
Modular Searching with
Higher-Order Functions

Paulo Oliva
Queen Mary University of London

British Logic Colloquium
University of Sussex
14 September 2017

A Puzzle

A Puzzle
Using the numbers 1,2,…,10 fill in the empty cells
below so that each row and column has the same sum

X X X

X X X

A Puzzle
Using the numbers 1,2,…,10 fill in the empty cells
below so that each row and column has the same sum

1 X X X
2 5 7 8

9 3 4 6

10 X X X

Searching for a Solution…

Order the cells:

Searching for a Solution…

Order the cells:

0 X X X
1 2 3 4

5 6 7 8

9 X X X

Searching for a Solution…

Order the cells:

0 X X X
1 2 3 4

5 6 7 8

9 X X X

Searching for a Solution…

Generate all arrays [x0,…,x9], with xi in {1,…,10}

Order the cells:

0 X X X
1 2 3 4

5 6 7 8

9 X X X

Searching for a Solution…

Generate all arrays [x0,…,x9], with xi in {1,…,10}

Until we find a “good” one

C Implementation
 int xs[10];

 for (xs[0]=1; xs[0]<=10; xs[0]++)
 for (xs[1]=1; xs[1]<=10; xs[1]++)
 for (xs[2]=1; xs[2]<=10; xs[2]++)
 for (xs[3]=1; xs[3]<=10; xs[3]++)
 for (xs[4]=1; xs[4]<=10; xs[4]++)
 for (xs[5]=1; xs[5]<=10; xs[5]++)
 for (xs[6]=1; xs[6]<=10; xs[6]++)
 for (xs[7]=1; xs[7]<=10; xs[7]++)
 for (xs[8]=1; xs[8]<=10; xs[8]++)
 for (xs[9]=1; xs[9]<=10; xs[9]++)
 if (good(xs))
 { print(xs); return 0; }

C Implementation
 int xs[10];

 for (xs[0]=1; xs[0]<=10; xs[0]++)
 for (xs[1]=1; xs[1]<=10; xs[1]++)
 for (xs[2]=1; xs[2]<=10; xs[2]++)
 for (xs[3]=1; xs[3]<=10; xs[3]++)
 for (xs[4]=1; xs[4]<=10; xs[4]++)
 for (xs[5]=1; xs[5]<=10; xs[5]++)
 for (xs[6]=1; xs[6]<=10; xs[6]++)
 for (xs[7]=1; xs[7]<=10; xs[7]++)
 for (xs[8]=1; xs[8]<=10; xs[8]++)
 for (xs[9]=1; xs[9]<=10; xs[9]++)
 if (good(xs))
 { print(xs); return 0; }

 int good(int *xs) {
int test1 = distinct(xs);
int sum1 = xs[0] + xs[1] + xs[5] + xs[9];
int sum2 = xs[1] + xs[2] + xs[3] + xs[4];
int sum3 = xs[5] + xs[6] + xs[7] + xs[8];
int test2 = (sum1 == sum2) && (sum2 == sum3);
return test1 && test2;

 }

C Implementation
 int xs[10];

 for (xs[0]=1; xs[0]<=10; xs[0]++)
 for (xs[1]=1; xs[1]<=10; xs[1]++)
 for (xs[2]=1; xs[2]<=10; xs[2]++)
 for (xs[3]=1; xs[3]<=10; xs[3]++)
 for (xs[4]=1; xs[4]<=10; xs[4]++)
 for (xs[5]=1; xs[5]<=10; xs[5]++)
 for (xs[6]=1; xs[6]<=10; xs[6]++)
 for (xs[7]=1; xs[7]<=10; xs[7]++)
 for (xs[8]=1; xs[8]<=10; xs[8]++)
 for (xs[9]=1; xs[9]<=10; xs[9]++)
 if (good(xs))
 { print(xs); return 0; }

 int good(int *xs) {
int test1 = distinct(xs);
int sum1 = xs[0] + xs[1] + xs[5] + xs[9];
int sum2 = xs[1] + xs[2] + xs[3] + xs[4];
int sum3 = xs[5] + xs[6] + xs[7] + xs[8];
int test2 = (sum1 == sum2) && (sum2 == sum3);
return test1 && test2;

 }

 good :: [Int] -> Bool
 good xs = test1 && test2
 where test1 = distinct [1..10] xs
 sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
 sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
 sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
 test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 good :: [Int] -> Bool
 good xs = test1 && test2
 where test1 = distinct [1..10] xs
 sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
 sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
 sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
 test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 0 else fromJust sol
 where sol = find p [1..10]

 es :: [J Bool Int]
 es = replicate 10 (J e)

 super :: J Bool [Int]
 super = sequence es

 play :: [Int]
 play = selection super good

 good :: [Int] -> Bool
 good xs = test1 && test2
 where test1 = distinct [1..10] xs
 sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
 sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
 sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
 test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 0 else fromJust sol
 where sol = find p [1..10]

 es :: [J Bool Int]
 es = replicate 10 (J e)

 super :: J Bool [Int]
 super = sequence es

 play :: [Int]
 play = selection super good

 good :: [Int] -> Bool
 good xs = test1 && test2
 where test1 = distinct [1..10] xs
 sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
 sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
 sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
 test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 0 else fromJust sol
 where sol = find p [1..10]

 es :: [J Bool Int]
 es = replicate 10 (J e)

 super :: J Bool [Int]
 super = sequence es

 play :: [Int]
 play = selection super good

 good :: [Int] -> Bool
 good xs = test1 && test2
 where test1 = distinct [1..10] xs
 sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
 sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
 sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
 test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 0 else fromJust sol
 where sol = find p [1..10]

 es :: [J Bool Int]
 es = replicate 10 (J e)

 super :: J Bool [Int]
 super = sequence es

 play :: [Int]
 play = selection super good

 good :: [Int] -> Bool
 good xs = test1 && test2
 where test1 = distinct [1..10] xs
 sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
 sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
 sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
 test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 0 else fromJust sol
 where sol = find p [1..10]

 es :: [J Bool Int]
 es = replicate 10 (J e)

 super :: J Bool [Int]
 super = sequence es

 play :: [Int]
 play = selection super good

Haskell 20x faster than C

Haskell 20x faster than C

Selection and
Continuation Monads

Selection Monad
• Fix . The type mapping  
 
  
 
is a strong monad

R

JRX = (X→ R)→ X

Selection Monad
• Fix . The type mapping  
 
  
 
is a strong monad

 data J r x = J { selection :: (x -> r) -> x } 
 
 monJ :: J r x -> (x -> J r y) -> J r y 
 monJ e f = J (\p -> b p (a p)) 
 where 
 a p = selection e (\x -> p (b p x)) 
 b p x = selection (f x) p  
 
 instance Monad (J r) where 
 return x = J(\p -> x) 
 e >>= f = monJ e f

R

JRX = (X→ R)→ X

Interpretation

JRX = (X→ R)→ X

Interpretation

JRX = (X→ R)→ X
local problem

Interpretation

JRX = (X→ R)→ X
local problem

local solution

Continuation Monad
• Fix . The type mapping  
 
  
 
is also a strong monad

R

KRX = (X→ R)→ R

Continuation Monad
• Fix . The type mapping  
 
  
 
is also a strong monad

R

KRX = (X→ R)→ R
JRX = (X→ R)→ X

Continuation Monad
• Fix . The type mapping  
 
  
 
is also a strong monad

 data K r x = K { quant :: (x -> r) -> r } 
 
 monK :: K r x -> (x -> K r y) -> K r y 
 monK phi f = K (\p -> quant phi (b p)) 
 where 
 b p x = quant (f x) p  
 
 instance Monad (K r) where 
 return x = K(\p -> p x) 
 phi >>= f = monK phi f

R

KRX = (X→ R)→ R
JRX = (X→ R)→ X

Combining Local Searches
f ∈{KR , JR}

Combining Local Searches

• Applicative functors support the operation  
 

f ∈{KR , JR}

Combining Local Searches

• Applicative functors support the operation  
 

sequence :: Πi (f xi)→ f (Πi xi)

f ∈{KR , JR}

Combining Local Searches

• Applicative functors support the operation  
 

• Monads support 

sequence :: Πi (f xi)→ f (Πi xi)

f ∈{KR , JR}

Combining Local Searches

• Applicative functors support the operation  
 

• Monads support 

sequence :: Πi (f xi)→ f (Πi xi)

depSequence :: Πi (Π j<i x j → f xi)→ f (Πi xi)

f ∈{KR , JR}

Purple player starts, Green players continues

0 X X X
1 2 3 4

5 6 7 8

9 X X X

From Puzzle to Game…

Purple player starts, Green players continues

0 X X X
1 2 3 4

5 6 7 8

9 X X X

From Puzzle to Game…

Green wins if a solution is achieved

Purple player starts, Green players continues

0 X X X
1 2 3 4

5 6 7 8

9 X X X

From Puzzle to Game…

Green wins if a solution is achieved

Purple wins otherwise

Haskell Implementation
 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 1 else fromJust sol
 where sol = find p [1..10]

 a :: (Int -> Bool) -> Int
 a p = if sol == Nothing then 1 else fromJust sol
 where sol = find (not.p) [1..10]

 super :: J Bool [Int]
 super = sequence ((J a):(replicate 9 (J e)))

 play :: [Int]
 play = selection super good

Haskell Implementation
 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 1 else fromJust sol
 where sol = find p [1..10]

 a :: (Int -> Bool) -> Int
 a p = if sol == Nothing then 1 else fromJust sol
 where sol = find (not.p) [1..10]

 super :: J Bool [Int]
 super = sequence ((J a):(replicate 9 (J e)))

 play :: [Int]
 play = selection super good

Haskell Implementation
 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 1 else fromJust sol
 where sol = find p [1..10]

 a :: (Int -> Bool) -> Int
 a p = if sol == Nothing then 1 else fromJust sol
 where sol = find (not.p) [1..10]

 super :: J Bool [Int]
 super = sequence ((J a):(replicate 9 (J e)))

 play :: [Int]
 play = selection super good

Modular search on
more complex games…

Pirates and Treasures1

A group of 7 pirates has 100 gold coins 
They have to decide amongst themselves how to divide the treasure,
but must abide by pirate rules:
• The most senior pirate proposes the division
• All of the pirates (including the most senior) vote on the division

• If half or more vote for the division, it stands
• If less than half vote for it, they throw the most senior pirate

overboard and start again
• The pirates are perfectly logical, and entirely ruthless 

(only caring about maximising their own share of the gold)
What division should the most senior pirate suggest to the other six?

1 http://www.ox.ac.uk/admissions/undergraduate/applying-to-oxford/interviews/sample-interview-questions

• Input

Pirate index i

Continuation p :: Bool → Share

• Choose boolean that maximises his share

Basic player 1: The voter

• Input

Pirate index i

Continuation p :: Bool → Share

• Choose boolean that maximises his share

 v :: Pirate -> (Bool -> Share) -> Bool
 v i p = head $ argmax [True,False] ((!!i).p)

 sv :: Pirate -> J Share Bool
 sv i = J (v i)

Basic player 1: The voter

• Input
Pirate index i

Continuation p :: Share → Share
• Choose global share that maximises his share

Basic player 2: The sharer

• Input
Pirate index i

Continuation p :: Share → Share
• Choose global share that maximises his share

 s :: Pirate -> (Share -> Share) -> Share
 s i p = head $ argmax dom ((!!i).p)
 where shares = divide nc (np - i)
 dom = map ((replicate i 0)++) shares
 
 ss :: Int -> J Share Share
 ss i = J (s i)

Basic player 2: The sharer

Composing players…

 sp :: Pirate -> J Share Poll
 sp i = sequence (map sv [(i+1)..(np-1)])

Round player = Product of share and poll players

Composing players…

Poll player = sequencing of voters

 sp :: Pirate -> J Share Poll
 sp i = sequence (map sv [(i+1)..(np-1)])

Round player = Product of share and poll players

Composing players…

Poll player = sequencing of voters
 e :: Int -> J Share (Share, Poll)
 e i = prod (ss i, sp i)

 sp :: Pirate -> J Share Poll
 sp i = sequence (map sv [(i+1)..(np-1)])

Round player = Product of share and poll players

Composing players…

Poll player = sequencing of voters
 e :: Int -> J Share (Share, Poll)
 e i = prod (ss i, sp i)

 sp :: Pirate -> J Share Poll
 sp i = sequence (map sv [(i+1)..(np-1)])

Round player = Product of share and poll players

 g :: J Share [(Share, Poll)]
 g = sequence (map e [0..(np-1)])

Global player = Sequence of round players

Composing players…

alpha-beta pruning

alpha-beta pruning
• Prunes search tree on zero-sum two player games
• E.g. state-of-the-art chess programs use it
• Idea:

✴ Continuing a sub-search will only improve my
payoff

✴ If current payoff already discourages opponent to
visit sub-tree

✴ Then may as well give up searching sub-tree

https://commons.wikimedia.org/wiki/File:AB_pruning.svg

alpha-beta pruning
Keep a record of alpha-beta values for each move

Corresponds to doing a search using

Y = X × (! ×!)
R = !

φ ::X ×! ×!→ KR(X ×! ×!)

ε ::X ×! ×!→ JR(X ×! ×!)

Summary

• Selection/continuation monads perform “local
search” and modelling of players

Summary

• Selection/continuation monads perform “local
search” and modelling of players

• Sequencing of selection/continuation monad gives

Summary

• Selection/continuation monads perform “local
search” and modelling of players

• Sequencing of selection/continuation monad gives

Efficient global search

Summary

• Selection/continuation monads perform “local
search” and modelling of players

• Sequencing of selection/continuation monad gives

Efficient global search

Implementation of backward induction

Summary

• Selection/continuation monads perform “local
search” and modelling of players

• Sequencing of selection/continuation monad gives

Efficient global search

Implementation of backward induction

Computational interpretation of countable choice

Summary

• Selection/continuation monads perform “local
search” and modelling of players

• Sequencing of selection/continuation monad gives

Efficient global search

Implementation of backward induction

Computational interpretation of countable choice

Computational version of Tychonoff’s theorem

Summary

References
• Escardó and Oliva. Selection functions, bar recursion

and backward induction. Mathematical Structures in
Computer Science, 20(2):127-168, 2010

• Escardó and Oliva. Sequential games and optimal
strategies. Proceedings of the Royal Society A,
467:1519-1545, 2011

• Hedges, Oliva, Sprits, Zahn, and Winschel. A higher-
order framework for decision problems and games,
ArXiv, http://arxiv.org/abs/1409.7411, 2014

