Modular Searching with
Higher-Order Functions

Paulo Oliva
Queen Mary University of London

British Logic Colloguium
University of Sussex
14 September 2017

A Puzzle

A Puzzle

Using the numbers 1,2,...,10 fill in the empty cells
below so that each row and column has the same sum

A Puzzle

Using the numbers 1,2,...,10 fill in the empty cells
below so that each row and column has the same sum

Searching for a Solution. ..

Searching for a Solution. ..

Order the cells:

Searching for a Solution. ..

Order the cells:

0

1

5

9

Searching for a Solution. ..

Order the cells:

0

1

5

9

Generate all arrays [Xo,...,Xe], with x; in {1,...,10}

Searching for a Solution. ..

Order the cells:

0

1

5

9

Generate all arrays [Xo,...,Xe], with x; in {1,...,10}

Until we find a "good” one

C Implementation

int xs[10];

(xs[0]=1; xs[0]<=10; xs[0]++)
(xs[1l]=1; xs[1l]<=10; xs[l]++)
(xs[2]=1; xs[2]<=10; xs[2]++)
(xs[3]=1; xs[3]<=10; Xs[3]++)
(xs[4]=1; xs[4]<=10; xs[4]++)
(xs[5]=1; xs[5]<=10; xs[5]++)
(xs[6]=1; xs[6]<=10; xs[6]++)
(xs[7]=1; xs[7]<=10; xs[7]++)
(xs[8]=1; xs[8]<=10; xs[8]++)
(xs[9]=1; xs[9]<=10; xs[9]++)
(good(xs))

{ print(xs); 0; }

C Implementation

int xs[10];

(xs[0]=1; xs[0]<=10; xs[0]++)

—1. —10 .
int good(int *xs) {
int testl = distinct(xs);
int suml = xs[0] + xs[1l] + xs[5] + xs[9];
int sum2 = xs[1l] + xs[2] + xs[3] + xs[4];
int sum3 = xs[5] + xs[6] + xs[7] + xs[8];

int test2 = (suml == sum2) && (sum2 == sum3);
testl && test2;

C Implementation

NN _ \ xterm
#*Main> play

Chomskyf{olival: gcc examplel.c -o examplel-c
Chomskylolival: time ./examplel-c

real Om22.740s
user Om22.676s
SYS Om0.059s

testl && test2;

(good(xs))

{ print(xs);

Haskell Implementation

good
good Xs

[Int] Bool
testl && test2
testl
suml (xs!!1)
(Xs!!5)
(xs!!0)

(suml

sum?2
sum3
test?2

distinct [1

sum2) &&

10] xs
(xs!!2)
(xs!!16)
(xs!!1)

(xs!!3)

(xs!!7)

(xs!!5)
(sum?2

(xs!!4d)

(xs!!8)

(xs!!19)
suma3)

Haskell Implementation

fromJust sol
10]

[J Bool Int]
replicate 10 (J e)

super J Bool [Int]
super = sequence es

play [Int]
play selection super good

Haskell Implementation

Bool) Int
e p = 1f sol == Nothing then 0 else fromJust sol

where sol = find p [1..10]

[J Bool Int]
replicate 10 (J e)

super J Bool [Int]
super = sequence es

play [Int]
play selection super good

Haskell Implementation

fromJust sol
10]

[J Bool Int]
= replicate 10 (J e)

super J Bool [Int]
super = sequence es

play [Int]
play selection super good

Haskell Implementation

fromJust sol
10]

[J Bool Int]
replicate 10 (J e)

super :: J Bool [Int]
super = sequence es

play [Int]
play selection super good

Haskell Implementation

fromJust sol
10]

[J Bool Int]
replicate 10 (J e)

super J Bool [Int]
super = sequence es

play :: [Int]
play = selection super good

Haskell 20x faster than C

| _NON _ \ xterm
#Main> play

Chomskylolival: gcc examplel.c —-o examplel-c
Chomsky{olival: time ./examplel-c

real Om22.740s

user Om22.676s

SYS Om0.059

Chomskyfolival:

Chomskylolival:

Chomskylolival: ghc examplel.hs -o examplel-haskell
Chomsky{olival: time ./examplel-haskell

real Oml.222s
user Om1.205s
SYS Om0.015s
Chomsky{olival}: |}

Haskell 20x faster than C

| _NON _ \ xterm
#*Main> play
Chomskylolival: gcc examplel.c —-o examplel-c

Chomsky{olival: time ./examplel-c

1
2578

9346

10

real Om22.740s

user Om22.676s

SYS Om0.059

Chomskyfolival: ;
Chomskyf{olival: ? 'J
Chomskylolival: ghc examplel.hs -o examplel-haskell ‘
Chomsky{olival: time ./examplel-haskell

1
2578

9346

10

real Oml.222s
user Oml.205s
SYS Om0.015s

Chomsky{olival}: |}

Selection and
Continuation Monads

Selection Monad

 FiX R. The type mapping
J. X=(X—=>R)—> X

'S a strong monad

Selection Monad

e FiIX R. The type mapping
J. X=(X—=>R)—> X

'S a strong monad

J r x J { selection

mond :: J r X (x Jry)
monl e f = J (\p b p (a p))

selection e (\X

anp
b p x = selection (f x)

Monad (J r) where
return x = J(\p X)
e f mond e f

INnterpretation

J.X=(X>R) > X

INnterpretation

J.X=(X>R) > X

local problem

INnterpretation

local solution

J.X=(X>R) > X

local problem

Continuation Monad

 Fix R. The type mapping
K. X=(X—R)—>R

's also a strong monad

Continuation Monad

 Fix R. The type mapping

K. X=(X—R)—>R

's also a strong monad

J. X=(X—>R)—> X

Continuation Monad

 Fix R. The type mapping
K. X=(X—R)—>R

's also a strong monad

K r x = K { quant

monK :: K r X
monK phi f quant phi (

b p x = quant (f x) p
Monad (K r) where

return x = K(\p P X)
phi f monK phi f

Combining Local Searches

J €Ky, Jps

Combining Local Searches

J €Ky, Jps

* Applicative functors support the operation

Combining Local Searches

J €K, I}
* Applicative functors support the operation

sequence :: IL(f x,)— f(ILx,)

Combining Local Searches

J €K, I}
* Applicative functors support the operation

sequence :: IL(f x,)— f(ILx,)

* Monads support

Combining Local Searches

J €K, I}
* Applicative functors support the operation

sequence :: IL(f x,)— f(ILx,)

* Monads support

depSequence :: IL.(I1._x, — f x;)— f(llx,)

J<i

From Puzzle to Game...

Purple player starts, Green players continues

From Puzzle to Game...

Purple player starts, Green players continues

GGreen wins if a solution is achieved

From Puzzle to Game...

Purple player starts, Green players continues

GGreen wins if a solution is achieved

Purple wins otherwise

Haskell Implementation

(Int Bool) Int
sol Nothing fromJust sol

sol find p [1..10]

(Int Bool) Int
sol Nothing 1 fromJust sol

sol find (not.p) [1..10]

super J Bool [Int]
super = sequence ((J a):(replicate 9 (J e)))

play [Int]
play selection super good

Haskell Implementation

(Int Bool) Int
sol Nothing fromJust sol

sol find p [1..10]

(Int Bool) Int
sol Nothing 1 fromJust sol

sol find (not.p) [1..10]

super J Bool [Int]
super = sequence ((J a):(replicate 9 (J e)))

play [Int]
play selection super good

Haskell Implementation

(Int Bool) Int
sol Nothing fromJust sol

sol find p [1..10]

(Int Bool) Int
sol Nothing 1 fromJust sol

sol find (not.p) [1..10]

super J Bool [Int]
super = sequence ((J a):(replicate 9 (J e)))

play [Int]
play selection super good

Modular search on
more complex games...

Pirates and Treasures’

A group of 7 pirates has 100 gold coins

They have to decide amongst themselves how to divide the treasure,
but must abide by pirate rules:

- The most senior pirate proposes the division
+ All of the pirates (including the most senior) vote on the division
- If half or more vote for the division, it stands
- If less than half vote for it, they throw the most senior pirate
overboard and start again
- The pirates are perfectly logical, and entirely ruthless
(only caring about maximising their own share of the gold)
What division should the most senior pirate suggest to the other six?

T http://www.ox.ac.uk/admissions/undergraduate/applying-to-oxford/interviews/sample-interview-questions

Basic player 1: The voter

- Input
Pirate index |

Continuation p :: Bool — Share

- Choose boolean that maximises his share

Basic player 1: The voter

Input
Pirate index |

Continuation p :: Bool — Share

Choose boolean that maximises his share

v Pirate (Bool Share)
v 1 p = head $ argmax [True,False]

SV Pirate J Share Bool
sv i=J (v 1)

Basic player 2: The sharer

- Input
Pirate index |
Continuation p :: Share = Share

+ Choose global share that maximises his share

Basic player 2: The sharer

Input
Pirate index |
Continuation p :: Share = Share
Choose global share that maximises his share
S Pirate (Share Share) Share

s i p= head ¢ argmax dom ((!'i).p)
shares = divide nc (np - i)

dom = map ((replicate i 0)++) shares

SS Int J Share Share
ss i =71 (s i)

Composing players...

Composing players...

Round player = Product of share and poll players

sp Pirate J Share Poll

sp 1 = sequence (map sv [(i+1)..(np-1)1)

Composing players...

Round player = Product of share and poll players

sp Pirate J Share Poll

sp 1 = sequence (map sv [(i+1)..(np-1)1)

Poll player = sequencing of voters

Composing players...

Round player = Product of share and poll players

Sp Pirate J Share Poll

sp 1 = sequence (map sv [(i+1)..(np-1)1)

Poll player = sequencing of voters

= Int J Share (Share, Poll)

e i = prod (ss i, sp i)

Composing players...

Round player = Product of share and poll players

sp Pirate J Share Poll

sp i = sequence (map sv [(i+1)..(np-1)1)

Poll player = sequencing of voters

= Int J Share (Share, Poll)
e 1 = prod (ss i, sp 1i)

Global player = Sequence of round players

g J Share [(Share, Poll)]

g = sequence (map e [0..(np-1)])

alpha-obeta pruning

alpha-obeta pruning

 Prunes search tree on zero-sum two player games
e E.g. state-of-the-art chess programs use it

e |dea;

* Continuing a sub-search will only improve my
payoff

* |t current payoft already discourages opponent to
Vvisit sub-tree

* Then may as well give up searching sub-tree

5

3

6

5

S 1 Bd Hoo e

511617

4

5

3

6

@K
7
6
49/

6

7

5

9

8

https://commons.wikimedia.org/wiki/File:AB_pruning.svg

MAX

MIN

MAX

MIN

MAX

alpha-peta pruning

Keep a record of alpha-beta values for each move

Y = X X (N xN)
R=N

Corresponds to doing a search using

O XXNXN—= K (XXNXN)
ELXXNXN—=J (X XNXN)

summary

summary

e Selection/continuation monads perform “local
search” and modelling of players

summary

e Selection/continuation monads perform “local
search” and modelling of players

* Seqguencing of selection/continuation monad gives

summary

e Selection/continuation monads perform “local
search” and modelling of players

* Seqguencing of selection/continuation monad gives

Efficient global search

summary

e Selection/continuation monads perform “local
search” and modelling of players

* Seqguencing of selection/continuation monad gives

Efficient global search

Implementation of backward induction

summary

e Selection/continuation monads perform “local
search” and modelling of players

* Seqguencing of selection/continuation monad gives

Efficient global search
Implementation of backward induction

Computational interpretation of countable choice

summary

e Selection/continuation monads perform “local
search” and modelling of players

* Seqguencing of selection/continuation monad gives

Efficient global search
Implementation of backward induction
Computational interpretation of countable choice

Computational version of Tychonoft’s theorem

References

e Escardd and Oliva. Selection functions, bar recursion
and backward induction. Mathematical Structures in
Computer Science, 20(2):127-168, 2010

e Escardd and Oliva. Sequential games and optimal
strategies. Proceedings of the Royal Society A,
467:1519-1545, 2011

 Hedges, Oliva, Sprits, Zahn, and Winschel. A higher-
order framework for decision problems and games,
ArXiv, http://arxiv.org/abs/1409.7411, 2014

