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Order the cells:

0 X X X
1 2 3 4

5 6 7 8

9 X X X

Searching for a Solution…

Generate all arrays [x0,…,x9], with xi in {1,…,10}

Until we find a “good” one



C Implementation
 int xs[10];

 for (xs[0]=1; xs[0]<=10; xs[0]++)
   for (xs[1]=1; xs[1]<=10; xs[1]++)
     for (xs[2]=1; xs[2]<=10; xs[2]++)
       for (xs[3]=1; xs[3]<=10; xs[3]++) 
         for (xs[4]=1; xs[4]<=10; xs[4]++)
            for (xs[5]=1; xs[5]<=10; xs[5]++)
              for (xs[6]=1; xs[6]<=10; xs[6]++)
                for (xs[7]=1; xs[7]<=10; xs[7]++)
                  for (xs[8]=1; xs[8]<=10; xs[8]++)
                    for (xs[9]=1; xs[9]<=10; xs[9]++)
                      if (good(xs))
                        { print(xs); return 0; }
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Selection Monad
• Fix    . The type mapping  
 
                       
 
is a strong monad

 data J r x = J { selection :: (x -> r) -> x } 
 
 monJ :: J r x -> (x -> J r y) -> J r y 
 monJ e f = J (\p -> b p (a p)) 
    where 
       a p = selection e (\x -> p (b p x)) 
       b p x = selection (f x) p  
 
 instance Monad (J r) where 
    return x = J(\p -> x) 
    e >>= f = monJ e f

R

JRX = (X→ R)→ X



Interpretation

JRX = (X→ R)→ X



Interpretation

JRX = (X→ R)→ X
local problem



Interpretation

JRX = (X→ R)→ X
local problem
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Continuation Monad
• Fix    . The type mapping  
 
                       
 
is also a strong monad

 data K r x = K { quant :: (x -> r) -> r } 
 
 monK :: K r x -> (x -> K r y) -> K r y 
 monK phi f = K (\p -> quant phi (b p)) 
    where 
      b p x = quant (f x) p  
 
 instance Monad (K r) where 
    return x = K(\p -> p x) 
    phi >>= f = monK phi f

R

KRX = (X→ R)→ R
JRX = (X→ R)→ X
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Combining Local Searches

• Applicative functors support the operation  
 

• Monads support 

sequence ::  Πi ( f  xi )→ f (Πi xi )

depSequence ::  Πi (Π j<i x j → f  xi )→ f (Πi xi )

f ∈{KR , JR}
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Purple player starts, Green players continues

0 X X X
1 2 3 4

5 6 7 8

9 X X X

From Puzzle to Game…

Green wins if a solution is achieved

Purple wins otherwise



Haskell Implementation
 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 1 else fromJust sol
   where sol = find p [1..10]

 a :: (Int -> Bool) -> Int
 a p = if sol == Nothing then 1 else fromJust sol
   where sol = find (not.p) [1..10]

 super :: J Bool [Int]
 super = sequence ((J a):(replicate 9 (J e)))

 play :: [Int]
 play = selection super good
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Modular search on 
more complex games…



Pirates and Treasures1

A group of 7 pirates has 100 gold coins 
They have to decide amongst themselves how to divide the treasure, 
but must abide by pirate rules: 
• The most senior pirate proposes the division 
• All of the pirates (including the most senior) vote on the division 

• If half or more vote for the division, it stands 
• If less than half vote for it, they throw the most senior pirate 

overboard and start again 
• The pirates are perfectly logical, and entirely ruthless 

(only caring about maximising their own share of the gold)  
What division should the most senior pirate suggest to the other six?

1 http://www.ox.ac.uk/admissions/undergraduate/applying-to-oxford/interviews/sample-interview-questions
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• Input

Pirate index i

Continuation p :: Bool → Share

• Choose boolean that maximises his share

 v :: Pirate -> (Bool -> Share) -> Bool 
 v i p = head $ argmax [True,False] ((!!i).p) 

 sv :: Pirate -> J Share Bool 
 sv i = J (v i) 

Basic player 1: The voter
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• Input
Pirate index i

Continuation p :: Share → Share
• Choose global share that maximises his share

 s :: Pirate -> (Share -> Share) -> Share 
 s i p = head $ argmax dom ((!!i).p) 
  where shares = divide nc (np - i) 
        dom = map ((replicate i 0)++) shares 
 
 ss :: Int -> J Share Share 
 ss i = J (s i) 

Basic player 2: The sharer



Composing players…
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 sp i = sequence (map sv [(i+1)..(np-1)]) 

Round player = Product of share and poll players
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Poll player = sequencing of voters
 e :: Int -> J Share (Share, Poll) 
 e i = prod (ss i, sp i) 

 sp :: Pirate -> J Share Poll 
 sp i = sequence (map sv [(i+1)..(np-1)]) 
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Poll player = sequencing of voters
 e :: Int -> J Share (Share, Poll) 
 e i = prod (ss i, sp i) 

 sp :: Pirate -> J Share Poll 
 sp i = sequence (map sv [(i+1)..(np-1)]) 

Round player = Product of share and poll players

 g :: J Share [(Share, Poll)] 
 g = sequence (map e [0..(np-1)]) 

Global player = Sequence of round players

Composing players…
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alpha-beta pruning
• Prunes search tree on zero-sum two player games 
• E.g. state-of-the-art chess programs use it 
• Idea: 

✴ Continuing a sub-search will only improve my 
payoff 

✴ If current payoff already discourages opponent to 
visit sub-tree 

✴ Then may as well give up searching sub-tree 



https://commons.wikimedia.org/wiki/File:AB_pruning.svg



alpha-beta pruning
Keep a record of alpha-beta values for each move

Corresponds to doing a search using

Y = X × (! ×!)
R = !

φ ::X ×! ×!→ KR(X ×! ×!)

ε ::X ×! ×!→ JR(X ×! ×!)
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• Selection/continuation monads perform “local 
search” and modelling of players

• Sequencing of selection/continuation monad gives

Efficient global search

Implementation of backward induction

Computational interpretation of countable choice

Computational version of Tychonoff’s theorem

Summary
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