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Searching for a Solution. ..

Order the cells:

0

1

5
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Generate all arrays [Xo,...,Xe], with x; in {1,...,10}

Until we find a "good” one



C Implementation

int xs[10];

(xs[0]=1; xs[0]<=10; xs[0]++)
(xs[1l]=1; xs[1l]<=10; xs[l]++)
(xs[2]=1; xs[2]<=10; xs[2]++)
(xs[3]=1; xs[3]<=10; Xs[3]++)
(xs[4]=1; xs[4]<=10; xs[4]++)
(xs[5]=1; xs[5]<=10; xs[5]++)
(xs[6]=1; xs[6]<=10; xs[6]++)
(xs[7]=1; xs[7]<=10; xs[7]++)
(xs[8]=1; xs[8]<=10; xs[8]++)
(xs[9]=1; xs[9]<=10; xs[9]++)
(good(xs))

{ print(xs); 0; }




C Implementation

int xs[10];

(xs[0]=1; xs[0]<=10; xs[0]++)

—1. —10 .
int good(int *xs) {
int testl = distinct(xs);
int suml = xs[0] + xs[1l] + xs[5] + xs[9];
int sum2 = xs[1l] + xs[2] + xs[3] + xs[4];
int sum3 = xs[5] + xs[6] + xs[7] + xs[8];

int test2 = (suml == sum2) && (sum2 == sum3);
testl && test2;




C Implementation

NN _ \ xterm
#*Main> play

Chomskyf{olival: gcc examplel.c -o examplel-c
Chomskylolival: time ./examplel-c

real Om22.740s
user Om22.676s
SYS Om0.059s

testl && test2;

(good(xs))

{ print(xs);




Haskell Implementation

good
good Xs

[ Int] Bool
testl && test2
testl
suml (xs!!1)
(Xs!!5)
(xs!!0)

(suml

sum?2
sum3
test?2

distinct [1

sum2) &&

10] xs
(xs!!2)
(xs!!16)
(xs!!1)

(xs!!3)

(xs!!7)

(xs!!5)
(sum?2

(xs!!4d)

(xs!!8)

(xs!!19)
suma3)




Haskell Implementation

fromJust sol
10]

[J Bool Int]
replicate 10 (J e)

super J Bool [Int]
super = sequence es

play [ Int]
play selection super good




Haskell Implementation

Bool) Int
e p = 1f sol == Nothing then 0 else fromJust sol

where sol = find p [1..10]

[J Bool Int]
replicate 10 (J e)

super J Bool [Int]
super = sequence es

play [ Int]
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Haskell Implementation

fromJust sol
10]

[J Bool Int]
replicate 10 (J e)

super :: J Bool [Int]
super = sequence es

play [ Int]
play selection super good




Haskell Implementation

fromJust sol
10]

[J Bool Int]
replicate 10 (J e)

super J Bool [Int]
super = sequence es

play :: [Int]
play = selection super good




Haskell 20x faster than C

| _NON _ \ xterm
#Main> play

Chomskylolival: gcc examplel.c —-o examplel-c
Chomsky{olival: time ./examplel-c

real Om22.740s

user Om22.676s

SYS Om0.059

Chomskyfolival:

Chomskylolival:

Chomskylolival: ghc examplel.hs -o examplel-haskell
Chomsky{olival: time ./examplel-haskell

real Oml.222s
user Om1.205s
SYS Om0.015s
Chomsky{olival}: |}




Haskell 20x faster than C

| _NON _ \ xterm
#*Main> play
Chomskylolival: gcc examplel.c —-o examplel-c

Chomsky{olival: time ./examplel-c

1
2578

9346

10

real Om22.740s

user Om22.676s

SYS Om0.059

Chomskyfolival: ;
Chomskyf{olival: ? 'J
Chomskylolival: ghc examplel.hs -o examplel-haskell ‘
Chomsky{olival: time ./examplel-haskell

1
2578

9346

10

real Oml.222s
user Oml.205s
SYS Om0.015s

Chomsky{olival}: |}




Selection and
Continuation Monads
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Selection Monad

e FiIX R. The type mapping
J. X=(X—=>R)—> X

'S a strong monad

J r x J { selection

mond :: J r X (x Jry)
monl e f = J (\p b p (a p))

selection e (\X

anp
b p x = selection (f x)

Monad (J r) where
return x = J(\p X)
e f mond e f




INnterpretation

J.X=(X>R) > X
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local problem




INnterpretation

local solution

J.X=(X>R) > X

local problem
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K. X=(X—R)—>R

's also a strong monad
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Continuation Monad

 Fix R. The type mapping
K. X=(X—R)—>R

's also a strong monad

K r x = K { quant

monK :: K r X
monK phi f quant phi (

b p x = quant (f x) p
Monad (K r) where

return x = K(\p P X)
phi f monK phi f




Combining Local Searches
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Combining Local Searches

J €K, I}
* Applicative functors support the operation

sequence :: IL(f x,)— f(ILx,)

* Monads support

depSequence :: IL.(I1._x, — f x;)— f(llx,)

J<i
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From Puzzle to Game...

Purple player starts, Green players continues

GGreen wins if a solution is achieved

Purple wins otherwise



Haskell Implementation

(Int Bool) Int
sol Nothing fromJust sol

sol find p [1..10]
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Haskell Implementation

(Int Bool) Int
sol Nothing fromJust sol

sol find p [1..10]

(Int Bool) Int
sol Nothing 1 fromJust sol

sol find (not.p) [1..10]

super J Bool [Int]
super = sequence ((J a):(replicate 9 (J e)))

play [ Int]
play selection super good




Modular search on
more complex games...



Pirates and Treasures’

A group of 7 pirates has 100 gold coins

They have to decide amongst themselves how to divide the treasure,
but must abide by pirate rules:

- The most senior pirate proposes the division
+ All of the pirates (including the most senior) vote on the division
- If half or more vote for the division, it stands
- If less than half vote for it, they throw the most senior pirate
overboard and start again
- The pirates are perfectly logical, and entirely ruthless
(only caring about maximising their own share of the gold)
What division should the most senior pirate suggest to the other six?

T http://www.ox.ac.uk/admissions/undergraduate/applying-to-oxford/interviews/sample-interview-questions



Basic player 1: The voter

- Input
Pirate index |

Continuation p :: Bool — Share

- Choose boolean that maximises his share



Basic player 1: The voter

Input
Pirate index |

Continuation p :: Bool — Share

Choose boolean that maximises his share

v Pirate (Bool Share)
v 1 p = head $ argmax [True,False]

SV Pirate J Share Bool
sv i=J (v 1)




Basic player 2: The sharer

- Input
Pirate index |
Continuation p :: Share = Share

+ Choose global share that maximises his share



Basic player 2: The sharer

Input
Pirate index |
Continuation p :: Share = Share
Choose global share that maximises his share
S Pirate (Share Share) Share

s i p= head ¢ argmax dom ((!'i).p)
shares = divide nc (np - i)

dom = map ((replicate i 0)++) shares

SS Int J Share Share
ss i =71 (s i)
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Round player = Product of share and poll players

sp Pirate J Share Poll

sp 1 = sequence (map sv [(i+1)..(np-1)1)
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Composing players...

Round player = Product of share and poll players

Sp Pirate J Share Poll

sp 1 = sequence (map sv [(i+1)..(np-1)1)

Poll player = sequencing of voters

= Int J Share (Share, Poll)

e i = prod (ss i, sp i)




Composing players...

Round player = Product of share and poll players

sp Pirate J Share Poll

sp i = sequence (map sv [(i+1)..(np-1)1)

Poll player = sequencing of voters

= Int J Share (Share, Poll)
e 1 = prod (ss i, sp 1i)

Global player = Sequence of round players

g J Share [(Share, Poll)]

g = sequence (map e [0..(np-1)])




alpha-obeta pruning



alpha-obeta pruning

 Prunes search tree on zero-sum two player games
e E.g. state-of-the-art chess programs use it

e |dea;

* Continuing a sub-search will only improve my
payoff

* |t current payoft already discourages opponent to
Vvisit sub-tree

* Then may as well give up searching sub-tree
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alpha-peta pruning

Keep a record of alpha-beta values for each move

Y = X X (N xN)
R=N

Corresponds to doing a search using

O XXNXN—= K (XXNXN)
ELXXNXN—=J (X XNXN)
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summary

e Selection/continuation monads perform “local
search” and modelling of players

* Seqguencing of selection/continuation monad gives

Efficient global search
Implementation of backward induction
Computational interpretation of countable choice

Computational version of Tychonoft’s theorem
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