Sequential Games and Optimal Strategies

Sequential Games and Optimal Strategies

Paulo Oliva

(based on joint work with M. Escardd)

Queen Mary, University of London, UK

Logic Colloquium
Paris, 25 July 2010

Wy

1/44



Sequential Games and Optimal Strategies

Single-player Games

Time: 0:54 Mo

SUDOKU ¥  Time: 19:09
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Two-player Games

Two players: Black and White
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Two-player Games

Two players: Black and White

Possible outcomes:
e Black wins
e White wins
e Draw
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Two-player Games

Two players: Black and White

Possible outcomes:
e Black wins
e White wins
e Draw

Strategy: Choice of move at round k given previous moves
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Another Game

Two players: John and Julia

Wy

444



Sequential Games and Optimal Strategies

Another Game )
i

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces
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Another Game |
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Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:
o John gets N% of the cake (John's payoff)
o Julia gets (100 — N)% of the cake (Julia's payoff)
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Another Game

L
}i| '“{
Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:
o John gets N% of the cake (John's payoff)
o Julia gets (100 — N)% of the cake (Julia's payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an optimal strategy

It maximises his payoff
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Number of Player vs Number of Rounds

Number of players is not essential
It is important what the “goal” at each round is

Rounds with “same goal’ mean played by “same player”’
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Number of Player vs Number of Rounds

Number of players is not essential
It is important what the “goal” at each round is

Rounds with “same goal’ mean played by “same player”’

How to describe the goal at a particular round?

You could say: The goal is to win!
But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as

a choice of outcome from each set of possible outcomes
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As in...

Q: How much would you like to play for your flight?

b
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As in...

Q: How much would you like to play for your flight?
A: As little as possible!

b
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Target function
If R = set of outcomes and X = set of possible moves then
pe(X—R)—R
describes the desired outcome ¢p € R given that the outcome

of the game px € R for each move z € X is given.
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Target function

If R = set of outcomes and X = set of possible moves then

pe(X—R)—R

describes the desired outcome ¢p € R given that the outcome

of the game px € R for each move x € X is given.

In the example:

X
R
X — R

possible flights
real number
price of each flight

minimal value functional

*
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Outline

@ Selection Functions

© Sequential Games — Fixed Length

© Sequential Games — Unbounded Length
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Outline

@ Selection Functions
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L—Selection Functions

Generalised quantifiers

¢p: (X—=R)—R
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L Selection Functions

Generalised quantifiers
¢p: (X—=R)—R

For instance

Operation o (X—R)—R
Quantifiers Vx,dx (X —B) —B
Double negation -—X (X —1)—1
Integration fol : ([0,1]-R) =R

— R
— R
— X

Supremum suppy ¢ ([0,1] =R
Limit lim (N—R
Fixed point operator fixy (X - X

~— — ~— ~— ~— ~— |~
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L Selection Functions

Generalised quantifiers
¢p: (X—=R)—R (= KrX)

For instance

Operation o (X —R)—R
Quantifiers Vx,dx (X —B) —B
Double negation -—X (X —1)—1
Integration fol : (0,1]-R) =R
Supremum suppy : ([0,1] = R) =R
Limit lim (N—R)—R
Fixed point operator fixy (X —-X)—X

- - Y,
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Nested quantifiers = single quantifier on product space
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L—Selection Functions

Nested quantifiers = single quantifier on product space

B

VY'Y p(z, v) (Ix @ Vy)(pH¥—B)
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L—Selection Functions

Nested quantifiers = single quantifier on product space

e

VY'Y p(z, v) (Ix @ Vy)(pH¥—B)

(sup® [)(pl1—F)

=

sup, [ p(z,y)dy
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L—Selection Functions

Nested quantifiers = single quantifier on product space

e

VY'Y p(z, v) (Ix @ Vy)(pH¥—B)

(sup® [)(pl1—F)

=

sup, [ p(z,y)dy

Definition (Product of Generalised Quantifiers)
Given ¢: KX and ¢: KY define g @1 : K(X xY)

(¢ ®¥)(p) = ™ POy p(,1)))
where p: X XY — R.
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L—Selection Functions

Theorem (Mean Value Theorem)

For any p € C[0,1] there is a point a € [0, 1] such that

/Olp=p(a)
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L—Selection Functions

Theorem (Mean Value Theorem)

For any p € C[0,1] there is a point a € [0, 1] such that
1
/ p=p(a)
0

Theorem (Maximum Value Theorem)

For any p € C[0,1] there is a point a € [0,1] such that

supp = p(a)
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L—Selection Functions

Theorem (Witness Theorem)
For any p: X — B there is a point a € X such that

A*p(z) < pla)

(similar to Hilbert's e-term).
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L Selection Functions

Theorem (Witness Theorem)
For any p: X — B there is a point a € X such that

A*p(z) < pla)

(similar to Hilbert's e-term).

Theorem (Counter-example Theorem)

For any p: X — B there is a point a € X such that

Vz¥p(z) < p(a)

(a is counter-example to p if one exists).

*
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L—Selection Functions

Let JX = (X — R) — X.
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L—Selection Functions

Let JX = (X — R) — X.

Definition (Selection Functions)
e: JX is called a selection function for ¢: KX if

¢(p) = p(ep)
holds for all p: X — R.
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L Selection Functions

Let JX = (X — R) — X.

Definition (Selection Functions)

e: JX is called a selection function for ¢: KX if

¢(p) = p(ep)
holds for all p: X — R.

Definition (Attainable Quantifiers)

A generalised quantifier ¢: KX is called attainable

if it has a selection function : JX.

*
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L—Selection Functions

For Instance

o sup: Kg[0, 1] is an attainable quantifier /sup(p)
as ‘
sup(p) = p(argsup(p))

where argsup: Jg|0, 1].

argsup(p) Y
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L—Selection Functions

For Instance

o sup: Kg[0, 1] is an attainable quantifier /sup(p)
as ‘
sup(p) = p(argsup(p))

where argsup: Jg|0, 1].

argsup(p) Y

e fix: KxX is an attainable quantifier as

fix(p) = p(fix(p))
where fix: JxX (= KxX).

Wy

15/ 44



Sequential Games and Optimal Strategies

L—Selection Functions

Selection Functions and Generalised Quantifiers

edX —» KX

Every selection function e: JX defines a quantifier 2: KX
gp) = plep)
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L—Selection Functions

Selection Functions and Generalised Quantifiers

e:dJX —» KX

Not all quantifiers are attainable, e.g. R ={0,1}
¢(p) = 0
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L—Selection Functions

Selection Functions and Generalised Quantifiers

Different € might define same ¢, e.g. X =[0,1] and R =R

eo(p) = px.supp = p(x)
61 (p) = vr. Supp = p(x) @ THERLJ\'AL

SOCIETY.
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L—Selection Functions

Quantifier Elimination

Suppose
Jrg(z) = qleq)

Yyqly) = q(dq).
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L—Selection Functions

Quantifier Elimination

Suppose
drvq(z) = q(eq)
Vyqly) = q(dq).
Then
JaVy p(z,y) = Fzp(z,b(z))
where

b(r) = d(Ay.p(r,y))
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Games and Optimal Strategies

Quantifier Elimination

Suppose
Jrq(z) = qleq)
Yyqly) = q(dq).
Then
JaVy p(z,y) = Fzp(z,b(z))
= p(a,b(a))
where

b(x) = (hy.p(z,y))
a = e(Az.p(x,b(x))).
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Sequel

equ
L—Selection Functions

Quantifier Elimination

Suppose
Jrq(z) = qleq)
Yyaly) = q(0q).
Then
Gx @Vy)(p) = 3z p(z,b(z))
= p(a,b(a))
where
b(a:) - (5()‘ .p(ﬂ?, ))
a == 5()\ p<va($)))
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L—Selection Functions

Beki¢'s Lemma

If X and Y have fixed point operators then so does X x Y. I
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L—Selection Functions

Beki¢'s Lemma

If X and Y have fixed point operators then so does X x Y. I

---------------- ﬁxX
;Op(x, b(x))@ a @
\ |

ﬁxY
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L—Selection Functions

Beki¢'s Lemma

If X and Y have fixed point operators then so does X x Y. I

---------------- ﬁxX
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L—Selection Functions

Definition (Product of Selection Functions)
Given e: JX and 0: JY definee®4d: J(X xY) as

(. )

<Y — XxY
(@)™ F) =

where
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L—Selection Functions

Definition (Product of Selection Functions)
Given e: JX and 0: JY definee®4d: J(X xY) as

(,6())

<Y — XxY
(@)™ F) =

where
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L—Selection Functions

Definition (Product of Selection Functions)
Given e: JX and 0: JY definee®4d: J(X xY) as

XxY

(e®@8)(P™ ") "= (a,b(a))

where

b(r) = 6(\y.p(z,y)).

19/44



Sequential Games and Optimal Strategies

L—Selection Functions

Definition (Product of Selection Functions)
Given e: JX and 0: JY definee®4d: J(X xY) as

XxY

(e®@8)(P™ ") "= (a,b(a))

where

b(r) = 6(\y.p(z,y)).

m]
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L—Selection Functions

lterated Product of Selection Functions

Finite iteration

n n
JIIX;
TR -
i=k i=k+1
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L—Selection Functions

lterated Product of Selection Functions

Infinite iteration (R discrete, R continuous)

o0 o0
JIIX;
Q"o (@ =
i=k i=k+1
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L—Selection Functions

lterated Product of Selection Functions

Infinite iteration | (R discrete, R™X/ continuous)

éei T o ( é €i)

i=k i=k+1

Infinite iteration Il (I: R — N, N continuous)

if & <1(q(c))

(g €i> @)= { (5k ® (®§ik+1 61)) (q) otherwise
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L—Selection Functions

lterated Product of Selection Functions

Infinite iteration | (R discrete, R continuous) = MBR

éei T o ( é €i)

i=k i=k+1

Infinite iteration Il (I: R — N, N continuous) = SBR

if & <1(q(c))

(g €i> @)= { (5k ® (®§ik+1 61)) (q) otherwise
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L*Sequential Games — Fixed Length

Outline

© Sequential Games — Fixed Length
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L*Sequential Games — Fixed Length

Finite Games (n rounds)

Definition (A tuple (R, (X;)i<n, (®i)i<n,q) where)

o R is the set of possible outcomes

e X; is the set of available moves at round ¢
o ¢;: KrX; is the goal quantifier for round ¢
o ¢: IT'") X; — R is the outcome function
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|—Sequential Games — Fixed Length

Finite Games (n rounds)

Definition (A tuple (R, (X;)i<n, (®i)i<n,q) where)

o R is the set of possible outcomes

e X; is the set of available moves at round ¢
o ¢;: KrX; is the goal quantifier for round ¢
o ¢: IT'") X; — R is the outcome function

Definition (Strategy)

Family of mappings

nexty: TIF 0 X; — X,

*
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L*Sequential Games — Fixed Length

Optimal Strategies

Definition (Strategic Play)

Given strategy next; and partial play @ = aq, ..., a,_1, the
strategic extension of @ is b® =b%,...,b%_, where

b7 = next; (@, 0%,...,b% ).

) Yy —
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|—Sequential Games — Fixed Length

Optimal Strategies

Definition (Strategic Play)

Given strategy next; and partial play @ = aq, ..., a,_1, the
strategic extension of @ is b® =b%,...,b%_, where

a - 1@ a
by = next;(a, by, ..., b5 ).

Definition (Optimal Strategy)

Strategy next, is optimal if for any partial play @

q(@,b%) = ¢r(Mzy.q(@, zj, bT7*)).

*
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|—Sequential Games — Fixed Length

Examples

Example (Nash Equilibrium with common payoff)

Moves X; Sets of moves

Outcomes R Payoff R

Goal quantifier ¢; Maximal value function
Outcome function g Payoff function ¢: TI7_j X; — R

*
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Examples

Example (Nash Equilibrium with common payoff)

Moves X; Sets of moves

Outcomes R Payoff R

Goal quantifier ¢; Maximal value function
Outcome function g Payoff function ¢: TI7_j X; — R

Optimal strategy

nexty(zo, ..., Tr—1) = argsup,, SUp,, ., ---SUPg, q()

<

*
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Examples

Example (Satisfiability)
Moves X;
Outcomes R
Goal quantifier ¢;
Outcome function ¢

Booleans B

Boolean B

Existential quantifier 3: KpB
Formula ¢(xq, ..., xn_1)

*
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Examples

Example (Satisfiability)

Moves X;

Outcomes R

Goal quantifier ¢;

Outcome function ¢

Optimal strategy

nexty (o, - -

. 7:L‘k—1>

Booleans B

Boolean B

Existential quantifier 3: KpB
Formula ¢(xq, ..., xn_1)

xy, such that 3zy,q ... I, 1¢(7)

(if possible)

<

*
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Theorem (Main Theorem for Finite Games)

If ¢). are attainable with selection functions € then

n—1
X,
neth(‘/I/‘()) o Jxk?—l) :k ® & (on,.“,xk_l)
i=k 0

is an optimal strategy for the game (R, (X;)i<n, (¢i)i<n,q)-
Moreover,

is the strategic play.

*
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L*Sequential Games — Fixed Length

Nash equilibrium (sequential games)
¢ XxYxZ—-R?

q(xp Yo 29 = (0,1,2)
q(xp Yo z)) = (2,1,1)
q(xp ¥, 2o) = (3,0,2)
q(xy ¥, z) = (1,3,0)
q(x;, Yy zo) = (0,1,0)
q(x, Yo z)) =(2,1,1)
q(x, vy 29 =(2,2,1)
q(x, ¥, z) =(3,0,2)
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L*Sequential Games — Fixed Length

Nash equilibrium (sequential games)
¢ XxYxZ—-R?

q(xy ¥y 29) = (0,1,2)

q(xy y;, 29 = (3,0,2)

q(x;, yp z) = (2,1,1)

q(x;, v, z) = (3,0,2)
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L*Sequential Games — Fixed Length

Nash equilibrium (sequential games)

¢ XxYxZ—-R?

q(x;, yp z) = (2,1,1)
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L*Sequential Games — Fixed Length

Backward Induction

Let ¢: II7" , X; — R" be a payoff function

argmax;(p) { [argmax;: (X; — R") — Xj]
return = € X; such that p(z) has maximal i-coordinate

}
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L*Sequential Games — Fixed Length

Backward Induction

Let ¢: II7" , X; — R" be a payoff function

argmax;(p) { [argmax;: (X; — R") — Xj]
return = € X; such that p(z) has maximal i-coordinate

}

SOli(QZl, R ,Zl’l',l) { [SOIZ' : Hz;lle — H;‘,:,Xk]
if i =n+1 return ()
else

y := argmax;(Ax.q(sol; 1 (z1,. .., 2 1,1)))
return y x sol; 1 1(z1, ..., 2 1,7)
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L*Sequential Games — Fixed Length

Backward Induction

Let ¢: II7" , X; — R" be a payoff function

argmax;(p) { [argmax;: (X; — R") — Xj]
return = € X; such that p(z) has maximal i-coordinate

}

SOli(QZl, R ,Zl’l',l) { [SOIZ' : Hz;lle — H;‘,:,Xk]
if i =n+1 return ()
else

y := argmax;(Ax.q(sol; 1 (z1,. .., 2 1,1)))
return y x sol; 1 1(z1, ..., 2 1,7)

(1, &) = soli()
vy GRS

28 /44



Sequential Games and Optimal Strategies

L*Sequential Games — Fixed Length

Backward Induction

Payoff function ¢: I, X; — R"

Each selection function
argmax;: (X; - R") — X;

finds a point where the argument is i-maximal

Product

soli( ) = ®argmaxi (q)
i=1
calculates a strategy profile in Nash equilibrium.
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L*Sequential Games — Fixed Length

Backtracking

good: X XY — B

Generic algorithm has type (X xY — B) — X x Y.
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L*Sequential Games — Fixed Length

Backtracking

good: X XY — B

good(x;,y,) =F

Generic algorithm has type (X xY — B) — X x Y.
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L*Sequential Games — Fixed Length

Backtracking

good: X XY — B

good(x;,y,) =F
good(x;,y,) =F
good(x,.y,) =T

Generic algorithm has type (X xY — B) — X x Y.
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L*Sequential Games — Fixed Length

Backtracking

good: X XY — B

good(x;,y,) =F
good(x;,y,) =F
good(x,.y,) =T

Generic algorithm has type (X xY — B) — X x Y.
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L*Sequential Games — Fixed Length

For Instance — Eight Queens Problem

e(p) { [e: 8 —B) — 8]
for (i := 1;i < 8;i++) do
if p(i) return i
return 1

}

Wy
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L*Sequential Games — Fixed Length

For Instance — Eight Queens Problem

e(p) { [e: 8 —B) — 8]
for (i :==1;i < 8;i++) do
if p(i) return i
return 1

}

SOli(l’l, ~--7xi—1) { [ sol; : g1 g9~ ]
if i > 8 return ()
else
y = e(A\x;.good(sol; 1 (z1, ..., x;)))
return y x sol; 1 1(z1, ..., 2i-1,9)
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L*Sequential Games — Fixed Length

For Instance — Eight Queens Problem

e(p) { [e: 8 —B) — 8]
for (i :==1;i < 8;i++) do
if p(i) return i
return 1

}

SOli(l’l, ~--7xi—1) { [ sol; : g1 g9~ ]
if i > 8 return ()
else
y = e(A\x;.good(sol; 1 (z1, ..., x;)))
return y x sol; 1 1(z1, ..., 2i-1,9)

}

<x17- .. ,1’8> p— SOll( )
Wy I
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L*Sequential Games — Fixed Length

For Instance — Eight Queens Problem

good: 8% — B checks if argument is solution to 8QP.
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L*Sequential Games — Fixed Length

For Instance — Eight Queens Problem

good: 8% — B checks if argument is solution to 8QP.

Selection function
e:(8—B)—8

finds argument ¢;p € 8 such that p(e;p) holds
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L*Sequential Games — Fixed Length

For Instance — Eight Queens Problem

good: 8% — B checks if argument is solution to 8QP.

Selection function
e:(8—B)—8

finds argument ¢;p € 8 such that p(e;p) holds

soly( ) ® ei | (good)

calculates a solution to 8 queen problem.

Wy
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L*Sequential Games — Fixed Length

Classical Arithmetic

Finite product interprets bounded collection
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L*Sequential Games — Fixed Length

Classical Arithmetic

Finite product interprets bounded collection
E.g. consider the infinite PHP

VTN (5 > i A c(j) = b)
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L*Sequential Games — Fixed Length

Classical Arithmetic
Finite product interprets bounded collection
E.g. consider the infinite PHP
VTN (5 > i A c(j) = b)
Equivalent (dialectica) to

VT e 3 pNoN(Ep > ep A c(Byp) = 1)
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L*Sequential Games — Fixed Length

Classical Arithmetic
Finite product interprets bounded collection
E.g. consider the infinite PHP
V303 (5 > i A e(j) = b)
Equivalent (dialectica) to
VT e 3 pNoN(Ep > ep A c(Byp) = 1)

Witnessed by
n—1
b=c( (@ gi> (max))
=0
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Finite but Unbounded Games

Example (Chess)

Moves X; Valid chess moves

Outcomes R White, black, draw, e.g. {—1,0,1}
Goal quantifier ¢o; Maximisation function

Goal quantifier ¢g9;,1 Minimisation function

Outcome function ¢ Adjudication on a given play «
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Finite but Unbounded Games

Example (Chess)

Moves X; Valid chess moves

Outcomes R White, black, draw, e.g. {—1,0,1}
Goal quantifier ¢o; Maximisation function

Goal quantifier ¢g9;,1 Minimisation function

Outcome function ¢ Adjudication on a given play «

The game is drawn, upon a correct claim by the player having the move, if

a. he writes on his scoresheet, and declares to the arbiter his intention to make a move which shall result in the last
50 moves having been made by each player without the movement of any pawn and without the capture of any
piece, or

b. the last 50 consecutive moves have been made by each player without the movement of any pawn and without the
capture of any piece.

With this rule, it can be shown that the game is finite, assuming that given the option to call for a draw, at least one player will do so.
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Finite but Unbounded Games

Definition (Tuple (R, (X;)ien, (¢:)ien, q¢) where...)

e R is the set of possible discrete outcomes

o X; is the set of available moves X; at round i € N
o ¢;: KX, are goal quantifiers for round i € N

o q: II3°,X; — R is a continous outcome function
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Optimal Strategies

Definition (Strategic Play)

Given strategy next; and partial play @ = aq, ..., a;_1, the
strategic extension of @ is 37 = $%(k), 3%k + 1), ... where

B9(i) = next; (@, B%(k), ..., 5% —1)).
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Optimal Strategies

Definition (Strategic Play)

Given strategy next; and partial play @ = aq, ..., a;_1, the
strategic extension of @ is 37 = $%(k), 3%k + 1), ... where

B9(i) = next; (@, B%(k), ..., 5% —1)).

Definition (Optimal Strategy)

Strategy next,, is optimal if for any partial play @

q(@ % %) = dp(Atp.q(@ * 3, % 7).
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Finite but Unbounded Games

Theorem (Main Theorem for Finite but Unbounded Games)

If ¢). are attainable with selection functions €, then

[e9)
X
neth(IL‘(), N ,l’k_l) :k <® 51') (quV...Jk_l))
i=k 0

is an optimal strategy for the game (R, (X;)ien, (¢i)ien, q)-

Moreover,
LA ®5i (q)
i=0

is the strategic play.

v
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Classical Analysis

Mathematical analysis is based on comprehension

BN (fn — A,).
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Classical Analysis

Mathematical analysis is based on comprehension
BN (fn — A,).
Comprehension follows classically from countable choice
VN3P A, () — BN A, (fn).
Countable choice is classically computational up to DNS

vnN—=A4,, — =Vl A,,.
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Double negation shift

The double negation shift DNS
Vn——A, — ——VnA,
corresponds to the type

HnKLAn — KJ_HnAn.
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Double negation shift

The double negation shift DNS

Vn——A, — ——VnA,
corresponds to the type

I,K, A, — K,II,A,.
If L — A, this is equivalent to

HnJJ_An — JJ_HnAn
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Double negation shift

The double negation shift DNS
Vn——A, — ——VnA,
corresponds to the type
I,K, A, — K,II,A,.
If L — A, this is equivalent to
I, J A, — J 11,A,.
The type of the countable product of selection functions!
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Bar recursion

Not a coincidencel

Modified bar recursion is equivalent to

oo oo
JILX;
Qe =ae| Q=
i=k i=k+1

Spector’s bar recursion is equivalent to

: " if k < 1(g(c))
: (gk ’ (®i:k+1 E’)) (q) otherwise
¥y I
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Summary and Further Applications

o New notion of sequential game based on gen. quantifiers

e E.g. Nash equilibrium, backtracking, Beki¢'s lemma
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Summary and Further Applications

o New notion of sequential game based on gen. quantifiers

e E.g. Nash equilibrium, backtracking, Beki¢'s lemma

o Product of sel. fct. calculates optimal strategies
e Product of sel. fct. = bar recursion
o New “negative translation” based on J strong monad
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Summary and Further Applications

o New notion of sequential game based on gen. quantifiers

e E.g. Nash equilibrium, backtracking, Beki¢'s lemma

Product of sel. fct. calculates optimal strategies

Product of sel. fct. = bar recursion

New “negative translation” based on J strong monad

o Functional interpretations (proof mining)

Theorems +— games

Proofs — winning strategies

*
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A Few Open Questions

1. Equivalent notion for simultaneous games
Logic: Branching quantifiers
GT: Standard Nash equilibrium
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Logic: Branching quantifiers
GT: Standard Nash equilibrium

2. Relation to BBC functional
Berardi, Bezem, Coquand 1998

3. Approximately attainable quantifiers
Family ,, approximates a selection function

4. |s product of selection functions equivalent to product of
quantifiers?
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A Few Open Questions

1. Equivalent notion for simultaneous games

Logic: Branching quantifiers
GT: Standard Nash equilibrium

2. Relation to BBC functional
Berardi, Bezem, Coquand 1998

3. Approximately attainable quantifiers
Family ,, approximates a selection function

4. |s product of selection functions equivalent to product of
quantifiers?

5. Other places where (X) appear?
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