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Single-player Games
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Sequential Games and Optimal Strategies

Two-player Games

Two players: Black and White

Possible outcomes:

Black wins

White wins

Draw

Strategy: Choice of move at round k given previous moves
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Sequential Games and Optimal Strategies

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

John gets N% of the cake (John’s payoff)

Julia gets (100−N)% of the cake (Julia’s payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an optimal strategy

It maximises his payoff
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Sequential Games and Optimal Strategies

Number of Player vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as

a choice of outcome from each set of possible outcomes
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Sequential Games and Optimal Strategies

As in...

Q: How much would you like to play for your flight?

A: As little as possible!
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Sequential Games and Optimal Strategies

Target function

If R = set of outcomes and X = set of possible moves then

φ ∈ (X → R)→ R

describes the desired outcome φp ∈ R given that the outcome

of the game px ∈ R for each move x ∈ X is given.

In the example:

X = possible flights

R = real number

X → R = price of each flight

φ = minimal value functional
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Outline

1 Selection Functions

2 Sequential Games – Fixed Length

3 Sequential Games – Unbounded Length
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Selection Functions

Generalised quantifiers

φ : (X → R)→ R

(≡ KRX)

For instance

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Double negation ¬¬X : (X → ⊥) → ⊥

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X
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Selection Functions

Nested quantifiers ≡ single quantifier on product space

∃xX∀yY p(x, y)

B≡ (∃X ⊗ ∀Y )(pX×Y→B)

supx

∫ 1

0
p(x, y)dy

R≡ (sup⊗
∫

)(p[0,1]2→R)

Definition (Product of Generalised Quantifiers)

Given φ : KX and ψ : KY define φ⊗ ψ : K(X × Y )

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.
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Selection Functions

Theorem (Mean Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

Theorem (Maximum Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)
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Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(a is counter-example to p if one exists).
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Selection Functions

Let JX ≡ (X → R)→ X.

Definition (Selection Functions)

ε : JX is called a selection function for φ : KX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable

if it has a selection function ε : JX.
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Selection Functions

For Instance

sup: KR[0, 1] is an attainable quantifier
as

sup(p) = p(argsup(p))

where argsup: JR[0, 1].

fix : KXX is an attainable quantifier as

fix(p) = p(fix(p))

where fix : JXX (= KXX).

sup(p)

argsup(p)

p(x)

x
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Selection Functions

Selection Functions and Generalised Quantifiers

ε :J X ε :K X

Every selection function ε : JX defines a quantifier ε : KX

ε(p) = p(ε(p))
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Selection Functions

Selection Functions and Generalised Quantifiers

ε :J X ε :K X

Not all quantifiers are attainable, e.g. R = {0, 1}

φ(p) = 0
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Selection Functions

Selection Functions and Generalised Quantifiers

ε :J X

ε0
ε1

ε :K X

= sup =ε0 ε1

Different ε might define same φ, e.g. X = [0, 1] and R = R

ε0(p) = µx. sup p = p(x)

ε1(p) = νx. sup p = p(x)
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Selection Functions

Quantifier Elimination

Suppose
∃x q(x) = q(εq)

∀y q(y) = q(δq).

Then
∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where

b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).
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Selection Functions

Bekič’s Lemma

Lemma

If X and Y have fixed point operators then so does X × Y .

X XX

Y YY

fixX

fixY
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Selection Functions

Definition (Product of Selection Functions)

Given ε : JX and δ : JY define ε⊗ δ : J(X × Y ) as

(ε⊗ δ)(pX×Y→R)
X×Y
:= (

a

,

b(

a

)

)

where

a := ε(λx.p(x, b(x)))

b(x) := δ(λy.p(x, y)).

Theorem

ε⊗ δ = ε⊗ δ
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Selection Functions

Iterated Product of Selection Functions

Finite iteration

= MBR

n⊗
i=k

εi
JΠXi= εk ⊗

(
n⊗

i=k+1

εi

)

Infinite iteration (l : R→ N, NΠXi continuous)

= SBR

(
∞⊗

i=k

εi

)
(q)

ΠXi=

{
c if k < l(q(c))(
εk ⊗

(⊗∞
i=k+1 εi

))
(q) otherwise
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Selection Functions

Iterated Product of Selection Functions
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Sequential Games – Fixed Length

Outline

1 Selection Functions

2 Sequential Games – Fixed Length

3 Sequential Games – Unbounded Length
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Sequential Games – Fixed Length

Finite Games (n rounds)

Definition (A tuple (R, (Xi)i<n, (φi)i<n, q) where)

R is the set of possible outcomes

Xi is the set of available moves at round i

φi : KRXi is the goal quantifier for round i

q : Πn−1
i=0 Xi → R is the outcome function

Definition (Strategy)

Family of mappings

nextk : Πk−1
i=0Xi → Xk
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Sequential Games – Fixed Length

Optimal Strategies

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, . . . , b

~a
n−1 where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1).

Definition (Optimal Strategy)

Strategy nextk is optimal if for any partial play ~a

q(~a,b~a) = φk(λxk.q(~a, xk,b
~a,xk)).
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Sequential Games – Fixed Length

Examples

Example (Nash Equilibrium with common payoff)

Moves Xi Sets of moves

Outcomes R Payoff R
Goal quantifier φi Maximal value function

Outcome function q Payoff function q : Πn−1
i=0 Xi → R

Optimal strategy

nextk(x0, . . . , xk−1) = argsupxk
supxk+1

. . . supxn−1
q(~x)
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Sequential Games – Fixed Length

Examples

Example (Satisfiability)

Moves Xi Booleans B
Outcomes R Boolean B
Goal quantifier φi Existential quantifier ∃ : KBB
Outcome function q Formula q(x0, . . . , xn−1)

Optimal strategy

nextk(x0, . . . , xk−1) = xk such that ∃xk+1 . . . ∃xn−1q(~x)

(if possible)
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Sequential Games – Fixed Length

Theorem (Main Theorem for Finite Games)

If φk are attainable with selection functions εk then

nextk(x0, . . . , xk−1)
Xk=

((
n−1⊗
i=k

εi

)
(qx0,...,xk−1

)

)
0

is an optimal strategy for the game (R, (Xi)i<n, (φi)i<n, q).
Moreover,

~a =

(
n−1⊗
i=0

εi

)
(q)

is the strategic play.
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Nash equilibrium (sequential games)

q : X × Y × Z → R3

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)
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Backward Induction

Let q : Πn
i=1Xi → Rn be a payoff function

argmaxi(p) { [argmaxi : (Xi → Rn)→ Xi]
return x ∈ Xi such that p(x) has maximal i-coordinate
}

soli(x1, . . . , xi−1) { [soli : Πi−1
k=1Xk → Πn

k=iXk]
if i = n+ 1 return 〈 〉
else
y := argmaxi(λx.q(soli+1(x1, . . . , xi−1, x)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , xn〉 := sol1( )
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Backward Induction

Payoff function q : Πn
i=1Xi → Rn

Each selection function

argmaxi : (Xi → Rn)→ Xi

finds a point where the argument is i-maximal

Product

sol1( ) =

(
n⊗

i=1

argmaxi

)
(q)

calculates a strategy profile in Nash equilibrium.
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Backtracking

good : X × Y → B

Generic algorithm has type (X × Y → B)→ X × Y .
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For Instance – Eight Queens Problem

ε(p) { [ ε : (8→ B)→ 8 ]
for (i := 1; i ≤ 8; i++) do

if p(i) return i
return 1
}

soli(x1, ..., xi−1) { [ soli : 8i−1 → 89−i ]
if i > 8 return 〈 〉
else
y := ε(λxi.good(soli+1(x1, . . . , xi)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , x8〉 := sol1( )
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For Instance – Eight Queens Problem

good : 88 → B checks if argument is solution to 8QP.

Selection function
ε : (8→ B)→ 8

finds argument εip ∈ 8 such that p(εip) holds

sol1( ) =

(
8⊗

i=1

εi

)
(good)

calculates a solution to 8 queen problem.
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Classical Arithmetic

Finite product interprets bounded collection

E.g. consider the infinite PHP

∀cN→n∃bn∀i∃j(j ≥ i ∧ c(j) = b)

Equivalent (dialectica) to

∀cN→n, ∀εJNN∃bn, pN→N(εbp ≥ εbp ∧ c(εbp) = b)

Witnessed by

b = c(

(
n−1⊗
i=0

εi

)
(max))

33 / 44



Sequential Games and Optimal Strategies

Sequential Games – Fixed Length

Classical Arithmetic

Finite product interprets bounded collection

E.g. consider the infinite PHP

∀cN→n∃bn∀i∃j(j ≥ i ∧ c(j) = b)

Equivalent (dialectica) to

∀cN→n, ∀εJNN∃bn, pN→N(εbp ≥ εbp ∧ c(εbp) = b)

Witnessed by

b = c(

(
n−1⊗
i=0

εi

)
(max))

33 / 44



Sequential Games and Optimal Strategies

Sequential Games – Fixed Length

Classical Arithmetic

Finite product interprets bounded collection

E.g. consider the infinite PHP

∀cN→n∃bn∀i∃j(j ≥ i ∧ c(j) = b)

Equivalent (dialectica) to

∀cN→n, ∀εJNN∃bn, pN→N(εbp ≥ εbp ∧ c(εbp) = b)

Witnessed by

b = c(

(
n−1⊗
i=0

εi

)
(max))

33 / 44



Sequential Games and Optimal Strategies

Sequential Games – Fixed Length

Classical Arithmetic

Finite product interprets bounded collection

E.g. consider the infinite PHP

∀cN→n∃bn∀i∃j(j ≥ i ∧ c(j) = b)

Equivalent (dialectica) to

∀cN→n, ∀εJNN∃bn, pN→N(εbp ≥ εbp ∧ c(εbp) = b)

Witnessed by

b = c(

(
n−1⊗
i=0

εi

)
(max))

33 / 44



Sequential Games and Optimal Strategies

Sequential Games – Unbounded Length

Outline

1 Selection Functions

2 Sequential Games – Fixed Length

3 Sequential Games – Unbounded Length
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Finite but Unbounded Games

Example (Chess)

Moves Xi Valid chess moves

Outcomes R White, black, draw, e.g. {−1, 0, 1}
Goal quantifier φ2i Maximisation function

Goal quantifier φ2i+1 Minimisation function

Outcome function q Adjudication on a given play α
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Finite but Unbounded Games

Definition (Tuple (R, (Xi)i∈N, (φi)i∈N, q) where...)

R is the set of possible discrete outcomes

Xi is the set of available moves Xi at round i ∈ N
φi : KRXi are goal quantifiers for round i ∈ N
q : Π∞i=0Xi → R is a continous outcome function

36 / 44



Sequential Games and Optimal Strategies
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Optimal Strategies

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is β~a = β~a(k), β~a(k + 1), . . . where

β~a(i) = nexti(~a, β
~a(k), . . . , β~a(i− 1)).

Definition (Optimal Strategy)

Strategy nextk is optimal if for any partial play ~a

q(~a ∗ β~a) = φk(λxk.q(~a ∗ xk ∗ β~a,xk)).
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Finite but Unbounded Games

Theorem (Main Theorem for Finite but Unbounded Games)

If φk are attainable with selection functions εk then

nextk(x0, . . . , xk−1)
Xk=

((
∞⊗

i=k

εi

)
(qx0,...,xk−1

)

)
0

is an optimal strategy for the game (R, (Xi)i∈N, (φi)i∈N, q).
Moreover,

α =

(
∞⊗
i=0

εi

)
(q)

is the strategic play.
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Classical Analysis

Mathematical analysis is based on comprehension

∃fN→B∀nN(fn↔ An).

Comprehension follows classically from countable choice

∀nN∃bBAn(b)→ ∃fN→B∀nNAn(fn).

Countable choice is classically computational up to DNS

∀nN¬¬An → ¬¬∀nNAn.
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Double negation shift

The double negation shift DNS

∀n¬¬An → ¬¬∀nAn

corresponds to the type

ΠnK⊥An → K⊥ΠnAn.

If ⊥ → An, this is equivalent to

ΠnJ⊥An → J⊥ΠnAn.

The type of the countable product of selection functions!
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Bar recursion

Not a coincidence!

Modified bar recursion is equivalent to

∞⊗
i=k

εi
JΠXi= εk ⊗

(
∞⊗

i=k+1

εi

)

Spector’s bar recursion is equivalent to(
∞⊗

i=k

εi

)
(q)

ΠXi=

{
c if k < l(q(c))(
εk ⊗

(⊗∞
i=k+1 εi

))
(q) otherwise
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Summary and Further Applications

New notion of sequential game based on gen. quantifiers

E.g. Nash equilibrium, backtracking, Bekič’s lemma

Product of sel. fct. calculates optimal strategies

Product of sel. fct. = bar recursion

New “negative translation” based on J strong monad

Functional interpretations (proof mining)

Theorems 7→ games

Proofs 7→ winning strategies
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A Few Open Questions

1. Equivalent notion for simultaneous games

Logic: Branching quantifiers

GT: Standard Nash equilibrium

2. Relation to BBC functional

Berardi, Bezem, Coquand 1998

3. Approximately attainable quantifiers

Family εn approximates a selection function

4. Is product of selection functions equivalent to product of
quantifiers?

5. Other places where
⊗

appear?
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