forall i \exists j(j \geq i \wedge c(j)=b)
$$

Classical Arithmetic

Finite product interprets bounded collection
E.g. consider the infinite PHP

$$
\forall c^{\mathbb{N} \rightarrow n} \exists b^{n} \forall i \exists j(j \geq i \wedge c(j)=b)
$$

Equivalent (dialectica) to

$$
\forall c^{\mathbb{N} \rightarrow n}, \forall \varepsilon^{J_{\mathbb{N}} \mathbb{N}} \exists b^{n}, p^{\mathbb{N} \rightarrow \mathbb{N}}\left(\bar{\varepsilon}_{b} p \geq \varepsilon_{b} p \wedge c\left(\bar{\varepsilon}_{b} p\right)=b\right)
$$

Classical Arithmetic

Finite product interprets bounded collection
E.g. consider the infinite PHP

$$
\forall c^{\mathbb{N} \rightarrow n} \exists b^{n} \forall i \exists j(j \geq i \wedge c(j)=b)
$$

Equivalent (dialectica) to

$$
\forall c^{\mathbb{N} \rightarrow n}, \forall \varepsilon^{J_{\mathbb{N}} \mathbb{N}} \exists b^{n}, p^{\mathbb{N} \rightarrow \mathbb{N}}\left(\bar{\varepsilon}_{b} p \geq \varepsilon_{b} p \wedge c\left(\bar{\varepsilon}_{b} p\right)=b\right)
$$

Witnessed by

$$
b=c\left(\overline{\left(\bigotimes_{i=0}^{n-1} \varepsilon_{i}\right)}(\max)\right)
$$

Outline

(1) Selection Functions

(2) Sequential Games - Fixed Length
(3) Sequential Games - Unbounded Length

Finite but Unbounded Games

Finite but Unbounded Games

Example (Chess)

Moves X_{i}
Outcomes R
Goal quantifier $\phi_{2 i}$
Goal quantifier $\phi_{2 i+1}$
Outcome function q

Valid chess moves
White, black, draw, e.g. $\{-1,0,1\}$
Maximisation function
Minimisation function
Adjudication on a given play α

Finite but Unbounded Games

Example (Chess)

Moves X_{i}
Outcomes R
Goal quantifier $\phi_{2 i}$
Goal quantifier $\phi_{2 i+1}$
Outcome function q

Valid chess moves

White, black, draw, e.g. $\{-1,0,1\}$
Maximisation function
Minimisation function
Adjudication on a given play α

The game is drawn, upon a correct claim by the player having the move, if
a. he writes on his scoresheet, and declares to the arbiter his intention to make a move which shall result in the last 50 moves having been made by each player without the movement of any pawn and without the capture of any piece, or
b. the last 50 consecutive moves have been made by each player without the movement of any pawn and without the capture of any piece.

With this rule, it can be shown that the game is finite, assuming that given the option to call for a draw, at least one player will do so.

Finite but Unbounded Games

Definition (Tuple $\left(R,\left(X_{i}\right)_{i \in \mathbb{N}},\left(\phi_{i}\right)_{i \in \mathbb{N}}, q\right)$ where...)

- R is the set of possible discrete outcomes
- X_{i} is the set of available moves X_{i} at round $i \in \mathbb{N}$
- $\phi_{i}: K_{R} X_{i}$ are goal quantifiers for round $i \in \mathbb{N}$
- $q: \Pi_{i=0}^{\infty} X_{i} \rightarrow R$ is a continous outcome function

Optimal Strategies

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\beta^{\vec{a}}=\beta^{\vec{a}}(k), \beta^{\vec{a}}(k+1), \ldots$ where

$$
\beta^{\vec{a}}(i)=\operatorname{next}_{i}\left(\vec{a}, \beta^{\vec{a}}(k), \ldots, \beta^{\vec{a}}(i-1)\right) .
$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\beta^{\vec{a}}=\beta^{\vec{a}}(k), \beta^{\vec{a}}(k+1), \ldots$ where

$$
\beta^{\vec{a}}(i)=\operatorname{next}_{i}\left(\vec{a}, \beta^{\vec{a}}(k), \ldots, \beta^{\vec{a}}(i-1)\right) .
$$

Definition (Optimal Strategy)

Strategy next ${ }_{k}$ is optimal if for any partial play \vec{a}

$$
q\left(\vec{a} * \beta^{\vec{a}}\right)=\phi_{k}\left(\lambda x_{k} \cdot q\left(\vec{a} * x_{k} * \beta^{\vec{a}, x_{k}}\right)\right) .
$$

Finite but Unbounded Games

Theorem (Main Theorem for Finite but Unbounded Games)

If ϕ_{k} are attainable with selection functions ε_{k} then

$$
\operatorname{next}_{k}\left(x_{0}, \ldots, x_{k-1}\right) \stackrel{x_{k}}{=}\left(\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)\left(q_{x_{0}, \ldots, x_{k-1}}\right)\right)_{0}
$$

is an optimal strategy for the game $\left(R,\left(X_{i}\right)_{i \in \mathbb{N}},\left(\phi_{i}\right)_{i \in \mathbb{N}}, q\right)$.
Moreover,

$$
\alpha=\left(\bigotimes_{i=0}^{\infty} \varepsilon_{i}\right)(q)
$$

is the strategic play.

Classical Analysis

Mathematical analysis is based on comprehension

$$
\exists f^{\mathbb{N} \rightarrow \mathbb{B}} \forall n^{\mathbb{N}}\left(f n \leftrightarrow A_{n}\right) .
$$

Classical Analysis

Mathematical analysis is based on comprehension

$$
\exists f^{\mathbb{N} \rightarrow \mathbb{B}} \forall n^{\mathbb{N}}\left(f n \leftrightarrow A_{n}\right) .
$$

Comprehension follows classically from countable choice

$$
\forall n^{\mathbb{N}} \exists b^{\mathbb{B}} A_{n}(b) \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{B}} \forall n^{\mathbb{N}} A_{n}(f n) .
$$

Classical Analysis

Mathematical analysis is based on comprehension

$$
\exists f^{\mathbb{N} \rightarrow \mathbb{B}} \forall n^{\mathbb{N}}\left(f n \leftrightarrow A_{n}\right) .
$$

Comprehension follows classically from countable choice

$$
\forall n^{\mathbb{N}} \exists b^{\mathbb{B}} A_{n}(b) \rightarrow \exists f^{\mathbb{N} \rightarrow \mathbb{B}} \forall n^{\mathbb{N}} A_{n}(f n) .
$$

Countable choice is classically computational up to DNS

$$
\forall n^{\mathbb{N}} \neg \neg A_{n} \rightarrow \neg \neg \forall n^{\mathbb{N}} A_{n} .
$$

Double negation shift

The double negation shift DNS

$$
\forall n \neg \neg A_{n} \rightarrow \neg \neg \forall n A_{n}
$$

corresponds to the type

$$
\Pi_{n} K_{\perp} A_{n} \rightarrow K_{\perp} \Pi_{n} A_{n} .
$$

Double negation shift

The double negation shift DNS

$$
\forall n \neg \neg A_{n} \rightarrow \neg \neg \forall n A_{n}
$$

corresponds to the type

$$
\Pi_{n} K_{\perp} A_{n} \rightarrow K_{\perp} \Pi_{n} A_{n} .
$$

If $\perp \rightarrow A_{n}$, this is equivalent to

$$
\Pi_{n} J_{\perp} A_{n} \rightarrow J_{\perp} \Pi_{n} A_{n} .
$$

Double negation shift

The double negation shift DNS

$$
\forall n \neg \neg A_{n} \rightarrow \neg \neg \forall n A_{n}
$$

corresponds to the type

$$
\Pi_{n} K_{\perp} A_{n} \rightarrow K_{\perp} \Pi_{n} A_{n}
$$

If $\perp \rightarrow A_{n}$, this is equivalent to

$$
\Pi_{n} J_{\perp} A_{n} \rightarrow J_{\perp} \Pi_{n} A_{n}
$$

The type of the countable product of selection functions!

Bar recursion

Not a coincidence!
Modified bar recursion is equivalent to

$$
\bigotimes_{i=k}^{\infty} \varepsilon_{i} \stackrel{J \Pi X_{i}}{=} \varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)
$$

Spector's bar recursion is equivalent to

$$
\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)(q) \stackrel{\Pi X_{i}}{=} \begin{cases}\mathbf{c} & \text { if } k<l(q(\mathbf{c})) \\ \left(\varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)\right)(q) & \text { otherwise }\end{cases}
$$

Summary and Further Applications

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma

Summary and Further Applications

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies

Summary and Further Applications

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies
- Product of sel. fct. = bar recursion

Summary and Further Applications

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies
- Product of sel. fct. = bar recursion
- New "negative translation" based on J strong monad

Summary and Further Applications

- New notion of sequential game based on gen. quantifiers
- E.g. Nash equilibrium, backtracking, Bekič's lemma
- Product of sel. fct. calculates optimal strategies
- Product of sel. fct. = bar recursion
- New "negative translation" based on J strong monad
- Functional interpretations (proof mining)
$\begin{array}{ll}\text { Theorems } & \mapsto \text { games } \\ \text { Proofs } & \mapsto \text { winning strategies }\end{array}$

A Few Open Questions

1. Equivalent notion for simultaneous games

Logic: Branching quantifiers
GT: Standard Nash equilibrium

A Few Open Questions

1. Equivalent notion for simultaneous games

Logic: Branching quantifiers
GT: Standard Nash equilibrium
2. Relation to BBC functional

Berardi, Bezem, Coquand 1998

A Few Open Questions

1. Equivalent notion for simultaneous games

Logic: Branching quantifiers
GT: Standard Nash equilibrium
2. Relation to BBC functional

Berardi, Bezem, Coquand 1998
3. Approximately attainable quantifiers

Family ε_{n} approximates a selection function

A Few Open Questions

1. Equivalent notion for simultaneous games

Logic: Branching quantifiers
GT: Standard Nash equilibrium
2. Relation to BBC functional

Berardi, Bezem, Coquand 1998
3. Approximately attainable quantifiers

Family ε_{n} approximates a selection function
4. Is product of selection functions equivalent to product of quantifiers?

A Few Open Questions

1. Equivalent notion for simultaneous games

Logic: Branching quantifiers
GT: Standard Nash equilibrium
2. Relation to BBC functional

Berardi, Bezem, Coquand 1998
3. Approximately attainable quantifiers

Family ε_{n} approximates a selection function
4. Is product of selection functions equivalent to product of quantifiers?
5. Other places where \otimes appear?

References

俥
M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction MSCS, 20(2):127-168, 2010M. Escardó and P. Oliva

The Peirce translation and the double negation shift LNCS, CiE'2010

图 M. Escardó and P. Oliva
Computational interpretations of analysis via products of selection functions
LNCS, CiE'2010

